当前位置:文档之家› 非线性网络的理论模型非线性网络的理论模型

非线性网络的理论模型非线性网络的理论模型

SJTU

CIAE BNU

70431002

非线性网络的理论模型

研究的若干进展

方锦清

NSFC 复杂网络重点项目组

CIAE SJTU BNU

网络模型

总体进展

展望与挑战

加权网络

网络动力学

相关课题

非线性网络的动

力学复杂性研究

报告提纲

I从和谐统一的混合择优模型到大统一的混合网络模型

I和谐统一的混合择优模型(HUHPM)

I无标度特性及其指数对混合比d/r的敏感性

I HUHPM与其他模型的小世界特性比较

I复杂网络的大统一混合模型(LUHNM)

I从大统一的混合模型到统一混合加速网络模型I从量子信息网络模型到纳米相干网络

I量子信息网络模型

I纳米相干网络模型

原子能院的网络研究进展和谐统一

混合择优

确定性混合连接比fd=f/d = 确定性扶贫连接数(HPA)/总确定性连接数(DA)随机性混合连接比gr= g/r =一般随机连接数(GRA)/总随机连接数(RA)

确定性混合连接比fd随机性混合连接比gr

1. HUHPM的主要结果

?HUHPM模型已成功地推广到BA模型、BBV模型和TDE模型等无权和有权网络,具有普适性。

?随着混合择优比d/r增加,无标度的幂律指数γ随之增加,γ对d/r变化具有敏感性,同时随机尾巴减少,在d/r =1/1处出现一个阈值(转变点)。?具有最小的平均路径长度L和最大的平均群聚系数C。

?相称性系数r

,随混合比d/r增加减小。

c

?平均群聚系数C随d/r 增加而增加。

?网络的熵随着d/r 增加而减少。

?网络的一致性收敛速度随d/r 增加而增加。

Exponent of node degree power-law HUHPM-BA HUHPM-BBV HUHPM-TDE

Left: Comparison of Average path length Right: Comparison of Clustering coefficient C ( HUHPM model with d/r=1/1 and =4)

大统一混合网络模型

引进二个新的混合比

(1)确定性混合连接比fd=f/d = 确定性扶贫连接数(HPA)/总确定性连接数(DA)(2)

这里fd= 1/1:表示采用确定性完全扶贫连接;fd =0/1:表示确定性连接时采用完全择优连接(DPA);存在关系式:DA=HPA+DPA。

(2)随机性混合连接比gr= g/r =一般随机连接数(GRA)/总随机连接数(RA)

这里gr=0/1: 表示完全随机择优连接(RPA);gr=1/1 表示完全一般随机连接(GRA);存在关系式RA=GRA+RPA。

总混合比:dr=DA/RA

几种重要特殊情形

(a)fd=1/1: 完全确定性扶贫连接(HPA);

(b)fd=0/1: 完全确定性择优连接(DPA);

(c) gr=1/1: 完全一般随机连接(GRA);

(d) gr=0/1:完全随机择优连接(RPA);

(e) fd=0/1 and gr=0/1: 退化为和谐统一的混合择优模型(HUHPM);

(f) fd=0/0 and gr=0/1: 退化为BA, BBV and TDE模型;

(g) fd=0/0 and gr=1/0: 退化为ER 随机模型.

(h) fd≠0 and gr=0/0: 退化为完全确定性模型。

r versus d/r

for complete helping poor DA with

N=1000, (a) fd =1/1, m = 30;

(b) fd =1/1, m = 10; (c) fd =1/10, m = 2.

与不同模型的比较(a) LUHNM (b)MAM A:内在吸引度;

m:候选者数

无权网络三种典型d/r 下

r vs fd and gr

含权网络三种典型d/r下关系十分复杂

r vs fd and gr

d/r=1/99,d/r=1/1,d/r19/1

大统一混合模型的主要结果不论什么类型, 无权和含权的网络都可能发生的度-度关联的正负转变,这种转变特性的复杂性完全取决于三个混合比(密切相关),而拓扑特性和动力学性质同样依赖于三种混合比,关系错综复杂。

