当前位置:文档之家› 电磁感应加热技术研究

电磁感应加热技术研究

电磁感应加热技术研究
电磁感应加热技术研究

感应加热设备原理及用途

电磁感应加热的是感应加热电源产生的交变电流通过感应器(即线圈)产生交变磁场,导磁性物体置于其中切割交变磁力线,从而在物体内部产生交变的电流(即涡流),涡流使物体内部的原子高速无规则运动,原子互相碰撞、摩擦而产生热能,从而起到加热物品的效果。即是通过把电能转化为磁能,使被加热钢体感应到磁能而发热的一种加热方式。这种方式它从根本上解决了电热片,电热圈等电阻式通过热传导方式加热的效率低下问题。 简单说,电磁感应加热的原理就是利用电、磁、热能间的转换达到使被加热物体自身发热的效果。电磁感应加热设备其本质就是利用电磁感应在柱体内产生涡流来给加热工件的电加热,它是把电能转换为电磁能,再由电磁能转换为电能,电能在金属内部转变为热能,达到加热金属的目的,从而杜绝了明火在加热过程中的危害和干扰,是一种环保,国家提倡的加热方案。 感应加热设备专业名词解释: 1、感应线圈又称为感应器 采用紫铜管线材绕成的线圈制作而成。 2、内孔感应器

加热空心内表面用的感应器。 3、感应线圈导磁体 按技术要求需要平面或其他异形工件感应加热的位置,用于改变磁场分布以满足加热要求或减轻感应器邻近物体发热。 4、可调匝比淬火变压器 为了能适应各种淬火工件和感应器的电感而制作的高频变压器。 5、感应淬火机床 用于卡装工件并能根据工艺要求使淬火工件位置能上下移动或旋转的机械装置。 感应加热设备的应用领域: 1、焊接:刃具、钻具、刀具、木工刀具、车刀、钎头、钎焊、铰刀、铣刀、钻头、锯片锯齿、眼镜行业的镜架、钢管、铜管的焊接、截齿焊接、同种异种金属的焊接、压缩机、压力表、继电器接触点、不锈钢锅底不同材料的复合焊接、变压器绕组铜线的焊接、贮藏(气灌嘴的焊接、不锈钢餐、厨具的焊接)。 2、热处理:齿轮、机床导轨、五金工具、气动工具、电动工具、液压件、球墨铸铁、汽摩配、内配等机械金属零件(表面、内孔、局部、整体)的淬火、退

电磁感应加热系统电路设计_宋国梅

电磁感应加热系统电路设计 * 宋国梅,王永涛 (潍坊学院,山东 潍坊 261061)摘 要:电磁感应加热技术在家电等行业具有广泛的应用。分析了电磁感应加热技术的工作原理,对系统整体功能构成框图进行了研究,设计了主电路结构图和EM I 滤波器电路;系统设计完成了电磁感应加热系统的基本功能,实现了系统的性能设定指标。 关键词:单片机;电磁感应;EM I 滤波 中图分类号:T P212 文献标识码:A 文章编号:1671-4288(2010)04-0034-03 电磁感应加热技术是一种新型的加热技术,它利用高频电加热原理,将交流电转化为高频电流,产生高频磁场,当磁场内磁力线通过绝缘板作用在铁质容器外壳时,磁力线被切割,产生大量小涡流,使铁质容器的自身迅速发热,从而达到加热的目的。它较目前家电中常用的电热丝加热技术、远红外加热技术、微波加热技术等具有无可比拟的优越性。 电磁感应加热技术在热效率、功能、高效节能、电磁辐射等方面是当今家电设计领域中新型的技术。它弥补了电热丝加热技术和微波加热技术不能用在烹饪等领域的不足,也弥补了微波加热技术辐射强的缺点。 1 电磁感应加热的基本原理 图1是最简单的一种变压器电路模型,其初级线圈和次级线圈间功率、电压和电流关系分别满足公式 (1)、公式(2)和公式(3),其中符号P 表示系统的总功率,U 1、I 1、N 1分别表示初级线圈的电压、电流和匝数,U 2、I 2、N 2分别表示次级线圈的电压、电流和匝数。这里,忽略漏磁电流的影响,初级线圈与次级线圈的损耗均由绕组的电阻引起,当次级绕组为短路时,由于负载电流(次级绕组的电流)增大而产生热损耗,如图2所示。由能量守恒定律可知,电源提供的能量与初级线圈和次级线圈的总损耗相等。 图1 一般形式的变压器 图2 次级短路的变压器 P 1=U 1*I 1=U 2*I 2 (1)U 1U 2=N 1N 2 (2)I 1I 2=-N 2N 1(3) 由于电磁感应加热的基本目的是使次级线圈产生的热量最大,因此,感应加热线圈与负载之间的缝隙要设计的足够小,次级线圈要由低阻抗且高渗透性特性的材料制成。非铁金属或不含铁的金属由于其高阻抗和低渗透性会破坏能量的功效,通常不被采用。因此,对于电磁感应加热系统,铸铁、不锈钢等材料能满足上述要求,而陶瓷、玻璃、铝、铜等材料则不能满足要求。 34 第10卷第4期 潍坊学院学报 V ol.10N o.42010年8月 Jo ur nal of W eifang U niv ersity A ug.2010 *收稿日期:2009-12-16 作者简介:宋国梅(1963-),女,山东潍坊人,潍坊学院研究实习员。

新型高效变频电磁感应加热技术

新型高效变频电磁感应加热技术 一、所属行业:塑料橡胶制造行业等 二、技术名称:新型高效变频电磁感应加热技术 三、适用范围:工业领域加热,特别适用于塑料橡胶制造加工,石油化工、医药食品、染整服装等加热。 四、技术内容: 1.技术原理 通过内部整流滤波电路将市电(50Hz/220v/380v)的交流电变成直流电,再经过PWM(技术核心)控制电路将直流电转换成频率为20-30KHz的高频高压电,高速变化的电流通过加热线圈会产生高速变化的磁场,当磁场内的磁力线通过被加热金属物体(导磁导电物体)时,会在被加热金属物体内产生无数的小涡流,从而使被加热体自身高速发热。是一种新型高效、环保节能的加热方式。 2.关键技术 PWM控制电路及大功率IGBT元器件。 3.工艺流程 五、主要技术指标:

变频电磁加热器与传统加热器比较: 1、热效率95%以上,节电30%-60%。 2、装机容量(功率)可减少40%,大大减少电网负荷。 3、功率密度不受限制,加热温度可以达到600度以上,甚至可达上千度。 4、加热迅速及时,温度控制实时准确。 六、技术应用情况: XX电磁科技有限公司自主开发“工业微电脑变频电磁加热器”已被国家知识产权局授予实用新型专利技术。这一技术已在全国各地推广应用3年,节能效果较为明显。 七、典型用户及投资效益: XX科技有限公司、XX GROUP CO.LTD等。 八、推广前景和节能潜力: 就塑料加工行业而言,中国目前已经成为仅次于美国的第二大国,2008年规模以上企业塑料制品年生产量达37138Kt(2009中国塑料工业年鉴),全国现有塑料生产机械约160万套,加热部分的电容量就达2000万千瓦,全年用电量为600亿千瓦时,且每年仍以15%速度递增。若所有的设备都采用该项节能技术,按最少节能30%计算,全国每年可节约用电180亿千瓦时。

中频电磁感应加热器设计

摘要 本文以感应加热为研究对象,简要介绍了感应加热的基本原理和特点,阐述了感应加热技术的现状及其发展趋势。本文主要研究了感应加热器的设计方法。感应加热器是利用工件中的涡流的焦耳效应将工件加热,这种加热方式具有效率高、控制精确、污染少等特点,在工业生产中得到了广泛的应用。如何设置感应线圈的参数使之满足被加热工件中性能要求普遍关注的问题。 传统的设计方法是利用线圈在整个电路中的等效电阻地位,利用一系列电磁学公式计算出线圈的性能参数。然而这种基于实验的系统设计方法却耗时费力,并且测量成本高。因此,近似模拟方法对于感应加热器的设计和研究具有重要意义。 本文的主要工作是建立感应加热器的近似设计方法。从感应加热理论的一系列经过实验数据修正过的理论曲线为依据,根据工艺要求得出相关物理参数,并通过计算得到感应器的设计参数。 关键词: 第一章绪论 1.1 国内外感应加热的发展与现状 随着现代科学技术的发展,对机械零件的性能和可靠性要求越来越高,金属零件的性能和质量除材料成分特新外,更与其加热技术密不可分。例如,加热速度的快慢不仅影响生产效率而且影响产品的氧化程度,局部温度过冷或过热可能导致产品变形甚至损坏等。由于感应加热具有热效率高,便于控制等优点,目前在金属材料加工,处理等方面得到广泛应用。 在工业发达国家,感应加热研究起步较早,应用也更为广泛。1890年瑞士技术人员发明了第一台感应熔炼炉——开槽式有芯炉,1916年美国人发明了闭槽式有芯炉,感应加热技术开始进入实用化阶段。1966年,瑞士和西德开始利用可控硅半导体器件研制感应加热装置。从此感应加热技术开始飞速发展,并且被广泛用于生产活动中。 在我国,感应加热技术起步比较晚,与世界发达国家相比存在较大的差距。直到80年代

感应加热电源发展前景及市场分析_感应加热电源特点

感应加热电源发展前景及市场分析_感应加热电源特点 感应加热电源简介感应加热电源对金属材料加热效率最高、速度最快,且低耗环保。它已经广泛应用于各行各业对金属材料的热加工、热处理、热装配及焊接、熔炼等工艺中。感应加热电源由两部分组成,一部分是提供能量的交流电源,也称变频电源;另一部分是完成电磁感应能量转换的感应线圈,称感应器。 感应加热电源它不但可以对工件整体加热,还能对工件局部的针对性加热;可实现工件的深层透热,也可只对其表面、表层集中加热;不但可对金属材料直接加热,也可对非金属材料进行间接式加热。等等。因此,感应加热技术必将在各行各业中应用越来越广泛。 用感应电流使工件局部加热的表面热处理工艺。这种热处理工艺常用于表面淬火,也可用于局部退火或回火,有时也用于整体淬火和回火。随着钢、铁、铜、铝及合金各各行业的需要,感应熔化设备受到了青睐,越来越多的行业运用到了感应加热设备,越来越多进入感应加热设备行业,越来越多品牌进入中国市场,20世纪30年代初,美国、苏联先后开始应用感应加热方法对零件进行表面淬火。随着工业的发展,感应加热热处理技术不断改进,应用范围也不断扩大。 感应加热是目前人类所知的最快的加热方式,传统的加热方式是热传导,即由一个热的物体将自身的热能量传递给另一个物体,而感应加热则是通过交变电流在电感线圈中产生电流漩涡,也就是涡流,使处于线圈中的导磁性物体内的电子空穴运动从而产生热量。感应加热是传统加热方式的一次伟大的革命! 感应加热电源性能特点1、采用谐振变频技术使设备整体效率90%,高效、节能,耗电量仅为电子管感应加热设备的20%-30%。 2、采用IGBT器件逆变,频率高、体积小、重量轻。体积与重量为可控硅整流器的1/5-1/10,便于您规划、扩建、移动、维护和安装。 3、采用数字锁相技术实现频率自动跟踪,能自动适应各种感应器。 4、采用驱动模块控制,确保设备的可靠性、易维修。

