当前位置:文档之家› 先进热塑性树脂基复合材料预浸料的制备及纤维缠绕成型技术

先进热塑性树脂基复合材料预浸料的制备及纤维缠绕成型技术

先进热塑性树脂基复合材料预浸料的制备及纤维缠绕成型技术
先进热塑性树脂基复合材料预浸料的制备及纤维缠绕成型技术

先进热塑性树脂基复合材料预浸料的制备及纤维缠绕成型技

作者:孙宝磊, 陈平, 李伟, 陆春, SUN Baolei, CHEN Ping, LI Wei, LU Chun

作者单位:孙宝磊,SUN Baolei(大连理工大学化工学院高分子材料系,大连,116012), 陈平,CHEN

Ping(大连理工大学化工学院高分子材料系,大连,116012;辽宁省先进树脂基复合材料制备技

术重点实验室,沈阳航空工业学院,沈阳,110136), 李伟,陆春,LI Wei,LU Chun(辽宁省先进

树脂基复合材料制备技术重点实验室,沈阳航空工业学院,沈阳,110136)

刊名:

纤维复合材料

英文刊名:FIBER COMPOSITES

年,卷(期):2009,26(1)

被引用次数:5次

参考文献(41条)

1.傅英热塑性树脂基复合材料的成型技术 1995(01)

2.陈祥宝高性能树脂基体 1996

3.Coffenberry B S;Hanber D E;Cirino M Lost cost alternative in-situ consolidated thermoplastic composite structures 1993

4.Cirino M;Pipers R B In-situ consolidation for the thermoplastic composite ring-residual stress state 1991(02)

5.陈平;于祺高性能热塑性树脂基复合材料的研究进展[期刊论文]-纤维复合材料 2005(02)

6.蹇锡高;廖功雄;王锦艳含二氮杂萘酮结构聚芳醚酮和聚芳醚砜研究进展[期刊论文]-中国塑料 2002(04)

7.蹇锡高;Allanshay;郑海滨含二氮杂萘酮结构的聚醚砜及制备法

8.蹇锡高;Allanshay;郑海滨含二氮杂萘酮结构的聚醚酮及制备法

9.蹇锡高;陈平;廖功雄含二氮杂荼酮结构新型聚芳醚系列高性能聚合物的合成与性能[期刊论文]-高分子学报2003(04)

10.彭静;蹇锡高;刘少琼PPESK树脂基复合材料的摩擦磨损性能[期刊论文]-材料研究学报 2001(02)

11.何丽杉杂萘联苯结构聚芳醚酮共聚物合成与性能[学位论文] 2006

12.余剑英;周祖福连续纤维增强热塑性复合材料的制备成型技术及其应用前景[期刊论文]-武汉工业大学学报1998(04)

13.Tai-Shung chung;Summit Howard Furst查看详情

14.Edwin K Binnersley;willian H Kracper查看详情

15.咸贵军;益小苏热塑性树脂熔融浸渍连续纤维装置[期刊论文]-塑料工业 2000(05)

16.张晓明;崔秀镐热塑性树脂基复合材料熔融浸渍技术研究 1995(01)

17.Goodman K E;Loss A C查看详情[外文期刊] 1990

18.李凡;仲伟虹连续纤维复合材料快速成型工艺基础研究[期刊论文]-中国机械工程 2001(12)

19.王荣国;张东兴连续玻璃纤维增强热塑性复合材料工艺及力学性能的研究[期刊论文]-航空材料学报 2001(02)

20.陈平;孙明;陆春一类连续纤维增强聚芳醚砜酮先进复合材料的制备

21.Wessling R A;Yats L D;Tolbert D K查看详情

22.Ramasamy A;Wang Youjiang Braided Thermoplastic Composites from Powder-Coated-Towpregs[外文期刊] 1996(03)

23.娄葵阳;陈祥宝纤维混杂--热塑性复合材料制备的先进工艺 1997(02)

24.Wulthorst B;Tetxlaff G查看详情 1992

25.Kaldenhoff R;Wulfhorst Textile Prepregs aus Priktionsspinhybridgarnen fur Faserverbundkunststoffe 1993

26.Rer E Friction spun hybrid yarns for composites 1996(02)

27.吴学东;丁辛热塑性树脂基复合材料用摩擦纺混纤纱 1997(04)

28.蔡浩鹏;王钧;段华军热塑性复合材料制备工艺概述[期刊论文]-玻璃钢/复合材料 2003(02)

29.周晓东;王秋峰;翟欢高性能热塑性复合材料在汽车领域应用的主要问题[期刊论文]-纤维复合材料 2007(z24)

30.孙宏杰;张晓明;宋中健纤维增强热塑性复合材料的预浸渍技术发展概况[期刊论文]-玻璃钢/复合材料

1999(04)

31.Rath M;Kreuzberger S;Hinrichsen G Manufacture of aramid fibre reinforce dnylon-12 by dry powder impregnation process[外文期刊] 1998(8)

32.王宏岗;郑安呐;戴干策聚丙烯粉末浸渍连续玻璃纤维的研究 1998(01)

33.周晓东;周成玉;张胜勇连续玻璃纤维增强聚丙烯预浸料粉末法浸渍过程及界面控制[期刊论文]-玻璃钢/复合材料 2000(02)

34.Sale G;Cutolo D Heated chamber winding of the thermoplastic powder-impregnated

composites:Part1.Technology and basic thermochemical aspects[外文期刊] 1996

35.Ganga R Fiber impregnate thermoplastic(Fit) 1984

36.Thiede-smet M Study of processing parameters of PEEK/graphite composite fabricated with "Fit"prepreg 1989

37.Meng Hou;Lin Ye;Yiu-wing Mai Advances in processing of continuous fibre reinforced composites with thermoplastic matrix 1995

38.孔庆宝纤维缠绕技术进入新的高速发展阶段 1998(03)

39.张晓明;刘雄亚纤维增强热塑性复合材料及其应用 2007

40.李伟;陈平;陆春;孙宝磊连续纤维增强聚芳醚砜酮树脂基复合材料的在线浸渍缠绕成型方法

41.李龙;王善元连续纤维增强热塑性复合材料预浸料的加工方法 1996(01)

本文读者也读过(3条)

1.方立.周晓东.FANG Li.ZHOU Xiaodong连续纤维增强热塑性复合材料的浸渍及其缠绕成型[期刊论文]-纤维复合材料2008,25(3)