含权情况,比较无权网络, 既有一定的相似性,又有新的特点,变化更加丰富多彩, 错综复杂。

不难看出:大统一混合模型能够更好地反映的实际网络的多样性和复杂性,具有较大的普遍意义和广泛的应用潜力。

该模型不仅涵盖了大部分理论模型,而且能够合理地解析一些原来并不清楚的问题,并观察到复杂网络的某些新的特性。例如,人们关心和困惑的问题之一:为什么社会网络与技术网络的度-度关联不同,前者是正的度-度关联,而后者是负的度-度关联。这是由于人类社会历来具有“扶贫济困”和“助人为乐”的社会美德和社会责任感,在模型中即使在无权网络下,一旦考虑完全扶贫(HPA)连接,或扶贫连接占绝对优势时,必然出现了正的度-度关联r;在一定条件下,度-度关联

r随着总混合比变化出现极值新特点,如图所示。

高端创业?低端创业

不仅要关注高新技术通过创新转化生产力的一种创业过

程(高端创业),所谓精英创业过程,这样的科技创业将为我国经济结构的优化和经济增长注入新的活力;

与此同时还应该关注普通民众中通过扩散和传播原本封闭的知识形成的创业活动(低端创业)

通过多种形式创业活动来构筑自主创新(创业)型国家.

应用于“区域创新网络”、“社会网络”、“企业网络”、:“企业集群”、“网络组织”方面

大统一混合模型的应用前景?创业型经济网络的宏观调控:

可以通过多个混合比调控来实现

高端创业?低端创业

?探索高新技术产业网络

关注创业型经济网络?目前中国创业群体已经达到三千多万户,注册资本为4万亿元。数据显示,去年新增创业企业六十多万家,新增注册资本一万亿元人民币,每天平均有一千五百多个企业诞生,有三十亿资本下海淘金,全中国显示出很强劲的创业热潮。

?“创业型经济”占GDP的比例越来越重。

?目前90%的企业是中小企业,而中小企业大多是创业型企业。中国GDP的56%、工业新增产值的75%、社会销售额的60%、税收的47%和出口总额的64%都是由中小企业创造的,

3. 从LUHWM到统一混合

加速的网络模型

?由于许多实际演化网络边的增长速度并不是一个常数,比如因特网、人类社会关系网、通讯网和等等,这些网络是加速网络或减速网络。为此,已经提出了研究加速网络的必要性[38-40]。现在介绍两种方法定义的加速网络。

[38]Gagen G M. Mattick J S. Phys. Rev. E, 2005, 72:16123.

[39]Sen P. Phys. Rev. E, 2004, 69:46107.

[40]David M D S, Jukka P O, Neil F J. arXiv, 2007, physics/0701339.

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

BP神经网络模型应用实例

BP神经网络模型 第1节基本原理简介 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络

设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11)(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并 传向输出层。每一层神经元的状态只影响下一层神经

基于神经网络理论的系统安全评价模型

(神经网络,安全评价) 基于神经网络理论的系统安全评价模型 王三明 蒋军成 (南京化工大学,南京,210009) 摘要 本文阐述了人工神经网络基本原理,研究分析了BP神经网络模型的缺陷并提出了优化策略。在此基础上,将神经网络理论应用于系统安全评价之中,提出了基于此理论的系统安全评价模型、实现方法和优点;评价实例证明此方法的可行性。 关键词 神经网络 网络优化 安全评价  1. 引言 人工神经网络模拟人的大脑活动,具有极强的非线形逼近、大规模并行处理、自训练学习、自组织和容错能力等优点,将神经网络理论应用于系统安全评价之中,能克服传统安全评价方法的一些缺陷,能快速、准确地得到安全评价结果。这将为企业安全生产管理与控制提供快捷和科学的决策信息,从而及时预测、控制事故,减少事故损失。   2. 神经网络理论及其典型网络模型 人工神经网络是由大量简单的基本元件-神经元相互联结,模拟人的大脑神经处理信息的方式,进行信息并行处理和非线形转换的复杂网络系统。人工神经网络处理信息是通过信息样本对神经网络的训练,使其具有人的大脑的记忆、辨识能力,完成各种信息处理功能。人工神经网络具有良好的自学习、自适应、联想记忆、并行处理和非线形转换的能力,避免了复杂数学推导,在样本缺损和参数漂移的情况下,仍能保证稳定的输出。人工神经网络这种模拟人脑智力的特性,受到学术界的高度重视和广泛研究,已经成功地应用于众多领域,如模式识别、图象处理、语音识别、智能控制、虚拟现实、优化计算、人工智能等领域。 按照网络的拓扑结构和运行方式,神经网络模型分为前馈多层式网络模型、反馈递归式网络模型、随机型网络模型等。目前在模式识别中应用成熟较多的模型是前馈多层式网络中的BP反向传播模型,其模型结构如图1。 2.1 BP神经网络基本原理 BP网络模型处理信息的基本原理是:输入信号X i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和