高频感应钎焊CBN砂轮过程温度场有限元仿真研究开题报告

! 毕业设计开题报告 高频感应钎焊CBN砂轮过程温度场有限元仿真研究 学院:机械工程学院 班级: 学生姓名: 指导教师: 职称: 2012 年12月 2 日

开题报告填写要求 1.开题报告作为毕业设计答辩委员会对学生答辩资格审查的依据材料之一,应在指导教师指导下,由学生在毕业设计工作前期完成,经指导教师签署意见、专家组及学院教学院长审查后生效; 2.开题报告必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴; 3.毕业设计开题报告应包括以下内容: (1)研究的目的; (2)主要研究内容; (3)课题的准备情况及进度计划; (4)参考文献。 4.开题报告的撰写应符合科技文献规范,且不少于2000字;参考文献应不少于15篇,包括中外文科技期刊、教科书、专著等。 5.开题报告正文字体采用宋体小四号,1.5倍行距。附页为A4纸型,左边距3cm,右边距2cm,上下边距为2.5cm,字体采用宋体小四号,1.5倍行距。 6.“课题性质”一栏: 理工类:A..理论研究B.工程设计C..软件开发D. 应用研究E.其它经管文教类:A.理论研究 B.应用研究 C.实证研究 D.艺术创作 E.其它 “课题来源”一栏: A.科研立项 B.社会生产实践 C.教师自拟 D.学生自选 “成果形式”一栏: A.论文 B.设计说明书 C.实物 D.软件 E.作品

毕业设计开题报告

附页 一、研究目的、意义 上世纪中期, CBN工业化生产的实现是磨料行业所取得的具有里程碑意义的突破性成果,这种超硬磨料在适应面上的互补性,使由它们所构成的可加工范围覆盖到了包括各种高硬、高脆、高强韧性材料在内的几全部被加工材料,磨削加工由此进入了一个有条件实现高效作业的新时代[1]。 国外在上世纪八十年代中后期开始研究用高温钎焊技术(高频感应钎焊是利用高频感应加热原理工作的,就是在高温或高压条件下,使用焊接材料将CBN 材料与砂轮母材链接成一个整体的操作方法。),研究结果表明高温钎焊可以实现非常高的界面结合强度,这样钎焊砂轮就可以极大扩展了其容屑空间[2]。 具有优化地貌的钎焊单层CBN工具具有磨粒出露高、容屑空间大、基体对CBN磨粒把持强度高以及高的锋利度、高的磨削效率和磨料利用率等特点。高频感应钎焊CBN工具是制造CBN工具的全新方法。高频感应钎焊CBN砂轮在经济和学术研究上都有极大价值,而研究高频感应钎焊CBN砂轮过程温度场进行有限元仿真对于高频感应钎焊CBN砂轮技术的温度场控制具有极高的辅助参考价值。 二、研究现状 国外在超硬磨料高温钎焊研究上起步较早[3、4] 。90年代初,瑞士A.K. Chattopadhyay等用火焰喷镀法把Ni-Cr钎料合金镀于工具钢基体上,并将金刚石排布在钎料层而上,然后在1080度,氩气保护下感应钎焊30秒来实现金刚石与钢基体结合。实验结果表明了Ni-Cr钎料合金对金刚石的良好浸润性.Wiand等美国专利上介绍的方法是:焊料(Ni-Cr)金属粉加有机粘结剂制成钎焊漆,把包衣金刚石粘在工具钢基体上,然后涂附钎焊漆,再加热到一个适中的温度并保温一定时间以排除挥发物质。在真空炉或干式氢气炉中加热到1100℃左右,保温1小时,钎焊的同时完成金刚石的表面金属化.德国的 A.Tmnkcr等在钎焊过程中分别采用了镍基活性钎料和镍基钎料来实现金刚石与 基休的结合。 目前,国内开展超硬磨料高温钎焊研究工作的主要有南京航空航天大学、西安交通大学、华侨大学等机构。首先通过研究切实掌握了这种超硬培料真空高温

电磁感应加热技术的发展

电磁感应加热技术的发展 磁感应加热来源于法拉第发现的电磁感应现象,也就是交变的电流会在导体中产生感应电流,从而导致导体发热。1890年瑞典技术人员发明了第一台感应熔炼炉——开槽式有芯炉,1916年美国人发明了闭槽有芯炉,从此感应加热技术逐渐进入实用化阶段。 20世纪电力电子器件和技术的飞速发展,极大地促进了感应加热技术的发展。 1957年,美国研制出作为电力电子器件里程碑的晶闸管,标志着现代电力电子技术的开始,也引发了感应加热技术的革命。1966年,瑞士和西德首先利用晶闸管研制感应加热装置,从此感应加热技术开始飞速发展。 20世纪80年代后,电力电子器件再次快速发展,GTO、MOSFET、IGBT、M CT及SIT等器件相继出现。感应加热装置也逐渐摒弃晶闸管,开始采用这些新器件。现在比较常用的是IGBT和MOSFET,IGBT用于较大功率场合,而MOSFET用于较高频率场合。据报道,国外可以采用IGBT将感应加热装置做到功率超过1000kW ,频率超过50kHz。而MOSFET较适用高频场合,通常应用在几千瓦的中小功率场合,频率可达到500kHz以上,甚至几兆赫兹。然而国外也有推出采用MOSFET的大功率的感应加热装置,比如美国研制的2000kW /400kHz的装置。

我国感应热处理技术的真正应用始于1956年,从前苏联引入,主要应用在汽车工业。随着20世纪电源设备的制造,感应淬火工艺装备也紧随其后得到发展。现在国内感应淬火工艺装备制造业也日益扩大,产品品种多,原来需要进口的装备,逐步被国产品所取代,在为国家节省外汇的同时,发展了国内的相关企业。目前感应加热制造业的服务对象主要是汽车制造业,今后现代冶金工业将对感应加热有较大需求。 一、感应加热特点 感应加热技术具有快速、清洁、节能、易于实现自动化和在线生产、生产效率高等特点,是内部热源,属非接触加热方式,能提供高的功率密度,在加热表面及深度上有高度灵活的选择性,能在各种载气中工作(空气、保护气、真空),损耗极低,不产生任何物理污染,符合环保和可持续发展方针,是绿色环保型加热工艺之一。它与可控气氛热处理、真空热处理少无氧化技术已成为热处理技术的发展主流。 其主要应用有: (1)冶金有色金属的冶炼,金属材料的热处理,锻造、挤压、轧制等型材生产的透热,焊管生产的焊缝。 (2)机械制造各种机械零件的淬火,以及淬火后的回火、退火和正火等热处理的加热;压力加工前的透热。 (3)轻工罐头以及其他包装的封口,比如着名的利乐砖的封口包装。