2.杨铨铨.梁基照.Yang Quanquan.Liang Jizhao连续纤维增强热塑性复合材料的制备与成型[期刊论文]-塑料科技2007,35(6)

3.李明.李峰.李建伟热熔法预浸料生产过程中的工艺控制[会议论文]-2004

引证文献(5条)

1.李伟.高维佳.陈平.李阔连续纤维增强PEK-C复合材料缠绕成型工艺及性能研究[期刊论文]-固体火箭技术

2011(2)

2.王兴刚.于洋.李树茂.王明寅先进热塑性树脂基复合材料在航天航空上的应用[期刊论文]-纤维复合材料

2011(2)

3.李旭武.周晓东.郭兵兵.万立工艺条件对两步法缠绕成型连续玻璃纤维增强聚丙烯管材层间剪切强度及树脂含量

的影响[期刊论文]-玻璃钢/复合材料 2011(6)

4.何亚飞.矫维成.杨帆.刘文博.2王荣国树脂基复合材料成型工艺的发展[期刊论文]-纤维复合材料 2011(2)

5.郁成岩.李辅安.王晓洁.周东伟纤维缠绕工艺浸胶技术研究进展[期刊论文]-玻璃钢/复合材料 2010(5)

本文链接:https://www.doczj.com/doc/de2450356.html,/Periodical_xwfhcl200901011.aspx

树脂基复合材料在各领域的应用

树脂基复合材料在建筑工业中的应用 建筑工业在国民经济中占有很重要的地位,不论是哪一个国家,建筑工业望远是国民经济的支柱产业之一。随着社会的进步,人们对居住面积、房屋质量和娱乐设施等提出越来越高的要求,这就是推动建筑工业改革发展的动力。 建筑工业现代化的发展方向是:改善施工条件,加快建设进度,降低成本,提高质量,节约能源,减少运输,保护耕地,保护环境和提高技术经济效益等。为了达到此目的,必须从改善现有的建筑材料和发展新型建筑材料方向着手。 在建筑工业中发展和使用树脂基复合材料对减轻建筑物自重,提高建筑物的使用功能,改革建筑设计,加速施工进度,降低工程造价,提高经济效益等都十分有利,是实现建筑工业现代化的必要条件。 1、树脂基复合材料的建筑性能 (1)材料性能的可设计性树脂基复合材料的性能可根据使用要求进行设计,如要求耐水、防腐、高强,可选用树脂基复合材料。由于树脂基复合材料的重量轻,制造方便,对于大型结构和形状复杂的建筑制品,能够一次成型制造,提高建筑结构的整体性。 (2)力学性能好树脂基复合材料的力学性能可在很大范围内进行设计,由于选

用的材料不同,增强材料的铺设方向和方向差异,可以获得性能判别很大的复合材料,如单向玻纤增强环氧复合材料的拉伸强度可达1000MPa以上,比钢(建筑钢)的拉伸强度还高,选用碳纤维作增强材料,制得的树脂基复合材料弹性模量可以达到建筑钢材水平,而其密度却比钢材小4~5倍。更为突出的是树脂基复合材料在制造过程中,可以根据构件受力状况局部加强,这样既可提高结构的承载能力,又能节约材料的减轻自重。 (3)装饰性好树脂基复合材料的表面光洁,可以配制成各种鲜艳的色彩,也可以制造出不同的花纹和图案,适宜制造各种装饰板、大型浮雕及工艺美术雕塑等。 (4)透光性透明玻璃钢的透光率达85%以上(与玻璃相似),其最大特点是不易破碎,能承受荷载。用于建筑工程时可以将结构、围护及采光三者综合设计,能够达到简化采光设计,降低工程造价之目的。 (5)隔热性建筑物的作用是能够防止由热传导、热对流引起的温度变化,给人们以良好的工作和休息环境。一般建筑材料的隔热性能较差,例如普通混凝土的导热系数为1.5~2.1W(m?K),红砖的导热系数为0.81 W(m?K),树脂基复合材料的夹层结构的导热系数为0.05~0.08 W(m?K),比普通红砖小10倍,比混凝土小20多倍。 (6)隔音性隔音效果好坏是评价建筑物质量的标准之一。但传统材料中,隔音效果好的建筑材料往往密度较大,隔热性差,运输和安装困难。树脂基复合材料

碳纤维热塑性复合材料预浸料及制品项目可行性研究报告

碳纤维热塑性复合材料预浸料及制品项目 可行性建议书 (此文档为word格式,下载后你可任意修改编辑.)

目录 第一章总论 1 1.1 项目名称及承办单位 1 1.2 可行性研究报告编制依据 1 1.3 可行性研究报告的研究范围 2 1.4 推荐方案与结论 2 第二章项目提出的背景与必要性11 2.1 企业概况11 2.2 项目提出的背景11 第三章市场分析及预测 17 3.1 原材料生产情况17 3.2 产品原材料价格走势 17 3.3 市场需求影响因素分析19 3.4 供需平衡分析 19 3.5 供给分析20 3.6 产品价格分析 21 3.7 进出口状况22 3.8 销售渠道分析 23 3.9 用户分析27

第四章生产规模和产品方案29 4.1 生产规模29 4.2 产品方案29 第五章项目选址与建设条件32 5.1 建设地址32 5.2 建设条件32 5.3 厂址评述38 第六章工程技术方案39 6.1 设计原则39 6.2 项目组成39 6.3 工艺技术及设备方案 39 6.4 总图运输44 6.5 建筑工程47 6.6 给排水 50 6.7 供电51 6.8 供热、通风与制冷54 6.9 通信55 第七章原辅材料及燃料动力供应56 7.1 原辅材料供应 56 7.2 燃料及动力供应56 第八章环境保护 58 8.1 编制依据与范围58

8.2 环境污染及环保措施 59 8.3 环保机构设置 60 8.4 绿化61 8.5 环境影响评价 61 第九章节能方案 63 9.1 编制依据及设计规范 63 9.2 项目能源消耗指标分析66 9.3 项目能源供应状况66 9.4 项目节能措施 66 9.5 能耗指标及节能效果分析70 9.6 能源计量及仪表配备 71 9.8 节能管理75 9.9 节能结论76 第十章消防77 10.1 编制依据 77 10.2 工程概述 77 10.3 生产工艺特点及安全措施78 10.4 消防措施 78 10.5 消防设施及其安全可靠性81 第十一章劳动安全卫生 82 11.1 编制依据 82 11.2 采用标准 83