BP神经网络的基本原理+很清楚

5.4 BP神经网络的基本原理 BP(Back Propagation)网络是1986年由Rinehart和 McClelland为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。 5.4.1 BP神经元 图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本 也是最重要的功能:加权、求和与转移。其中x 1、x 2 …x i …x n 分别代表来自神经元1、2…i…n 的输入;w j1、w j2 …w ji …w jn 则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权 值;b j 为阈值;f(·)为传递函数;y j 为第j个神经元的输出。 第j个神经元的净输入值为: (5.12) 其中: 若视,,即令及包括及,则

于是节点j的净输入可表示为: (5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出 : (5.14) 式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 BP网络 BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 5.4.2.1 正向传播 设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f (·), 1 (·),则隐层节点的输出为(将阈值写入求和项中): 输出层的传递函数为f 2

基于BP神经网络预测模型指南

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

几种神经网络模型及其应用

几种神经网络模型及其应用 摘要:本文介绍了径向基网络,支撑矢量机,小波神经网络,反馈神经网络这几种神经网络结构的基本概念与特点,并对它们在科研方面的具体应用做了一些介绍。 关键词:神经网络径向基网络支撑矢量机小波神经网络反馈神经网络Several neural network models and their application Abstract: This paper introduced the RBF networks, support vector machines, wavelet neural networks, feedback neural networks with their concepts and features, as well as their applications in scientific research field. Key words: neural networks RBF networks support vector machines wavelet neural networks feedback neural networks 2 引言 随着对神经网络理论的不断深入研究,其应用目前已经渗透到各个领域。并在智能控制,模式识别,计算机视觉,自适应滤波和信号处理,非线性优化,语音识别,传感技术与机器人,生物医学工程等方面取得了令人吃惊的成绩。本文介绍几种典型的神经网络,径向基神经网络,支撑矢量机,小波神经网络和反馈神经网络的概念及它们在科研中的一些具体应用。 1. 径向基网络 1.1 径向基网络的概念 径向基的理论最早由Hardy,Harder和Desmarais 等人提出。径向基函数(Radial Basis Function,RBF)神经网络,它的输出与连接权之间呈线性关系,因此可采用保证全局收敛的线性优化算法。径向基神经网络(RBFNN)是 3 层单元的神经网络,它是一种静态的神经网络,与函数逼近理论相吻合并且具有唯一的最佳逼近点。由于其结构简单且神经元的敏感区较小,因此可以广泛地应用于非线性函数的局部逼近中。主要影响其网络性能的参数有3 个:输出层权值向量,隐层神经元的中心以及隐层神经元的宽度(方差)。一般径向基网络的学习总是从网络的权值入手,然后逐步调整网络的其它参数,由于权值与神经元中心及宽度有着直接关系,一旦权值确定,其它两个参数的调整就相对困难。 其一般结构如下: 如图 1 所示,该网络由三层构成,各层含义如下: 第一层:输入层:输入层神经元只起连接作用。 第二层:隐含层:隐含层神经元的变换函数为高斯核. 第三层:输出层:它对输入模式的作用做出响应. 图 1. 径向基神经网络拓扑结构 其数学模型通常如下: 设网络的输入为x = ( x1 , x2 , ?, xH ) T,输入层神经元至隐含层第j 个神经元的中心矢 为vj = ( v1 j , v2 j , ?, vIj ) T (1 ≤j ≤H),隐含层第j 个神经元对应输入x的状态为:zj = φ= ‖x - vj ‖= exp Σx1 - vij ) 2 / (2σ2j ) ,其中σ(1≤j ≤H)为隐含层第j个神