加热炉炉压控制系统开题报告

河北联合大学 本科生毕业设计开题报告

一、选题背景 选择这个课题是受到我国钢铁工业的不断发展的影响,技术的更新能为其添加新的动力。加热炉是将物料或工件加热的设备。按热源划分有燃料加热炉、电阻加热炉、感应加热炉、微波加热炉等。应用遍及石油、化工、冶金、机械、热处理、表面处理、建材、电子、材料、轻工、日化、制药等诸多行业领域。在冶金工业中,加热炉习惯上是指把金属加热到轧制成锻造温度的工业炉,包括有连续加热炉和室式加热炉等。金属热处理用的加热炉另称为热处理炉。初轧前加热钢锭或使钢锭内部温度均匀的炉子称为均热炉。广义而言,加热炉也包括均热炉和热处理炉. 习惯上按炉内安装烧嘴的供热带划分炉段,依供热带的数目把炉子称为一段式、二段式,以至五段式、六段式等。50~60年代,由于轧机能力加大,而推钢式炉的长度受到推钢长度的限制不能太长,所以开始在进料端增加供热带,取消不供热的预热段,以提高单位炉底面积的生产率。用这种炉子加热板坯,炉底的单位面积产量达900~1000公斤/(米2·时),热耗约为(0.5~0.65)×106千卡/吨。70年代以来,由于节能需要,又由于新兴的步进式炉允许增加炉子长度,所以又增设不供热的预热段,最佳的炉底单位面积产量在600~650公斤/(米2·时),热耗约为(0.3~0.5)×106 千卡/吨。 连续加热炉通常使用气体燃料、重油或粉煤,有的烧块煤。为了有效地利用废气热量,在烟道内安装预热空气和煤气的换热器,或安装余热锅炉。 炉膛差压是表征流化床上部悬浮段物料浓度的量。一定的物料浓度对应一定的炉膛差压,对于同一种煤种,物料浓度增加,炉膛差压值越大,对炉膛上部蒸发受热面传热强度越大,锅炉出力越强,反之,锅炉出力越弱。 炉膛差压与锅炉循环量成正比,因锅炉循环量越大,将有更多的循环灰被带到炉膛上部悬浮段参加二次燃烧,因此,控制锅炉循环量,保持有利的循环量,就可控制炉膛差压,从而有效地控制锅炉出力,由于炉膛差压可以通过控制循环量在较大范围内改变,因此,循环流化床锅炉出力可以在较大范围内改变。在正常运行种炉膛差压值控制在0.2--0.8KPa,当炉膛差压值越高,循环灰量过大时,可通过从返料器底部放循环灰来调节。 炉膛负压是反映炉内压力大小参数,但大家在理解负压这个概念时,常常会和炉内绝对压力混淆,其实两者都是反映炉内压力情况的参数,但测量基准是不一样的,得到的结果也是相反的!压力的表示方法有两种:一种称绝对压力(也可理解为真实压力),它是以绝对真空为测量起点得到的压力值。另一种称为相对压力,它是以当地大气压力为测量起点得到的压力值。相对压力又分为表压力和负压值(真空

电磁感应加热

电磁感应加热 一、前言网络的普及,及物流运输业的发展,传统行业的地区性慢慢打破,用户通过网络可以寻找更多的提供商,随着近几年物价的上涨,人工费的上涨,而市场竞争越来越激烈,产品利润越来越低,热加工企业生存压力越来越大,怎样降低产品成本,提高产品的竞争力,是每个企业面临的一个核心问题。随着电磁加热技术的出现以及这几年的实际应用,大量的数据证明,通过电磁加热节能改造后的机器设备,生产效率、产品质量、节省能源方面大大优于传统电阻丝加热的模式。传统的加热方式存在的主要问题:塑料行业,如吹膜机、拉丝机、注塑机、造粒机等生产企业的生产设备大部分是采用电热圈对料筒和模头进行加热,存在以下问题:目前在 1、热损失大: 绕制在料筒上的电阻丝加热圈内外都发热,而只有紧贴在料筒内面的热,大约50%传递到料筒上,同时,外面的热量,约50%散失到空气中,热损失大,传导在现有企业采用的加热方式,是由电阻丝绕制的加热圈,加热圈的内外双面均发热,其内面(紧贴熔胶筒部分)的热传导到溶胶筒上,而外面的热量大部分散失到空气中,造成电能的浪费。 2、车间环境温度上升:由于热量大量散失,周围环境温度升高,尤其是夏季对生产环境影响很大,现场工作温度甚至超过了

45℃,有些企业不得不采用空调降低温度,这又造成能源的二次浪费。 3、传统发热圈使用寿命短、维修量大:由于采用电阻丝发热,其加热温度长时间高达300多度,电阻丝容易因高温老化而烧断,常用电热圈使用寿命不长,多为6个月左右。因此,维修保养的工作量相对较大,而且更换的费用也相对很高。 4、由于车间内温度高,机器油温升高,大大缩短油封、油泵使用寿命,出现漏油和压力不稳定现象 二、电磁感应加热电磁感应加热节能系统,是将电磁感应加热原理应用于塑料、橡胶等行业的节能系统,替代塑料、橡胶等行业中电阻丝加热工艺的节能系统,它解决了塑料行业长期以来使用电阻加热方式进行塑料原料的熔融、混炼和塑化过程中所带来的热效率低,耗电量大和工作条件差的问题,填补了我国用感应加热方式替代电阻加热方式在塑料行业应用的空白。电磁感应加热原理: 科益热技术引进日本最新高频电磁感应加热技术开发出一种适合国内企业要求的新型高频电磁加热系统是通过电磁感应加热控制器把将220V或380V,50Hz的交流电转换成频率为20-40KHz 的高频高压电,当高速变化的高频高压电流流过线圈会产生高速变化的交变磁场,当磁场内的磁力线通过导磁性金属材料时会在金属体内产生无数的小涡流,使金属材料本身自行快速发热,从而加热金属材料料筒内的东西。同时,配合高效能的保温装置,