碳纤维预浸料性能与固化工艺研究

碳纤维预浸料性能与固化工艺研究 预浸料是用树脂基体在严格控制的条件下浸渍连续纤维或织物,制成树脂基体与增强体的组合物,是制造复合材料的中间材料。随着复合材料研究和开发的不断进步,使用领域日渐扩大,复合材料的不同制造工艺、不同工作条件对预浸料也提出了不同要求,对预浸料性能的要求也越来越高。 所以对于预浸料的生产要求和预浸料基本性能有着较高的要求。并且预浸料固化阶段直接影响成品复合材料的性能,差示扫描量热法(DSC)作为一种热分析 仪器,能很好的测定预浸料固化反应热过程,为了较好的确定预浸料固化工艺参数,对其树脂和预浸料性能一些性能测试,并对各种预浸料固化工艺进行评价,得出最优固化工艺方案。 本文先评价测试了六种常用规格预浸料物理性能,主要通过预浸料面密度、碳纤维面密度、树脂含量测试,分析预浸料基本的物理性能,同时在一定程度上反映出预浸料的生产工艺的稳定性及均匀一致性;接下来测试预浸料的挥发份含量、凝胶时间和粘性的变化,对预浸料的储存性能进行一定的评估。通过以上测试, 可对预浸料的物理性能进行全面的表征,对预浸料的实际生产进行反馈指导。 本文为预浸料固化工艺的三个参数-温度、时间、压力的确定,进行了预浸料和预浸料用环氧树脂的DSC升温和恒温测试,分析了各个参数对预浸料的固化工艺的参数影响,发现:预浸料的克重对固化温度没有影响,但对时间有影响;预浸 料的树脂含量使得树脂的固化温度提高,在20%~40%内呈直线关系;随着碳纤维 面密度的提高,预浸料在固化温度下时间变长,而在预固化温度阶段,其时间在树脂DSC测试的时间结果之间浮动,但也随着纤维面密度的提高而提高;树脂的种 类不一样,碳纤维对其固化时间的影响程度也不一样,其中碳纤维对YPH-77的固

树脂基复合材料研究进展

先进树脂基复合材料研究进展 摘要:本文介绍了颗粒增强、无机盐晶须增强、光固化等类型的树脂基复合材料,亦指出热固性、环氧树脂基复合材料,并简述了制备方法和新技术的应用。 关键词:树脂基复合材料,颗粒增强,无机盐晶须增强,光固化,制备方法,新技术ADVANCE THE RESEARCH OF POLYMER MATRIX COMPOSITES ABSTRACT: The particulate reinforced、inorganic salt whisker, light-cured of resin matrix composites were introduced in this paper,the thermosetting and thermoplastic resin matrix composites was also show in the paper.This paper also discussed the application of new preparation method and technology. Keywords: resin matrix composites,particulate reinforced,inorganic salt whisker, light-cured,preparation method,new technology 先进树脂基复合材料是以有机高分子材料为基体、高性能连续纤维为增强材料、通过复合工艺制备而成,并具有明显优于原组分性能的一类新型材料。目前航空航天领域广泛应用的先进树脂基复合材料主要包括高性能连续纤维增强环氧、双马和聚酞亚胺基复合材料[1]。树脂基复合材料具有比强度高、比模量高、力学性能可设计性强等一系列优点,是轻质高效结构设计最理想的材料[2]。用复合材料设计的航空结构可实现20%一30%的结构减重;复合材料优异的抗疲劳和耐腐蚀性,能提高飞机结构的使用寿命,降低飞机结构的全寿命成本;复合材料结构有利于整体设计和制造,可在提高飞机结构效率和可靠性的同时,采用低成本整体制造工艺降低制造成本。可见复合材料的应用和发展是大幅提高飞机安全性、经济性等市场竞争指标的重要保证,复合材料的用量已成为衡量飞机先进性和市场竞争力的重要标志。 纤维增强树脂基复合材料是在树脂基体中嵌人高性能纤维,比如碳纤维、超高分子量聚乙烯纤维和芳纶纤维等所制得的材料[3]。树脂基体可以分为热塑性树脂和热固性树脂两种,常用的热塑性树脂有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等;常用的热固性树脂有酚醛树脂、环氧树脂和聚醋树脂等。由于纤维增强复合材料具有高强度、高模量、低密度等一系列优良特性,其在航空航天、汽车、建筑、防护、运动器材和包装等领域已有广泛的应用。然而新材料新技术的发展使人们对纤维增强复合材料的性能有了更高的期望,所以高性能纤维增强树脂基复合材料依然是近年来的研究热点。 1 先进树脂基复合材料体系 1.1 纤维增强 纤维增强树脂基复合材料由纤维和树脂基体两部分组成,纤维起承担载荷的作用,树脂均匀传递应力,界面在应力传递的过程中起到关键的作用,是纤维与树脂问应力传递的纽带.随着对复合材料界面性能研究的不断的深入,人们发现纤维的浸润性能、纤维与树脂间的键台及纤维与树脂间的机械嵌合作用等因素对复合材料的性能影响显著,并以此设计出一系列提高界面粘接强度的方法,有效地提高了纤维复合材料的界面性能[4]. 1.1.1碳纤维(CF)增强树脂基复合材料 碳纤维以热碳化方式由聚丙烯睛、沥青或粘胶加工而成,具有高强度、高模量、优异的耐酸碱性和抗蠕变性[4J。对碳纤维增强树脂基复合材料的研究主要集中在对纤维进行改性、对树脂基体进行改性和改善纤维和树脂基体的粘接性能这几个方面。 1.1.2超高强度聚乙烯纤维(uHMPE), 超高分子量聚乙烯纤维(UHMWPE)是1975年由荷兰DSM公司采用凝胶纺丝一超拉伸技术研制成功并实现工业化生产的高强高模纤维。UHMWPE纤维中大分子具有很高的取向度和结晶程度,纤维大分子几乎处于完全伸直的状态,赋予最终纤维高强度、高模量、低密度、耐酸碱