信息传播观点演化模型

信息传播观点演化模型 摘要:以微博为主的社交网络新应用的兴起与蓬勃发展,逐渐改变着人们传统 的生活习惯和社交模式。在微博中,“自媒体”用户可随时随地通过便捷的接入方 式参与在线社交,进而获取信息、交互观点、参与传播。相比于传统社会网络, 新兴的微博在线社交网络更加灵活和便捷,再加上参与主体智能化、社交网络复 杂化、影响因素多元化等影响,这使得网络舆论产生、发酵、扩散的时间大大缩短,进而增加了舆论信息传播、个体观点演化的复杂性和随机性。 关键词:网络舆论;信息传播;观点交互;微博;用户影响力分析 引言 当今信息时代,网络信息技术不断的发展和完善,微博等社交网络成为人们进行信息分享、交流意见的主要网络平台之一。与传统社交网络相比较,微博网络具有大范围、大数据、突发性强和去中心性等特点,由此产生的网络舆论的传播演化比传统舆论更复杂,传统的研 究方法和手段已无法准确的描述网络舆论的产生、传播、演化。因此,研究微博网络中信息 传播机制、演化趋势和统计特性,具有重要的实用价值和理论意义。 1模型和方法介绍 1.1基本研究方法 1、元胞自动机 元胞自动机(又称为细胞自动机、格状自动机、单元自动机,它是一种离散的动力学模型。该模型认为,分布在规则网络中的每一个元胞都处于有限的离散状态。每一个元胞在时 刻的状态由时刻的有界邻域状态所决定,且每次演进过程中,每个元胞都遵循同样的交互规则。在这样的模型框架下,大量微观元胞个体通过简单的交互进而在宏观层面呈现出动态演 化过程。 2、平均场理论 本属性。容易理解,在一个复杂系统中,各粒子之间都存在相互的作用。而平均场理论 将这些相互作用视为一个场,并且该场的场强处处相等。基于这种假设,所有系统中的任何 粒子都受到该场强的影响。平均场理论(是统计力学、凝聚态体系等复杂系统中常用的数学 近似方法。按照平均场理论的基本思想,周围环境对物体的作用被平均化以平均效果替代单 个作用效果相加),从而避免微观角度单体加和时某些统计值存在涨落的现象发生平均场理 论通过简化系统,进而保留系统的主要信息和基本属性。容易理解,在一个复杂系统中,各 粒子之间都存在相互的作用。而平均场理论将这些相互作用视为一个场,并且该场的场强处 处相等。基于这种假设,所有系统中的任何粒子都受到该场强的影响。 1.2复杂网络模型 拓扑结构复杂。网络中节点数量巨大,且节点间连接呈现出多样化特征,如无标度网络 中节点的异质性非常明显存在着远超出网络平均度水平的节点;动态演化特性。在某些动态 演化的复杂网络中如万维网、社交网络中的好友关系网络等,节点之间的可能随时建立连接 关系,也可能已有关系随时断开,从而导致网络结构不断发生变化;节点关联关系多样化。 节点之间的连接可以根据实际物理环境赋予其相应权重,同时该连接可以无向也可以有向;

BP神经网络模型简介及相关优化案例

华东理工大学 2016-2017学年第2学期 研究生《石油化工单元数学模型》课程论文2017年6月 开课学院:化工学院任课教师:欧阳福生 考生姓名:丁桂宾学号:Y45160205 成绩:

BP 神经网络模型简介及相关优化案例 一、神经网络模型简介 现代神经生理学和神经解剖学的研究结果表明,人脑是极其复杂的,由约1010个神经元交织在一起,构成一个网状结构。它能完成诸如智能、思维、情绪等高级精神活动,被认为是最复杂、最完美、最有效的一种信息处理系统。人工神经网络(Artificial Neural Networks ,以下简写为 NN )是指模拟人脑神经系统的结构和功能,运用大量的处理部件,通过数学方法,由人工方式构造的网络系统[1] 。 图1表示作为 NN 基本单元的神经元模型,它有三个基本要素[2]: (1) 一组连接权(对应于生物神经元的突触),连接强度由各连接上的权值表示,权值为正表示激励,为负表示抑制。 (2) 一个求和单元,用于求取各输入信息的加权和(线性组合)。 (3) 一个非线性激励函数,起非线性映射作用并限制神经元输出幅度在一定的范围内(一般限制在[0,1]或[?1,+1]之间)。 图1 神经元模型 此外还有一个阈值k θ(或偏置 k k b θ-=)。以上作用可以用数学式表达为: ∑= =P j kj k j x w u ;

k k k u θν-=; ) (k k v y ?= 式中 P x x x x ,...,,,321为输入信号, kP k k k w w w w ,...,,,321为神经元k 的权值, k u 为 线性组合结果, k θ为阈值。(.)?为激励函数,k y 为神经元k 的输出。 神经网络理论突破了传统的、串行处理的数字电子计算机的局限,是一个非线性动力学系统,并以分布式存储和并行协同处理为特色,虽然单个神经元的结构和功能极其简单有限,但是大量的神经元构成的网络系统所实现的行为却是极其丰富多彩的。