电磁感应加热

电磁感应加热 感应加热的性能与特点 与传统的加热方式(如火焰式加热)相比,感应加热具有如下的一些性能特点:具有精确的加热深度和加热区域,并易于控制;易于实现高功率密集,加热速度快,效率高,能耗小;加热温度高,加热温度易于控制;加热温度由工件表面向内部传导或渗透;采用非接触式加热方式,在加热过程中不易掺入杂质;工件材料烧损小,氧化皮生成少。 原理 感应加热方式是通过感应线圈把电能传递给被加热的金属工件,然后电能再在金属工件内部转化为热能,感应线圈与金属工件并非直接接触,能量是通过电磁感应传递的,因而,我们把这种加热方式称为感应加热。 感应加热所遵循的主要原理是:电磁感应、集肤效应、热传导。为了将金属工件加热到一定的温度,要求工件中的感应电流尽可能地大,增加感应线圈中的电流,可以增加金属工件中的交变磁通,进而增加工件中的感应电流。增加工件中感应电流的另一个有效途径是提高感应线圈中电流的频率,由于工件中的频率越高,磁通的变化就越快,感应电势就越大,工件中的感应电流也就越大。对同样的加热效果,频率越高,感应线圈中的电流就可以小一些,这样可以减少线圈中的功率损耗,提高设备的电效率。 在感应加热过程中金属工件内部各点的温度是在不断发生变化的,感应加热的功率越大,加热时间越短,金属工件表面温度就越高,工件中心部位的温度就越低。如果感应加热时间长,金属工件表面和中心的温度通过热传导而趋于均匀。 感应加热设备的选用是根据被加热工件的工艺要求和尺寸大小来决定的。根据被加热工件的材质、大小以及加热区域、加热深度、加热温度、加热时间等工艺要求,进行综合计算与分析,来确定感应加热设备的功率、频率和感应线圈等技术参数。 柔性陶瓷电加热 柔性陶瓷电加热设备是由柔性陶瓷电加热及其温度测量和控制设备组成,其是利用电能激发辐射能并进行加热的装置。当柔性陶瓷电加热器的陶瓷件材料(含涂料)具有高的远红外辐射性能、可充分发挥辐射加热的特点时称为远红外电加热器。 柔性陶瓷片电阻加热,它的原理是利用远红外辐射方式加热。用这种方法进行厚壁管的热处理时,热源先从加热元件向管子外壁辐射传热再从外壁表面向内壁传导热量,由于管道长度方向的热传递散热,使得内外壁产生较大的温差。管子径向远离加热源中心的部位(焊缝根部)的温度与管子表面温度相差较大。 如在对规格为420×70mm,长度为680mm的P22管子进行的内外壁温差的热处理过程中,以柔性陶瓷加热器进行加热,加热温度770℃,保温4h,加热宽度500mm。结果发现,平焊位置内外壁温差为50℃,仰焊位置温差内外壁为30℃,这么大的内外壁温差很难保证

单相电压型全桥逆变电路及其simulink仿真(含开题报告)

电力电子技术课程设计单相电压型全桥逆变电路及其simulink仿真

开题报告 课题名称:单相电压型全桥逆变电路及其simulink仿真 完成时间: 指导老师:刘彬 (一)简要背景说明 随着电力电子技术的发展,逆变电路具有广泛的应用范围。交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分都是逆变电路。由于电压型逆变电路具有直流侧为电压源或并联大电容,直流侧电压基本无脉动;输出电压为矩形波,输出电流因负载阻抗不同而不同;阻感负载时需要提供无功功率,为了给交流侧向直流侧反馈的无功提供通道,逆变桥各臂并联反馈二极管等特点而具有广泛的应用范围。电压型逆变电路主要用于两方面:①笼式交流电动机变频调速系统。由于逆变电路只具有单方向传递电能的功能,故比较适用于稳态运行、无需频繁起制动和加、减速的场合。②不停电电源。该电源在逆变输入端并接蓄电池,类似于电压源。 图1 单相电压型全桥逆变电路

(二)研究的目的及其意义 在教学及实验基础上,设计单相电压型全桥逆变电路及其控制与保护电路,并通过使用simulink对课程中理论对电路进行仿真实现,进一步了解单相电压型全桥逆变电路的工作原理、波形及计算。 培养学生运用所学知识综合分析问题解决问题的能力。 在电力电子技术的应用中,逆变电路是通用变频器核心部件之一,起着非常重要的作用。逆变电路是与整流电路相对应,把直流电变成交流电的电路。逆变电路的基本作用是在控制电路的控制下将中间直流电路输出的直流电源转换为频率和电压都任意可调的交流电源。无源逆变电路的应用非常广泛。在已有的各种电源中,蓄电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,需要通过无源逆变电路;无源逆变电路与其它电力电子变换电路组合形成具有特殊功能的电力电子设备,如无源逆变器与整流器组合为交-直-交变频器(来自交流电源的恒定幅度和频率的电能先经整流变为直流电,然后经无源逆变器输出可调频率的交流电供给负载)。当电网提供的50 Hz 工频电源不能满足负载的需要,就需要用交-直-交变频电路进行电能交换。如感应加热需要较高频率的电源;交流电动机为了获得良好的调速特性需要频率可变的电源。 (三)研究的主要内容 1单相电压型全桥逆变电路的原理。 2单相电压型全桥逆变电路的结构。 3单相电压型全桥逆变电路及其控制电路、保护电路的设计(画出原理图,标明器件的选择)。 4完成单相电压型全桥逆变电路的数学模型的设计。 5建立simulink仿真系统进行建模,并对模型参数进行设置。 6仿真结果与分析。 (四)研究的主要方法和手段 首先建立单相电压型全桥逆变电路的电路拓扑图,在MATLAB中使用simulink工具箱建立相关控制模型,设置模型参数后,通过仿真得到电路的电压、电流结果,并对该结果进行分析。