日本东邦特耐克斯公司研发的碳纤维预浸料与应用

Zeus公司开发PEEK纤维 Zeus公司(Orangeburg.S.C)于2009年1月12日宣布,该公司开发的PEEK(聚醚醚酮)纤维已成功进行商品化。 据该公司报道,目前可拉挤出单丝直径在0.07~1 mm(0.003~0.040 in)范围。这种PEEK 纤维具有很好的耐磨耗性、耐腐蚀性以及较高的抗拉强度与韧性。 在PEEK纤维用途方面,可制作辫带或制成其他形式应用。PEEK在温度升高到248 ℃(480 °F)时,该产品可出现低烟气体,有很高的延长度,其结果会导致严重影响复原。 低热膨胀系数碳纤维工具系统 英国先进复合材料集团(即A C G)和美国G r a f t e c h国际有限公司两单位进行合作,是一家制造石墨及碳纤维产品的公司,开发出A C G GRAFOAM FPA-20碳纤维泡沫塑料工具系统,这是一种低热膨胀系数、质量轻的碳纤维复合材料的工具材料。 据报导,这种碳纤维复合材料的热膨胀系数为2.3×10-6/℃。据说,其耐热性超出复合材料加工过程的要求。它还能用机器加工接近完成的尺寸,然后完全将其封入内部。在A C G集团拥有所有权的专利中,允许用界面技术、一种工具层压板蒙皮、代表性的A C G集团的低温模制(LTM)。 ACG集团还报导,碳纤维泡沫塑料内在的热特性,允许把它用在来自该公司的中温(MTM)与高温(H T M)工具层压板范围。一旦固化,运用一种二次机械加工操作,创造出最终工具外形,采用附加的后部层压板,更进一步用任何工具修饰完工。随后,再机械加工。可适合的成型工艺,包括带子铺放或丝束缠绕,不论在哪儿,质量轻是有好处的,尤其是在处理极大的工具时。 据报导,ACG集团主要为北美航空器制造厂商开发制造工具,加工复杂表面外形的部件,精度为±0.2 mm(0.008 in);加工不复杂表面外形的部件,精度为±0.1 mm(0.004 in)。 美国Cytec公司提出 碳纤维扩产计划将延缓1年 据国外媒体报道,美国Cytec工业公司(位于美国新泽西州,森林公园)于2009年4月16日宣布,根据该公司第一季度结果,评审其资金收支预算计划,收入明显减少。该公司预测未来交易环境和对碳纤维总的需求概况影响,决定碳纤维扩产计划将延缓12 个月完成。 这项决定将使公司2009年总的资金收支预测计划收入将减少至180 百万美元,先前估算的是200 百万美元。 该公司坚定相信,碳纤维复合材料将长期保持较高用途的倾向,并监测其市场需求动态,以确定最佳时期完成其扩产计划。 Cytec工业公司曾在2007年宣布,要在2010年前将该公司碳纤维产能实现翻番的目标,在其美国南卡罗来纳州的新设备生产线上进行生产。 日本东邦特耐克斯公司 研发的碳纤维预浸料与应用 日本东邦特耐克斯公司(Toho Tenax)将碳纤维与树脂进行复合使用。 所谓碳纤维预浸料就是在碳纤维中浸渍树脂,用来成型制品的一种中间材料。一般说来,把这种预浸料进行层合或缠绕,经热固化后制得复合材料。 东邦特耐克斯公司进行开发体育运动用、产业用、航空航天等所适应的各种预浸料。在其他方面,革新降低成本、节能成型方法、电子束(射线)固化系统及再生利用性高的热塑性树脂基预浸料的开发也在进行之中。为适应更广泛的市场需求,天天都在努力工作和研发之中。 ⑴ 体育运动用预浸料 以高尔夫球手柄与钓鱼杆为主要用途,进行抗超高弯曲强度型、抗超高扭曲强度型等高性能制品的开发。 作为预浸料用树脂,虽然中温固化(130 ℃)的环氧树脂为主流,但也有要求对应轻量化纤维含量(CF含量为50 g/m2以下)、低树脂含量(树脂含量在25 %以下)的树脂改进以及向预浸 信息动态 第4期- 45 -

碳纤维热塑性复合材料预浸料制品项目可行性研究报告

碳纤维热塑性复合材料预浸料及制品项目可行性研究报告

目录 第一章总论 (1) 1.1项目名称及承办单位 (1) 1.2可行性研究报告编制依据 (1) 1.3可行性研究报告的研究范围 (1) 1.4推荐方案与结论 (2) 第二章项目提出的背景与必要性 (11) 2.1企业概况 (11) 2.2项目提出的背景 (11) 第三章市场分析及预测 (17) 3.1原材料生产情况 (17) 3.2产品原材料价格走势 (17) 3.3市场需求影响因素分析 (19) 3.4供需平衡分析 (19) 3.5供给分析 (20) 3.6产品价格分析 (21) 3.7进出口状况 (22) 3.8销售渠道分析 (23) 3.9用户分析 (27) 第四章生产规模和产品方案 (29) 4.1生产规模 (29) 4.2产品方案 (29) 第五章项目选址与建设条件 (32) 5.1建设地址 (32) 5.2建设条件 (32) 5.3厂址评述 (38) 第六章工程技术方案 (39) 6.1设计原则 (39) 6.2项目组成 (39) 6.3工艺技术及设备方案 (39) 6.4总图运输 (44)

6.5建筑工程 (47) 6.6给排水 (50) 6.7供电 (51) 6.8供热、通风与制冷 (54) 6.9通信 (55) 第七章原辅材料及燃料动力供应 (56) 7.1原辅材料供应 (56) 7.2燃料及动力供应 (56) 第八章环境保护 (58) 8.1编制依据与范围 (58) 8.2环境污染及环保措施 (59) 8.3环保机构设置 (60) 8.4绿化 (61) 8.5环境影响评价 (61) 第九章节能方案 (63) 9.1编制依据及设计规范 (63) 9.2项目能源消耗指标分析 (66) 9.3项目能源供应状况 (66) 9.4项目节能措施 (66) 9.5能耗指标及节能效果分析 (70) 9.6能源计量及仪表配备 (71) 9.8节能管理 (75) 9.9节能结论 (76) 第十章消防 (77) 10.1编制依据 (77) 10.2工程概述 (77) 10.3生产工艺特点及安全措施 (78) 10.4消防措施 (78) 10.5消防设施及其安全可靠性 (81) 第十一章劳动安全卫生 (82) 11.1编制依据 (82) 11.2采用标准 (83) 11.3工程主要危害因素分析 (84) 11.4劳动安全卫生防范措施 (86)