神经网络模型原理

2 BP 神经网络模型原理 2.1 BP 模型概述 BP(Back-Propagation)神经网络是一类前馈型神经网络,它由输入层、中间层和输出层组成,中间层也就是隐含层,可以是一个或多个。每层包含若干互不连接的神经元节点,相邻层之间各神经元通过不断变化的连接强度或权值进行全连接。图1 所示为BP 神经网络拓扑结构。其中:输入层有n 个节点,对应输入x1~xn;输出层有m 个节点,对应输出y1~ym;隐含层有q个节点,对应的输出z1~zq;输入层与隐含层之间的权值vik,隐含层与输出层之间的权值为wkj。 BP 网络中隐含层激活函数通常采用S 型的对数或正切函数和线性函数。由于激活函数是连续可微的,不仅使得网络的容错性较好,而且可以严格利用剃度法进行推算,权值修正的解析式十分明确[7]。 BP 网络中隐含层激活函数通常采用S 型的对数或正切函数和线性函数。由于激活函数是连续可微的,不仅使得网络的容错性较好,而且可以严格利用剃度法进行推算,权值修正的解析式十分明确[7]。 2.2 BP 学习算法 BP 学习算法是一种有监督的学习过程,它是根据给定的(输入、输出)样本数据来进行学习,并通过调整网络连接权值来体现学习的效果。就整个神经网络来说,一次学习过程由输入数据的正向传播和误差的反向传播两个子过程构成。设有N 个学习样本(Xk,Y*k ),k=1,2,…,N,对样本(Xk,Y*k),在正向传播过程中,样本k的输入向量Xk=(x1k,x2k,…,xnk)从输入层的n 个节点输入,经隐含层逐层处理,在输出层的m 个节点的输出端得到样本k 的网络计算输出向量Yk=(y1k,y2k,ymk)。比较Yk 和样本k 的期望输出向量Y*k =(y *1k ,y *2k ,…,y *mk ),若N个学习样本的计算输出都达到期望的结果,则学习过程结束;否则,进入误差反向传播过程,把Yk 与Y*k的误差由网络输出层向输入层反向传播,在反向传播过程中,修改各层神经元的连接权值[8]。 BP 反向传播算法的具体步骤可归纳如下: (1)输入N 个学习样本(Xk,Y*k ),k=1,2,…,N。 (2)建立BP 网络结构。确定网络层数L≥3 和各层节点数,由学习样本输入向量Xk 的长度n 确定网络输入层节点数为n;由学习样本输出向量Y*k的长度m确定网络输出节点数为m;第l 层的节点数为n(l)。定义各层间连接权矩阵,第l 层连接第l+1 层的连接权矩

神经网络模型应用实例

BP 神经网络模型 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld 模型,Feldmann 等的连接型网络模型,Hinton 等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen 的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart 等人提出了误差反向传递学习算法(即BP 算),实现了Minsky 的多层网络设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11 )(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。每一层神经元的状态只影响下一层神经元的状态。如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。 社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。为简便起见,指定网络只有一个输出y ,任一节点i 的输出为O i ,并设有N 个样本(x k ,y k )(k =1,2,3,…,N ),对某一输入x k ,网络输出为y k 节点i 的输出为O ik ,节点j 的输入为net jk = ∑i ik ij O W 并将误差函数定义为∑=-=N k k k y y E 12 )(21

神经网络典型模型的比较研究

神经网络典型模型的比较研究 杜华英1,赵跃龙2 (中南大学信息科学与工程学院,湖南长沙 410083) 摘要神经网络是近年来发展起来的一门新兴学科,具有较高的研究价值,本文介绍了神经网络的基本概念,针对神经网络在不同的应用领域如何选取问题,对感知器、BP网络、Hopfield网络和ART网络四种神经网络模型在优缺点、有无教师方式、学习规则、正反向传播、应用领域等方面进行了比较研究。可利用其特点有针对性地将神经网络应用于计算机视觉、图像处理、模式识别、信号处理、智能监控、机器人等不同领域。 关键词神经网络;感知器;BP网络;Hopfield网络;ART网络 1 引言 人工神经网络(Artificial Neural Network, ANN)是模仿生物神经网络功能的一种经验模型。生物神经元受到传入的刺激,其作出的反应又从输出端传到相连的其它神经元,输入和输出之间的变换关系一般是非线性的。神经网络是由若干简单元件及其层次组织,以大规模并行连接方式构造而成的网络,按照生物神经网络类似的方式处理输入的信息。模仿生物神经网络而建立的人工神经网络,对输入信号有功能强大的反应和处理能力。 若干神经元连接成网络,其中的一个神经元可以接受多个输入信号,按照一定的规则转换为输出信号。由于神经网络中神经元间复杂的连接关系和各神经元传递信号的非线性方式,输入和输出信号间可以构建出各种各样的关系,因此在运行网络时,可视为一个“黑箱”模型,不必考虑其内部具体情况。人工神经网络模拟人类部分形象思维的能力,是模拟人工智能的一条途径,特别是可以利用人工神经网络解决人工智能研究中所遇到的一些难题。目前,人工神经网络理论的应用已经渗透到多个领域,在计算机视觉、图像处理、模式识别、信号处理、智能监控、机器人等方面取得了可喜的进展。 2 神经网络的典型模型 在人们提出的几十种神经网络模型中,人们用得较多的是感知器、BP网络、Hopfield 网络和ART网络。 2.1 感知器[2] 罗森勃拉特(Rosenblatt)于1957年提出的感知器模型是一组可训练的分类器,为最古老的ANN之一,现已很少使用。然而,它把神经网络的研究从纯理论探讨引向了工程上的实现,在神经网络的发展史上占有重要的地位。尽管它有较大的局限性,甚至连简单的异或(XOR)逻辑运算都不能实现,但它毕竟是最先提出来的网络模型,而且它提出的自组织、自学习思想及收敛算法对后来发展起来的网络模型都产生了重要的影响,甚至可以说,后来发展的网络模型都是对它的改进与推广。 最初的感知器是一个只有单层计算单元的前向神经网络,由线性阈值单元组成,称为单层感知器,后来针对其局限性进行了改进,提出了多层感知器。 1杜华英(1975—),女,江西樟树人,惠州学院成教处计算机工程师,主研人工智能,中南大学信息科学与工程学院在读工程硕士。 2赵跃龙(1958—),男,湖南湘潭人,中南大学信息科学与工程学院计算机系教授,主要从事计算机体系结构、磁盘阵列、计算机控制、神经网络应用等方面的研究。