基于KA3525的高频感应加热电源的设计

基于KA3525的高频感应加热电源的设计 【摘要】本文根据电流型PWM控制芯片KA3525的特点,并利用三星单片机S3F9454的辅助控制功能,设计了一种高频感应加热电源电路,并可实现输出功率可调。本文详细介绍了它的功率调整电路、主电路、控制电路等,并描述了它们的实现原理与方法。 【关键词】KA3525;三星单片机S3F9454;PWM;感应加热电源 0.引言 在当今工业生产中,很多地方都要用到中小功率的感应加热电源,例如对工件进行淬火、熔炼贵金属等。这类电源大多为并联谐振型电源,由电流源直接供电,通过直流侧的控制电路实现功率调节,即通过调节整流晶闸管的移相触发角来实现功率调节。这类电源在制作时需要消耗大量材料,入端功率因数低,包含比较大的平波电抗器,对电网也有较大的谐波干扰,效率低。因此,这类电源如今越来越不符合人们对具有高品质的感应加热电源的要求。本文就这一问题,设计出了一种容易实现、高品质的中小功率感应加热电源。 本文结合KA3525和三星单片机S3F9454的特点,研制出了一种基于KA3525并利用单片机辅助控制的高频感应加热电源。对高频感应加热电源的工作原理作了详细分析,并对它的功率调整电路、主电路、控制电路等作了主要阐述。 1.感应加热电源原理及总体结构 首先通过不控整流电路,将220V的交流电转换为脉动直流,再经过电容滤波得到平直的直流电压,然后通过高速V-MOS功率场效应管组成的桥式逆变电路,得到高频方波交流电压,利用变压器隔离实现阻抗匹配,将高频高压电变为低压大电流,从而对金属进行加热。 系统主要由七个部分组成: 不控整流电路:本文采用不控整流将220V的交流电变为不可调的直流电。 滤波电路:逆变谐振一般采用电容滤波,这里为减小体积,采用了电感,为防止电流冲击破坏电路,特在电路中设置了延迟环节。 桥式逆变电路:本文装置频率较高,必须采用高速V-MOS场效应管;由于单管电流容量受到限制,而场效应管具有易并联的特点,因此在满足耐压的前提下,采用多管并联方式来满足输出功率的要求。 高频变压器隔离:串联谐振一般Q值较大,谐振时,电压可达千伏以上,

加热炉开题报告

河北联合大学轻工学院河北联合大学轻工学院联合大学本科生毕业设计开题报告本科生毕业设计开题报告设计题目:题目:连续加热炉计算机集散控制系统——监控界面控制——监控界面控制学专班姓学部:信息科学与技术学部业:自动化级: 07 自动化一班名:王江波号: 200715180103 指导教指导教师:马翠红 2011 年 3 月 28 日选题背景含题目来源、应用性和先进性及发展前景等)背景 (一、选题背景(含题目来源、应用性和先进性及发展前景等)选择这个课题是受到我国钢铁工业的不断发展的影响,技术的更新能为其添加新的动力。首先连续加热炉为轧钢或锻造车间中小型钢坯或钢锭的加热设备。加热炉是将物料或工件加热的设备。按热源划分有燃料加热炉、电阻加热炉、感应加热炉、微波加热炉等。应用遍及石油、化工、冶金、机械、热处理、表面处理、建材、电子、材料、轻工、日化、制药等诸多行业领域。连续加热炉多数用于轧制前加热金属料坯,少数用于锻造和热处理。主要特点是:料坯在炉内依轧制的节奏连续运动,炉气在炉内也连续流动;一般情况,在炉料的断面尺寸、品种和产量不变的情况下,炉子各部分的温度和炉中金属料的温度基本上不随时间变化而仅沿炉子长度变化。钢在常温状态下的可塑性很小,因此在冷状态下轧制十分困难。通过加热提高钢的温度,可以明显提高钢的塑性,使钢变软,改善钢的轧制条件。一般说来,钢的温度愈高,其可塑性就愈大,所需轧制力就愈小。钢在加热过程中,往往由于加热操作不好,加热温度控制不当以及加热炉内气氛控制不良等原因,使钢产生各种加热缺陷,严重地影响钢的加热质量,甚至造成大量废品和降低炉子的生产率。因此,必须对加热缺陷及其产生的原因、影响因素以及预防或减少缺陷产生的办法等进行分析和研究,以期改进加热操作,提高加热质量,从而获得加热质量优良的产品。可见对加热过程进行监控,使其操作自动化的重要性, 随着工业自动化水平的迅速提高,计算机在工业领域的广泛应用,人们对工业自动化的要求越来越高,种类繁多的控制设备和过程监控装置在工业领域的应用,使得传统的工业控制软件已无法满足用户的各种需求。在开发传统的工业控制软件时,当工业被控对象一旦有变动,就必须修改其控制系统的源程序,导致其开发周期长;已开发成功的工控软件又由于每个控制项目的不同而使其重复使用率很低,导致它的价格非常昂贵;在修改工控软件的源程序时,倘若原来的编程人员因工作变动而离去时,则必须同其他人员或新手进行源程序的修改,因而更是相当困难。工业自动化组态软件 wincc 集生产自动化和过程自动化于一体,实现了相互之间的整合的出现为解决上述实际工程问题提供了一种崭新的方法,因为它能够很好地解决传统工业控制软件存在的种种问题,使用户能根据自己的控制对象和控制目的的任意组态,完成最终的自动化控制工程。与此同时一个典型的 dcs 控制系统(distributed control system)是以微处理器为基础的对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统,简称 dcs 系统。该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人-机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。dcs 系统在现代化生产过程控制中起着重要的作用。 dcs 控制系统与常规模拟仪表及集中型计算机控制系统相比,具有很显著的特点。 1、系统构成灵活。从总体上看,dcs 就是由各个工作站通过网络通信系统组网而成的。你可以把他现象成“因特网”。根据生产需求,你可以随时加入或者撤去工作站。系统组态很灵活。 2、操作管理便捷。dcs 的人机反馈都是通过 crt 跟键盘、鼠标等实现的。你可以想象成在因特网冲浪一样,你可以监视生产装置乃至整个工厂的运行情况。 3、控制功能丰富。原先用模拟控制回路实现的复杂运算,通过高精度的微处理器来实现。难道还有什么算法 cpu 实现不了的吗?! 4、信息资源共享。你可以把工作站想象成因特网上的各个网站,只要你在 dcs 系统中,并且权限够大,你