树脂基复合材料的发展史

树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是目前技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国俗称玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。从此纤维增强复合材料开始受到军界和工程界的注意。 第二次世界大战以后这种材料迅速扩展到民用,风靡一时,发展很快。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。 1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。 60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。 1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、船的壳体以及卫生洁具等大型制件,从而更扩大了树脂基复合材料的应用领域。 1963年前后在美、法、日等国先后开发了高产量、大幅宽、连续生产的玻璃纤维复合材料板材生产线,使复合材料制品形成了规模化生产。拉挤成型工艺的研究始于50年代,60年代中期实现了连续化生产,在70年代拉挤技术又有了重大的突破,近年来发展更快。除圆棒状制品外,还能生产管、箱形、槽形、工字形等复杂截面的型材,并还有环向缠绕纤维以增加型材的侧向强度。目前拉挤工艺生产的制品断面可达76cm×20cm。 在70年代树脂反应注射成型(Reaction Injection Molding, 简称RIM)和增强树脂反应注射成型(Reinforced Reaction Injection Molding, 简称RRIM)两种

热塑性碳纤维复合材料成型工艺研究

热塑性碳纤维复合材料成型工艺研究 碳纤维质量比金属轻,但是强度却高于钢铁,并且耐腐蚀,在非氧化环境下耐超高温,膨胀系数小且 具有各向异性,但是传统使用碳纤维除了用作隔热保温材料之外,一般是不会单独使用的,多是会作为增 强材料加入到金属、瓷器、树脂等材料中作为复合材料使用。碳纤维复合材料具有碳材料的固有本性特征,同时又兼具纺织纤维的柔软可加工性,是一种力学性能优异的新一代增强纤维,可用作人工韧带、飞机结 构材料、火箭外壳、工业等等领域,市场需求巨大。 热塑性碳纤维复合材料是铝镁合金、钢铁等金属的理想替代材料,但是在基于国外技术封锁等原因,热塑性碳纤维复合材料在国内的发展时间并不是很长,国内的热塑性碳纤维复合材料发展缓慢。苏州挪恩 复合材料有限公司专注碳纤维相关技术的研究,在热塑性碳纤维增强PEEK复合材料、热塑性碳纤维增强PPS复合材料、热塑性碳纤维增强PEI复合材料、热塑性碳纤维增强PC复合材料方面苦心孤诣,与日本美国等知名企业的合作,也让挪恩拥有了成熟的产品生产经验。 现在国内的热塑性碳纤维复合材料成型工艺主要是由热固性树脂基复合材料和金属成型技术移植而来。按照设备的不同可以分为纤维缠绕成型、真空袋成型、模压成型、热压罐成型、双膜成型等等方法,其中 纤维成型缠绕型、真空袋成型、模压成型、双膜成型是目前用的较多的热塑性碳纤维复合材料成型方法。 1、纤维缠绕成型 纤维缠绕成型工艺是指浸过树脂的连续纤维按照一定的规律缠绕在芯模上,继而经过固化、脱模而得 的碳纤维复合材料制品。根据纤维缠绕成型时树脂基体的物理化学状态不同,也可分为干法缠绕、半干法 缠绕和湿法缠绕三种。干法缠绕工艺最大的特点是生产效率比较高,制作环境卫生环境好,但是相应的干 法缠绕设备较贵,投资较大;半干法缠绕是利用纤维浸胶后至缠绕芯模的途中,多加了一套烘干设备,省 却了预浸胶的工序;湿法缠绕则是将纤维浸胶后直接缠绕在芯模上,在成本方面比干法缠绕可以降低约35%,纤维排列平行度也会更好,但是操作环境差、树脂浪费也是湿法缠绕的明显缺点。 2、真空袋成型 真空袋成型是将预浸料铺放在模具中,利用真空袋和密封胶将真空袋抽至真空状态,将模具加热,预 浸料即可在高温和大气压的作用下成型。 3、模压成型 将预浸料裁剪至合适的大小铺设在模具中升温加热,等温度升至可成型温度后,再在压机台面上加压,待温度降温后就可脱模取出。此时需要注意压机表面必须拥有较高的平行度和平整度,否则很容易导致产 品发生翘曲。 4、双膜成型 双膜成型是将裁剪后的预浸料放置于两层可变形的金属膜或树脂膜之间,在膜的四周做好密封,成型 的过程中需要将温度调至成型温度并施加一定的成型压力,最后冷却定型,需要注意的是,在双膜成型的 过程中需要处于密封环境中进行。

预浸料性能及应用案例

一、预浸料定义 1、预浸料定义 预浸料俗称模塑料,是用树脂在严格控制条件下浸渍连续纤维及其织物而制成的组合体,是制造先进复合材料的中间体。具有一定力学性能的结构单元,可进行结构设计,其某些性质直接移植到复合材料制品中,预浸料的质量直接影响到复合材料的质量。 2、预浸料产品标准 QJ 3184 T300碳纤维∕AG-80环氧树脂预浸料规 HB 6701 LWR—1 T300中温固化环氧碳纤维预浸料 GJB 3945 芳纶∕环氧树脂预浸料规 GB/T 25043 连续树脂基预浸料用多轴向经编增强材料 HB 7069 环氧树脂玻璃布预浸料规 JB/T 10942 干式变压器用F级预浸料 HB 7737 飞机辅机零件专用环氧聚酰胺涂料规 JC/T 774 预浸料凝胶时间试验方法 JC/T 775 预浸料树脂流动度试验方法 JC/T 776预浸料挥发物含量试验方法 JC/T 780 预浸料树脂含量试验方法

ASTM D 3532 环氧碳纤维预浸料凝胶时间试验方法 HB 7736 复合材料预浸料物理性能试验方法 二、预浸料种类 预浸料是复合材料的中间体,根据选用树脂种类可以分为:热固性预浸料和热塑性预浸料;根据选用树脂的类型分为:环氧预浸料、聚酰胺预浸料、酚醛预浸料、氰酸酯预浸料、聚砜预浸料、聚醚预浸料等;根据增强材料类型分为:碳纤维预浸料、玻璃纤维预浸料、芳纶纤维预浸料、玄武岩纤维预浸料、硼纤维预浸料等;根据增强材料结构型式可分为:单向纤维预浸料、短切纤维预浸料、织物预浸料等。我公司主要生产以碳纤、芳纶、玻纤为增强材料的环氧、氰酸酯、聚酰亚胺类的热固性树脂预浸料。 三、预浸料的基本特征