基于在线社交网络信息传播模型的研究综述

Service Science and Management 服务科学和管理, 2019, 8(1), 27-33 Published Online January 2019 in Hans. https://www.doczj.com/doc/d416858796.html,/journal/ssem https://https://www.doczj.com/doc/d416858796.html,/10.12677/ssem.2019.81004 Research View Based on Online Social Network Information Communication Model Yanyan Luo The Glorious Sun School of Business and Management, Donghua University, Shanghai Received: Dec. 20th, 2018; accepted: Jan. 3rd, 2019; published: Jan. 10th, 2019 Abstract Online social networking has become a popular social media platform with its unique communica-tion advantages. According to the formal characteristics of the information dissemination model in online social networks, combined with the infectious disease dynamics model and the influence model, according to the different research objects and research methods, the online social net-work propagation model proposed by scholars is classified and summarized, and the different re-search theories are comprehensively described. The research theory is comprehensively de-scribed, and finally, based on the existing research results and research methods, I will put for-ward my own thinking on the future research direction. Keywords Social Network, Information Dissemination, Influence Model, SIR Model 基于在线社交网络信息传播模型的研究综述 骆彦彦 东华大学旭日工商管理学院,上海 收稿日期:2018年12月20日;录用日期:2019年1月3日;发布日期:2019年1月10日 摘要 在线社交网络以其独特的传播优势,已成为一种流行的社交媒体平台。针对在线社交网络中信息传播模式的形式特点,结合传染病动力学模型以及影响力模型,根据研究对象和研究方法的不同,将学者提出的基于在线社交网络传播模型进行分类和总结,并对不同的研究理论进行综合叙述,最后根据已有的研究成果和研究方法,对未来的研究方向提出自己的思考。

BP神经网络的基本原理-一看就懂

5.4 神经网络的基本原理 ()网络是1986年由和为首的科学家小组提 出,是一种按误差逆传播算法训练的多层前馈网 络,是目前应用最广泛的神经网络模型之一。网 络能学习和存贮大量的输入-输出模式映射关 系,而无需事前揭示描述这种映射关系的数学方 程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。神经网络模型拓扑结构包括输入层()、隐层( )和输出层( )(如图5.2所示)。 5.4.1 神经元 图5.3给出了第j个基本神经元(节点),它只模仿了生物神经元所具有的三个最基本也是最重要的功能:加权、求和与转移。其中x1、x2……分别代表来自神经元1、2…i…n的输入;1、2……则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权值;为阈值;f(·)为传递函数;为第j个神经元的输出。 第j个神经元的净输入值为: (5.12)

其中: 若视,,即令及包括及,则 于是节点j的净输入可表示为: (5.13)净输入通过传递函数()f (·)后,便得到第j个神经元的输出: (5.14)式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 网络 算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的

状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 5.4.2.1 正向传播 设网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f1(·),输出层的传递函数为f2(·),则隐层节点的输出为(将阈值写入求和项中): 1,2,…… q (5.15)输出层节点的输出为: 1,2,…… m (5.16)至此网络就完成了n维空间向量对m维空间的近似映射。