感应加热电源发展趋势

感应加热电源的发展水平与半导体功率器件的发展密切相关,因此随着功率器件在性能上的不断完善,使得感应加热电源的发展趋势也呈现出以下几个方面的特点。 (1)大功率 电力半导体器件的大功率与其使用频率有着极密切的关系。早期的晶闸管由于受到容量与频率互相制约的影响,不能达到同时获得大功率、高频率的效果。随着新型器件的发展,如MOSFET、IGBT、MCT等,将来的感应加热电源必将朝着大功率和高频率两者相统一的方向发展,在这方面仍有许多技术需要进一步研究[22]。 (2)低损耗、高功率因数 新型功率器件的通态电阻很小,通态压降小,所以损耗首先表现在基极或者门极驱动电路的损耗上。随着功率器件的发展,再加上驱动电路的不断完善和优化,使得整个装置的损耗明显降低。另外,由于感应加热电源一般功率都很大,随着对电网无功要求的提高,具有高功率因数的电源是今后的发展趋势。目前谐振技术的引入,一方面降低了电源中开关器件的开通和关断损耗,同时利用锁相技术将逆变器的工作频率锁定在负载的固有谐振频率内,使得该电源始终运行在功率因数接近1.0的状态[23]。 (3)应用范围扩大化 采用感应加热方法对锻造钢坯透热,节水节电且无污染;在铸造熔炼方面可以实现普通钢、特种钢、非铁金属材料的精细熔炼,同时可提高效率、无污染且金属成分可控;用于焊接时效率高,对被焊母材无损伤,适用于精度高、批量大的工件和大体积母材的局部焊接及各类金属管材的焊接;各类零部件的表面热处理也大量采用感应加热方法;钢塑材料制造、铝塑薄膜加工以及食品工业、医药工业的封口工艺也大量采用感应加热方法[24]。 (4)集成化、智能化 集成化、智能化主要是针对感应加热电源的控制部分,采用智能化的集成电路将使元器件数量减少,可以降低成本,电路本身具有的诊断与保护等功能也提高了可靠性。随着感应加热生产线自动化控制程度及电源可靠性的提高,感应加热电源正朝着智能化、集成化控制方向发展,高度集成化以及全数字化感应加热电源正成为下一代发展目标。神经网络与模糊控制是当前两种主要的智能控制技术,它们既有共性又有互补性,两者的结合成为当今智能控制领域的研究热点[25]。 1

开题报告

嘉兴学院毕业论文(设计)开题报告 题目:8万环锭2800头转杯纺棉纺工厂设计 学院名称:材料与纺织工程学院专业班级:纺织081 学生姓名:叶明琦 一、选题的背景、意义 防水透湿织物(Waterproof & Moisture Permeable Fabric) 通常也叫防水透气织物,国外一般称之为Waterproof but Breathable Fabric ( 可呼吸织物) 。防水透湿织物是指具有使水滴(或液滴) 不能渗入织物,而人体散发的汗气能通过织物扩散传递到外界, 不致在衣服和皮肤间积累或冷凝,感觉不到发闷现象的功能性织物。用防水透湿织物制作的服装能满足寒冷、雨雪、大风等恶劣天气中的穿着需要,且在较大劳动强度下也能排汗透湿,穿着舒适,还能在化学、有毒及传染环境中起到隔绝、过滤和透湿作用。因此,美国、西欧、日本等经济和军事发达国家均把防水透湿织物列为面向21 世纪的高科技产品,投入大量物力、财力进行研究开发,并陆续用到恶劣条件下的防护服、运动服和休闲服等方面。国内也有许多科研院所在研究开发此类产品。,防水透湿服装发挥了重要作用,因而具有广阔的发展前景。 人类早期的防水透湿织物一般只有防水功能却不透湿,由于人体散发的汗蒸汽不能及时通过织物扩散或传导到外界而积聚在体表和织物之间,由此产生湿冷感,促使人们着手研究能防水且透湿的织物。最早的防水透湿织物据说是20 世纪40 年代初由英国Shirley 锡莱研究所设计的著名文泰尔(Ventel) 防雨布,它的出现标志着防水透湿织物正式走向市场。 人们已成功地将矛盾的防水和透湿性能集于一种织物之中,巧妙地将防水透湿织物的设计与纺织品转移水蒸气及液态水的机理密切结合起来。根据不同的机理,开发了许多防水透湿织物,概括起来主要有以下3 种类型 1、利用孔隙自然扩散的机理设计具有防水透湿功能的高密织物; 2、利用微孔机理设计的微孔膜防水透湿涂层织物; 3、利用高分子间“孔”和亲水基团透湿机理设计的无孔膜防水透湿织物。 随着科技的进步, 人们在利用以上3 种机理取长补短制造新的防水透湿织物的同时, 正在产品

感应加热原理及应用

感应加热原理及应用 1.电磁感应原理 1831年,英国物理学家faraday发现了电磁感应现象,并且提出了相应的理论解释。其内容为,当电路围绕的区域内存在交变的磁场时,电路两端就会感应出电动势,如果闭合就会产生感应电流。 利用高频电压或电流来加热通常有两种方法: (1)电介质加热:利用高频电压(比如微波炉加热) (2)感应加热:利用高频电流(比如密封包装) 2.电介质加热(dielectric heating) 电介质加热通常用来加热不导电材料,比如木材。同时微波炉也是利用这个原理。原理如图1: 图1 电介质加热示意图 当高频电压加在两极板层上,就会在两极之间产生交变的电场。需要加热的介质处于交变的电场中,介质中的极分子或者离子就会随着电场做同频的旋转或振动,从而产生热量,达到加热效果。 3.感应加热(induction heating) 感应加热原理为产生交变的电流,从而产生交变的磁场,再利用交变磁场来产生涡流达到加热的效果。如图2: 图2 感应加热示意图 皕赫国际贸易(上海)有限公司 TEL: +86 (0)21 60896520