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

碳纤维热塑性复合材料预浸料及制品可研报告

江苏泛达复合材料有限公司 年产2000吨碳纤维热塑性复合材料预浸料及制品项目 可行性研究报告 二○一一年八月

目录 第一章总论 (1) 1.1项目名称及承办单位 (1) 1.2可行性研究报告编制依据 (1) 1.3可行性研究报告的研究范围 (2) 1.4推荐方案与结论 (2) 第二章项目提出的背景与必要性 (12) 2.1企业概况 (12) 2.2项目提出的背景 (12) 第三章市场分析及预测 (19) 3.1原材料生产情况 (19) 3.2产品原材料价格走势 (20) 3.3市场需求影响因素分析 (21) 3.4供需平衡分析 (22) 3.5供给分析 (22) 3.6产品价格分析 (23) 3.7进出口状况 (24) 3.8销售渠道分析 (25) 3.9用户分析 (30) 第四章生产规模和产品方案 (32) 4.1生产规模 (32) 4.2产品方案 (32) 第五章项目选址与建设条件 (35) 5.1建设地址 (35) 5.2建设条件 (35) 5.3厂址评述 (42) 第六章工程技术方案 (43) 6.1设计原则 (43)

6.2项目组成 (43) 6.3工艺技术及设备方案 (43) 6.4总图运输 (49) 6.5建筑工程 (53) 6.6给排水 (56) 6.7供电 (57) 6.8供热、通风与制冷 (60) 6.9通信 (61) 第七章原辅材料及燃料动力供应 (62) 7.1原辅材料供应 (62) 7.2燃料及动力供应 (62) 第八章环境保护 (64) 8.1编制依据与范围 (64) 8.2环境污染及环保措施 (65) 8.3环保机构设置 (66) 8.4绿化 (67) 8.5环境影响评价 (68) 第九章节能方案 (69) 9.1编制依据及设计规范 (69) 9.2项目能源消耗指标分析 (72) 9.3项目能源供应状况 (73) 9.4项目节能措施 (73) 9.5能耗指标及节能效果分析 (77) 9.6能源计量及仪表配备 (79) 9.8节能管理 (83) 9.9节能结论 (85) 第十章消防 (86) 10.1编制依据 (86) 10.2工程概述 (86) 10.3生产工艺特点及安全措施 (87) 10.4消防措施 (88)

树脂基复合材料成型工艺介绍

树脂基复合材料成型工艺介绍 树脂基复合材料成型工艺介绍(1):模压成型工艺 模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。 模压成型工艺的主要优点: ①生产效率高,便于实现专业化和自动化生产; ②产品尺寸精度高,重复性好; ③表面光洁,无需二次修饰; ④能一次成型结构复杂的制品; ⑤因为批量生产,价格相对低廉。 模压成型的不足之处在于模具制造复杂,投资较大,加上受压机限制,最适合于批量生产中小型复合材料制品。随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展,压机吨位和台面尺寸不断增大,模压料的成型温度和压力也相对降低,使得模压成型制品的尺寸逐步向大型化发展,目前已能生产大型汽车部件、浴盆、整体卫生间组件等。 模压成型工艺按增强材料物态和模压料品种可分为如下几种: ①纤维料模压法 是将经预混或预浸的纤维状模压料,投入到金属模具内,在一定的温度和压力下成型复合材料制品的方法。该方法简便易行,用途广泛。根据具体操作上的不同,有预混料模压和预浸料模压法。 ②碎布料模压法 将浸过树脂胶液的玻璃纤维布或其它织物,如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块,然后在金属模具中加温加压成型复合材料制品。 ③织物模压法 将预先织成所需形状的两维或三维织物浸渍树脂胶液,然后放入金属模具中加热加压成型为复合材料制品。 ④层压模压法 将预浸过树脂胶液的玻璃纤维布或其它织物,裁剪成所需的形状,然后在金属模具中经加温或加压成型复合材料制品。 ⑤缠绕模压法 将预浸过树脂胶液的连续纤维或布(带),通过专用缠绕机提供一定的张力和温度,缠在芯模上,再放入模具中进行加温加压成型复合材料制品。 ⑥片状塑料(SMC)模压法 将SMC片材按制品尺寸、形状、厚度等要求裁剪下料,然后将多层片材叠合后放入金属模具中加热加压成型制品。 ⑦预成型坯料模压法 先将短切纤维制成品形状和尺寸相似的预成型坯料,将其放入金属模具中,然后向模具中注入配制好的粘结剂(树脂混合物),在一定的温度和压力下成型。 模压料的品种有很多,可以是预浸物料、预混物料,也可以是坯料。当前所用的模压料品种主要有:预浸胶布、纤维预混料、BMC、DMC、HMC、SMC、XMC、TMC及ZMC

热固性复合材料与热塑性复合材料

热固性复合材料与热塑性复合材料 1热固性树脂基复合材料 热固性树脂基复合材料是应用十分广泛的复合型材料,这种材料是经过复合而成,在多高科技产品中都得到了广泛的应用与研究,例如在大型客运机的应用中,其不仅减轻了重量,并且还优化了飞机的性能,减轻了飞机在飞行过程中的阻碍,热固性树脂具有非常优异的开发潜能,其应用领域也会在其改性后得到更大的发展。 典型的热固性树脂复合材料分为以下几种: (1)酚醛树脂复合材料:随着对阻燃材料的强烈需求,美国西化学公司,道化学公司等一系列大型化学公司都先后研制成功了新一代的酚醛树脂复合材料。其具有优异的阻燃、低发烟、低毒雾性能和更加优异的热机械物理性能。在制备这种具有阻燃效果的材料上,研究人员重新设计思路,在加入不饱和键等其他基团条件下,提高了反应速度,减少了挥发组分。使酚醛树脂复合材料在其应用领域得到大力发展。 (2)环氧树脂复合材料:由于环氧树脂本身的弱点,研究人员对其进行了两面的改性研究,一面是改善湿热性能提高其使用温度;另一面则是提高韧性,进而提高复合材料的损伤容限。含有环氧树脂所制备的复