BP神经网络模型预测未来

BP神经网络模型预测未来 BP神经网络算法概述: 简介与原理 BP神经网络是一种多层前馈神经网络,该网络的主要特点是: 信号前向传递,误差反向传播。在前向传递中,输入信号从输入层经 隐含层逐层处理,直至输出层,每一层的神经元状态只影响下一层神 经元状态。如果输出层得不到期望输出,则转入反向传播,根据预测 误差调整网络权值和阈值,从而使BP神经网络预测输出不断逼近期 望输出。 BP神经网络的拓扑结构如下图所示: X Y 1 X 2 Y M M 1 X n 输入层隐含层输出层 BP神经网络结构图 图中是BP神经网络的输入值,是BP神经网络的预测 值,

为BP神经网络权值。 BP神经网络预测前首先要训练网络,通过训练使网络具有联想记忆和预测能力。BP神经网络的训练过程包括一下几个步骤。 步骤一:网络初始化。根据系统输入输出序列(,) X Y确定网络输入层节点数,n隐含层节点数l、输出层节点数m、初始化输入层、隐含层和输出层神经元之间的连接权值,, ωω初始化隐含层阈值a,给 ij jk 定输出层阈值b,给定学习速率和神经元激励函数。 步骤二:隐含层输出计算。根据输入向量,输入层和隐含层间连接权值,以及隐含层阈值,计算隐含层输出。 步骤三:输出层输出计算。根据隐含层输出,连接权值和阈值,计算BP神经网络预测输出。 步骤四:误差计算根据网络输出和预期输出,计算网络预测误差。 步骤五:权值更新。根据网络预测更新网络连接权值 步骤六:阈值更新。根据网络预测误差更新网络节点阈值。 步骤七:判断算法迭代是否结束,若没有结束,返回步骤二。 下面是基本BP算法的流程图。

BP神经网络的拓扑结构如下图所示: X Y 1 X 2 Y M M 1 X n 输入层隐含层输出层 BP神经网络预测的算法流程如下: 步骤一:对初始数据进行标准化。

神经网络的基本原理

神经网络的基本原理 在神经网络系统中,其知识是以大量神经元互连和各互连的权值表示。神经网络映射辨识方法主要通过大量的样本进行训练,经过网络内部自适应算法不断调整其权值,以达到目的。状态识别器就隐含在网络中,具体就在互连形式与权值上。在网络的使用过程中,对于特定的输入模式,神经网络通过前向计算,产生一输出模式,通过对输出信号的比较和分析可以得到特定解。目前,神经网络有近40多种类型,其中BP 网络是最常用和比较重要的网络之一,本文就应用BP 网络进行齿轮计算中相应数据图表的识别映射。 BP 网络模型处理信息的基本原理是:输入信号X i 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k ,网络训练的每个样本包括输入向量X 和期望输出量t ,网络输出值Y 与期望输出值t 之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij 和隐层节点与输出节点之间的联接强度T jk 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 BP 网络的学习过程是通过多层误差修正梯度下降法进行的,称为误差逆传播学习算法。误差逆传播学习通过一个使误差平方和最小化过程完成输入到输出的映射。在网络训练时,每一个输入、输出模式集在网络中经过两遍传递计算:一遍向前传播计算,从输入层开始,传播到各层并经过处理后,产生一个输出,并得到一个该实际输出和所需输出之差的差错矢量;一遍反向传播计算,从输出层至输入层,利用差错矢量对连接权值和阀值,进行逐层修改。 经过训练好的BP 网络即可付诸应用。学习后的网络,其连接权值和阀值均已确定。此时,BP 模型就建立起来了。网络在回想时使用正向传播公式即可。 BP 网络由输入层结点,输出层结点和隐含层结点构成,相连层用全互连结构。图1为典型的三层结构网络模型。 图1 三层网络结构图 神经网络的工作过程主要分为两个阶段:一个是学习期,通过样本学习修改各权值,达到一稳定状态;一个是工作期,权值不变,计算网络输出。 BP 网络的学习过程由正向传播和反向传播两部分组成。在正向传播过程中,输入信息从输入层经隐含层单元逐层处理,并传向输出层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的路径返回,通过修改各层神经元的权值,使得误差信号最小。当给定一输入模式 12(,,...,)m X x x x =和希望输出模式12(,,...,)n Y y y y = 时,网络的实际输出和实际误差,可用下列公式求出:

BP神经网络基本原理

BP神经网络基本原理 2.1 BP神经网络基本原理 BP网络模型处理信息的基本原理是:输入信号X i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 2.2 BP神经网络模型 BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。(1)节点输出模型 隐节点输出模型:O j=f(∑W ij×X i-q j) (1) 输出节点输出模型:Y k=f(∑T jk×O j-q k) (2) f-非线形作用函数;q -神经单元阈值。 图1 典型BP网络结构模型 (2)作用函数模型 作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid函 数: f(x)=1/(1+e-x) (3)(3)误差计算模型 误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数:

E p =1/2×∑(t pi -O pi )2 (4) t pi - i 节点的期望输出值;O pi -i 节点计算输出值。 (4)自学习模型 神经网络的学习过程,即连接下层节点和上层节点之间的权重拒阵W ij 的设定和 误差修正过程。BP 网络有师学习方式-需要设定期望值和无师学习方式-只需输入模式之分。自学习模型为 △W ij (n+1)= h ×Фi ×O j +a×△W ij (n) (5) h -学习因子;Фi -输出节点i 的计算误差;O j -输出节点j 的计算输出;a-动量 因子。 2.3 BP 网络模型的缺陷分析及优化策略 (1)学习因子h 的优化 采用变步长法根据输出误差大小自动调整学习因子,来减少迭代次数和加快收敛速度。 h =h +a ×(E p (n)- E p (n-1))/ E p (n) a 为调整步长,0~1之间取值 (6) (2)隐层节点数的优化 隐 节点数的多少对网络性能的影响较大,当隐节点数太多时,会导致网络学习时间过长,甚至不能收敛;而当隐节点数过小时,网络的容错能力差。利用逐步回归分析 法并进行参数的显著性检验来动态删除一些线形相关的隐节点,节点删除标准:当由该节点出发指向下一层节点的所有权值和阈值均落于死区(通常取±0.1、±0.05等区间)之中,则该节点可删除。最佳隐节点数L 可参考下面公式计算: L=(m+n)1/2+c (7) m-输入节点数;n-输出节点数;c-介于1~10的常数。 (3)输入和输出神经元的确定 利用多元回归分析法对神经网络的输入参数进行处理,删除相关性强的输入参数,来减少输入节点数。 (4)算法优化 由于BP 算法采用的是剃度下降法,因而易陷于局部最小并且训练时间较长。用基于生物免疫机制地既能全局搜索又能避免未成熟收敛的免疫遗传算法IGA 取代传统BP 算法来克服此缺点。 3. 优化BP 神经网络在系统安全评价中的应用 系统安全评价包括系统固有危险性评价、系统安全管理现状评价和系统现实危险性评价三方面内容。其中固有危险性评价指标有物质火灾爆炸危险性、工艺危险性、设备装置危险性、环境危险性以及人的不可靠性。 3.1 基于优化BP 神经网络的系统安全评价模型

神经网络算法及模型

神经网络算法及模型 思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面: (1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。 (2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。 (3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。 (4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。 纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。 神经网络和粗集理论是智能信息处理的两种重要的方法,其任务是从大量观察和实验数据中获取知识、表达知识和推理决策规则。粗集理论是基于不可分辩性思想和知识简化方法,从数据中推理逻辑规则,适合于数据简化、数据相关性查找、发现数据模式、从数据中提取规则等。神经网络是利用非线性映射的思想和并行处理方法,用神经网络本身的结构表达输入与输出关联知识的隐函数编码,具有较强的并行处理、逼近和分类能力。在处理不准确、不完整的知识方面,粗集理论和神经网络都显示出较强的适应能力,然而两者处理信息的方法是不同的,粗集方法模拟人类的抽象逻辑思维,神经网络方法模拟形象直觉思维,具有很强的互补性。 首先,通过粗集理论方法减少信息表达的属性数量,去掉冗余信息,使训练集简化,减少神经网络系统的复杂性和训练时间;其次利用神经网络优良的并行处理、逼近和分类能力来处理风险预警这类非线性问题,具有较强的容错能力;再次,粗集理论在简化知识的同时,很容易推理出决策规则,因而可以作为后续使用中的信息识别规则,将粗集得到的结果与神经网络得到的结果相比较,以便相互验证;最后,粗集理论的方法和结果简单易懂,而且以规则的形式给出,通过与神经网络结合,使神经网络也具有一定的解释能力。因此,粗集理论与神经网络融合方法具有许多优点,非常适合处理诸如企业战略风险预警这类非结构化、非线性的复杂问题。 关于输入的问题--输入模块。

相关主题
文本预览
相关文档 最新文档