皕赫国际贸易(上海)有限公司 TEL: +86 (0)21 60896520 基本电磁定律: 法拉第定律:d e N dt φ= 安培定律:Hdl NI ?= 其中:BdS φ=?,0r B u u H = 如果采用MKS 制,e 的单位为V ,?的单位为Wb ,H 的单位为A/m ,B 的单位为T 。 以上定律基本阐述了电磁感应的基本性质, 集肤效应: 当交流的电流流过导体的时候,会在导体中产生感应电流(如图3),从而导致电流向导体表面扩散。也就是导体表面的电流密度会大于中心的电流密度。这也就无形中减少了导体的导电截面,从而增加了导体交流电阻,损耗增大。工程上规定从导体表面到电流密度为导体表面的1/e =0.368的距离δ为集肤深度。 在常温下可用以下公式来计算铜的集肤深度: δ= 式(1) 图3 涡流产生示意图 从以上可以看到,如果增大电流和提高频率都可以增加发热效果,是加热对象快速升温。所以感应电源通常需要输出高频大电流。 参考文献:fundalmentals of power electronics, R.W.Erickson (讲义) TPIH2500 Textbook Tetra Pak Technical Training Centre 三 感应加热电源常见框图结构和控制方法 1.感应加热电源常见框图

感应炉综述

1、前言 虽然感应加热的原理发现的比较早,但人类真正广泛应用该项技术还是近三十年的事情。现在它的重要性越来越被人们所认识。 早在十九世纪科学家就发现了电磁感应现象:1831年法拉第(Michael Faraday)发现电磁感应规律;1868年福考特(Foucault)提出涡流理论;1840年焦耳-楞茨确定了电阻发热的关系式,,这些都是感应加热的理论基础。 感应加热装置由两部分组成,一部分是提供能量的交流电源,也称变频电源,变频电源有低频、工频、中频、超音频和高频之分;另一部分是完成电磁感应能量转换的感应线圈及机械结构,称感应炉。早期的感应加热电源有工频固态(50或60Hz)电源、中频有发电机旋转和固态电源、高频电子管电源。第二次世界大战前后的感应加热设备基本上是上述的初级发展水平。 制约感应加热发展的主要是感应加热电源,而电源受制于高频或大功率的开关器件。电力电子功率器件的发展,才真正促进了感应加热电源的发展。1957年美国研制出世界上第一只普通的阻断型可控硅,我们现在称为晶闸管(SCR),经过60至70年代工艺完善和产品开发,70年代后期已形成从低电压小电流到高压大电流的系列产品,从而使固态感应加热电源产生了革命,走向实用化的阶段。与此同时,世界各国研制了大量的派生器件。如逆导晶闸管(RCT),门极辅助关断晶闸管(GATT),光控晶闸管(LTSCR)、及80年代发展的可关断晶闸管(GTO)等。 今天的电力半导体功率器件的发展更是琳琅满目,简单归纳一下有:①、大功率二极管:②、晶闸管(SCR);③、双向晶闸管;④、门极关断(GTO)晶闸管(最大 8500V ,3500A);⑤、双极结型晶体管(BTT或BPT);⑥、电力MOSFET;⑦、静电感应晶体管(SIT),(最大1000V ,300A,50MHz);⑧、绝缘双极型晶体管(IGBT)(最大6500V,2500A);⑨、MOS控制晶闸管(MCT);⑩、集成门极换向晶闸管(IGCT)。这些器件还正在不断更新和完善中,这些电力半导体器件是现代电力电子设备的核心,更是感应加热电源赖以发展的基础。它为感应加热电源设备带来前所未有的活力和广阔的发展前景。 2、感应加热应用范围和优越性 感应加热的历史,算起来也不过一百多年,在我国大规模应用是在改革开放以后,但发展前景非常看好。 1890年瑞典人发明了第一台感应炉---开槽式有心炉。1916年美国人制

30kw电磁感应加热控制系统

30KW电磁感应加热控制系统 使 用 说 明 书

30KW电磁感应加热控制系统 一、概述 电磁加热器,是现今工业领域和民用设备中最广泛的一种加热方式,采用电磁加热,杜绝了明火在加热过程中的危害和干扰,采用电磁场在被加热够工件表面形成涡流的方式来加热,是一种环保,国家提倡的加热方案。电磁加热器将220V/380V,50/60Hz的交流电经整流电路整流变成直流电,再经过控制电路将直流电转换成频率为20-40KHz的高频高压电,高速变化的高频高压电流流过线圈会产生高速变化的交变磁场,当磁场内的交变磁力线通过导磁性金属(铁、钴、镍)材料时会在金属体内产生无数的小涡流,使金属材料本身自行高速发热,从而达到加热金属材料的目的。因为电磁加热圈本身并不发热,而且是采用绝缘材料和高温电缆制造,所以不存在着像原电热圈的电阻丝在高温状态下氧化而缩短使用寿命的问题,具有使用寿命长、升温速率快、无需要维修等优点,减少了维修时间,降低了成本。现已被广大的企业使用,大大的降低了企业的生产成本。 二、应用范围 1、塑料橡胶行业,如:塑料用吹膜机、拉丝机、注塑机,造粒机,橡胶用 挤出机、硫化机、电缆生产挤出机等。 2、医药化工行业,如:医药专用输液袋、塑料器材生产线,化工行业液体 加热输送管道等等。

3、能源、食品行业,如:原油输送管道的加热;食品机械,如:超货机等需要电加热的设备。 4、大功率商用电磁灶机芯。 5、建材行业,如:燃气管生产线、塑料管材生产线、PE塑料硬质平网、土工网机组、自动中空成型机、PP挤出透明片材生产线、挤出聚苯乙烯发泡管材、PE缠绕膜机组。 6、印刷设备里的干燥加热。 7、其它类似行业加热。 三、技术参数 产品电气规格 1、额定电压频率:AC 380V / 50Hz 2、电压适应范围:310V~440V 3、额定功率:30KW (30~100%可调) 环境适应能力 1、温度:-20℃~50℃; 2、湿度:≤95% 基本性能概述 1、电流与电压特性:恒流输出;

相关主题
文本预览
相关文档 最新文档