合材料己经大力应用到机翼、机身等大型主承力构件上。 (3)双马来酞亚胺树脂复合材料:在双马来酞亚胺树脂复合材料中,由于双马来酞亚胺树脂具有流动性和可模塑性,良好的耐高温、耐辐射、耐湿热、吸湿率低和热膨胀系数小等优异性能,所以这种树脂则会广泛运用在绝缘材料、航空航天结构材料、耐磨材料等各个领域中。(4)聚酰亚胺复合材料:聚酰亚胺复合材料具有高比强度,比模量以及优异的热氧化稳定性。其在航空发动机上得到了广泛应用,主要可明显减轻发动机重量,提高发动机推重比。所以在航天航空领域得到了大力的发展和运用。 2热塑性树脂基复合材料 热塑性树脂基复合材料:其自身中的基体是热塑性树脂,该类复合材料是由热塑性树脂基体、增强相以及一些助剂组成。在热塑性复合材料中最典型和最常见的热塑性树脂有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚酯树脂、聚碳酸树脂、聚甲醛树脂、聚醚酮类、热塑性聚酰亚胺、聚苯硫醚、聚飒等。 而热塑性树脂复合材料具有很多的特点,以下概述了一些热塑性树脂复合材料的特点。

热塑性树脂复合材料应用

摘要:热塑性复合材料因具有韧性、耐蚀性和抗疲劳性高,成形工艺简单、周期短,材料利用率高,预浸料存放环境与时间无限制等优异性能而得到快速发展,并逐渐进入航空制造领域。尤其是近年来,在欧盟以及空客、福克航宇等航空制造企业的强力推动下,热塑性复合材料在民机上频频崭露头角,在一些部件上成为热固性复合材料的有力竞争对手。热塑性复合材料如果想继续扩大在民机上的应用,必须进入机体主承力构件,然而,热塑性应用于主承力构件还三个挑战,即原材料成本高,铺放工艺缓慢,以及预浸料粘性问题。 关键词:热塑性复合材料碳纤维机体内饰主承力结构 热塑性复合材料是以玻璃纤维、碳纤维、芳烃纤维及其它材料增强各种热塑性树脂所形成的复合材料,因具有韧性、耐蚀性和抗疲劳性高,成形工艺简单、周期短,材料利用率高,预浸料存放环境与时间无限制等优异性能而得到快速发展,并逐渐进入航空制造领域。尤其是近年来,在欧盟以及空客、福克航宇等航空制造企业的强力推动下,热塑性复合材料在民机上频频崭露头角,在一些部件上成为热固性复合材料的有力竞争对手。 1 热塑性复合材料的民机应用潜质 以聚苯硫醚(PPS),聚醚酰亚胺(PEI),聚醚醚酮(PEEK)和聚醚酮酮(PEKK)为基体的先进增强热塑性复合材料(TPC),具备高刚度、低加工成本和重新加工能力,拥有良好的阻燃、低烟和无毒(FST)性能,固化周期可以以分钟记,且其成形过程是天生的非热压罐工艺。这些固有属性使其成为轻质、低成本航空结构的理想材料。为西科斯基公司直升机提供大型热塑性复合材料地板的纤维锻造公司提供了如下一组数据:热塑性复合材料比钢轻60%,硬度是其6倍;比铝轻30%;比热固性复合材料强韧2倍;比注射模塑塑料硬5倍;在生产中比板材少60%碎屑。 上述性能特点和数据对比表明,热塑性复合材料是一种天生的航空结构材料,并且在民机应用上拥有巨大的潜质,甚至可能在未来为航空复合材料制造带来一场热塑性革命。 2 热塑性复合材料在民机上的典型应用 目前,热塑性复合材料(TPC)在民机上的应用主要体现在机体结构件和内饰件上,这其中,碳纤维增强PPS的TPC占大多数。 2.1 机体结构件 机体结构件中,TPC主要应用在地板、前缘、控制面和尾翼零件上,这些零件都是外形比较简单的次承力构件。空客A380客机、空客A350客机、湾流G650公务机和阿古斯塔·韦斯特兰AW169直升机都是热塑性机体结构件的应用大户。 空客A380客机上最重要的热塑性复合材料结构件是玻璃纤维/PPS材料的机翼固定前缘。每个机翼有8个固定前缘构件,其中热塑性材料占到了整个用料的三分之二。在固定前缘蒙皮的纤维铺放中,制造商福克航空结构公司选择了先进的超声点焊作为铺放设备的加热系统。

环氧树脂复合材料的分类组成特性以及应用

环氧树脂复合材料的分类组成特性以及应用 日期: 2008-03-03 复合材料是由基体材料和增强材料复合而成的多相体系固体材料。它充分发挥了各组分材料的特点和潜在能力,通过各组分的合理匹配和协同作用,呈现出原来单一材料(均质材料、单相材料)所不具有的优异的新性能,从而达到对材料某些性能的综合要求。复合材料的出现在材料发展史上具有划时代的意义。受到国内外的极大重视。其发展之迅猛在历史上是空前的。已在工业、农业、交通、军事、科学技术和人民生活等各个领域广为应用。尤其是在航空、航天等尖端技领域中已成为不可缺少的重要的结构材料。无怪乎有人认为21世纪将进入“复合材料时代”。 热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及

碳纤维预浸料

预浸料 预浸料是用树脂基体在严格控制的条件下浸渍连续纤维或织物,制成树脂基体与增强体的组合物,是制造复合材料的中间材料。对于复合材料设计师来说,预浸料是具有一定力学性能的结构单元,可用以进行结构设计;对于复合材料工艺工程师来说,预浸料是制造结构的原料,可以直接用以制造各种复合材料构件。 预浸料的一些性能基本上原封不动的带到了复合材料及其构件中,是复合材料性能的基础,复合材料成型时的工艺性能和力学性能取决于预浸料的性能。通常对预浸料的主要要求如下:1.树脂基体和增强体的匹配性好。增强体表面经过处理后和树脂基体具有良好的相容性,以使得复合材料有优良的层间强度。这和增强体的上浆剂有很大关系。2.具有适当的粘性和铺敷性。预浸料的粘性是指在一定温度下自身互相粘贴的能力,同一片预浸料,温度低可能失去粘性,温度高又有粘性,温度相差大约5℃,粘性就会有明显变化,因此粘性试验温度一般确定为20~25℃,同时湿度定为40%~70%。粘性失去时间不长的预浸料,稍许提高温度,粘性得以改善,只要能实现部件的铺贴工艺,试验表明对其力学性能没有太大影响。粘性不宜太大,以便于铺层有误时可以分开重新进行铺贴而预浸料又不至于被损坏;粘性也不能太小,以使得在工作温度下两块预浸料能粘贴在一起不至于分开。遗憾的是,粘性的评价还没有找到一个非常适宜的方法,“感觉”很重要。所谓铺敷性是指预浸料铺层时,使适合于复杂形状模具铺层的能力。就预浸料而言,铺敷法比粘性的要求更高,失去粘性的预浸料铺敷性肯定不合格。3.树脂含量偏差应尽可能低。至少控制在±3%以内,以保证复合材料纤维体积含量和力学性能的稳定性。4.挥发分含量尽可能小。一般在2%以下,以降低复合材料中的孔隙含量,提高复合材料的力学性能。主要承力构件预浸料的挥发分含量要求控制在0.8%以下。5.具有较长的贮存寿命。通常要求室温下的粘性贮存期大于1个月,-18℃下大于12个月,以满足复合材料铺贴工艺和力学性能要求。6.固化成型时有较宽的加压带,即在较宽的温度范围内加压,都可以得到满意的复合材料构件而对性能无明显影响。7.有适当的流动度。流动度表示预浸料在一定温度和压力下成型过程中树脂流动或迁移的能力,它与树脂的粘度和预浸料中树脂含量有关系。预浸料中树脂含量越高,粘度越小,树脂流动度越大。层压件的流动度可以大一些,以便于树脂均匀分布并浸透增强材料;夹层结构流动度应比较小,以使得面板和芯材能牢固的结合在一起。 预浸料的原材料包括增强体和基体,主要的辅助材料是离型纸和压花聚乙烯薄膜。预浸料用增强体主要是碳纤维、芳纶、玻璃纤维以及它们的织物。预浸料用树脂基体包括热固性树脂和热塑性树脂两大类。增强体和结构复合材料常用树脂基体见图1.1和1.2。

聚合物基复合材料

聚合物基复合材料 第二节聚合物基复合材料(PMC) 1.1聚合物基体 1.2PMC界面 1.3PMC制备工艺 1.4PMC性能与应用 聚合物基复合材料(PMC)是以有机聚合物为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、

短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。 通常意义上的聚合物基复合材料一般就是指纤维增强塑料(FRP),而为各种目的加入各种填料的高分子材料不在这里论及。 1.1聚合物基体 聚合物基体是纤维增强塑料的一个必需组分,在复合材料成型过程中,基体经过复杂的物理、化学变化过程,与增强纤维复合成具有一定形状的整体。因而基体性能直接影响复合材料性能。基体的主要作用包括将纤维粘合成整体并使纤维位置固定,在纤维间传递载荷,并使载荷均匀;决定复合材料的一些性能。如复合材料的高温使用性能(耐热性)、横向性能、剪切性能、耐介质性能(如耐水、耐化学品性能)等;决定复合材料成型工艺方法及工艺参数选择;保护纤维免受各种损伤。此外对复合材料一些性能有重要影响,如纵向位伸、尤其是压缩性能,疲劳性能,断裂韧性等。 1、分类 用于复合材料的聚合物基体主要按树脂热行为可分为热固性及热塑性两类。热塑性基体如聚丙烯、聚酰胺、聚碳酸酯、聚醚砚、聚醚醚酮等,它们是一类线形或有支链的固态高分子,可溶可熔,可反复加

树脂基复合材料复习要点

1.功能复合材料主要由功能体和基体组成,或由两种(或两种以上)的功能体组成。 2.材料在复合后所得的复合材料,依据其产生复合效应的特征,可分为线性效应和非线性效应。 3.燃烧过程,大致分为五个不同的阶段:(1)加热阶段;(2)降解阶段;(3)分解阶段;(4)点燃阶段;(5)燃烧阶段。 4.氧指数(OI)愈高,表示燃烧愈难。当OI<22时,为易燃性塑料;当OI在22—27之间时,为自熄性塑料;当OI > 27时,为难燃塑料 5.在美国UL-94防火标准中,塑料阻燃等级由HB,V-2,V-1向V-O逐级递增。 6.阻燃机理有多种:保护膜机理、不燃性气体机理、冷却机理、终止链锁反应机理、协同作用体系。 7.非金属材料的腐蚀类型按腐蚀机理分类①物理腐蚀②化学腐蚀③大气老化④环境应力开裂 8.为了弄清材料的腐蚀机理,进一步对其寿命进行预测,对其进行的实验以试验场所划分,可分为现场试验及实验里试验。 9.摩阻复合材料一般由增强体、摩擦功能调节体与基体等构成,各组分在摩擦材料中的作用是不同的。 10.列举三种常见的水溶性高分子聚合物:聚乙二醇、聚乙吡咯烷酮、聚乙烯。 11.防辐射服是利用服饰内金属纤维构成的环路产生感生电流,有感生电流产生反向电磁场进行屏蔽。 12.吸波材料之所以能够吸收进入材料内部的电磁波主要是由于电磁波在材料内部产生电损耗或磁损耗而使电磁波的电磁性能转化为其他形式的能量散失掉,从而达到减少反射的目的。 13.电损耗介质的吸波机理主要是松弛极化、磁性介质在交变磁场的作用下产生能量损耗的机制有:①磁滞损耗②涡流损耗③剩磁效应④磁共振。 14.密封材料的耐磨性通常以磨损率的倒数来表示。 15.影响玻璃钢透光率的主要因素:玻璃纤维和粘结剂的折射指数;玻璃纤维和粘结剂的光吸收系数;玻璃纤维的直径及其在玻璃钢中的体积含量。 16.阻尼特性可以通过对数衰减率δ与阻尼因子η两种方式来描述。 17.复合材料用于装甲防护主要有两种形式,即单纯的纤维织物和复合材料层合板。 18.防弹复合材料所用的纤维通常为玻璃纤维、尼龙纤维、芳纶和超高分子量聚乙烯纤维,最近开发出具有目前最高强度的聚苯并噁唑(PBO)纤维。 19.理想的树脂基体应具有耐高温、高韧性、高强度、低模量等性能,以及低成本。常用的树脂基体有:( )、( )、低密度聚乙烯、交联聚异戊二烯、聚丙烯等。 20.抗辐射聚合物基体一般在分子主链上具有多重环,如环氧树脂、聚酰亚胺树脂、聚醚砜、聚醚醚酮树脂等均具有良好的耐辐射性。 21.功能复合材料:除力以外而提供其它物理性能的复合材料即具有各种电学性能、磁学性能、光学性能、热学性能、声学性能以及摩擦、阻尼等性能。 22.高分子纳米复合材料:是由各种纳米单元和高分子复合而成的一种新型复合材料,其中纳米单元按化学成分分为金属陶瓷高分子和无机非金属。 23.燃烧氧指数:指试样像蜡烛状持续燃烧时,在氮-氧混合气流中所必须的最低氧含量。

相关主题
文本预览
相关文档 最新文档