当前位置:文档之家› 一种基于能量的水印嵌入和提取算法及实现

一种基于能量的水印嵌入和提取算法及实现

龙源期刊网 https://www.doczj.com/doc/de17561860.html,

一种基于能量的水印嵌入和提取算法及实现作者:李洋

来源:《电子技术与软件工程》2015年第09期

摘要本文采用了一种基于能量关系的嵌入算法,在 Visual C++ 6.0开发环境下利用该算法实现了数字水印的嵌入和提取,并对嵌入、提取前后的图像分析后发现该水印算法的不可见性较差,并对该问题进行了分析。

【关键词】数字水印盲检测 DCT

1 引言

为实现在水印检测算法中仅用到加载水印后的图像就能检测出水印的存在和水印所含的信息,许多学者提出基于关系的嵌入方式。目前已采用的关系主要包括:块内DCT系数间的关系(主要是直流和交流系数关系),块间、通道间(对于彩色图像是RGB三通道)DCT系数间的关系,各频带能量关系,位置和量化系数奇偶关系等等。本文采用的水印嵌入算法是基于能量关系的嵌入算法。

2 基于能量关系的水印系统的基本结构

水印嵌入过程为:首先将载体图像I的像素分成8×8的像素块,然后对每块进行二维DCT 变换得到DCT系数,再根据基于能量关系的水印嵌入算法,选择DCT块及块中的DCT系数遵循一定规则进行修改,从而将水印信息W嵌入到载体图像中。之后再进行IDCT变换,就

得到了含水印的图像。

水印系统的水印提取过程为:先将含水印的图像进行DCT变换,再根据水印提取算法,提取水印信息W,再将水印信息W转换为水印图像像素的RGB值,从而最终得到水印图像M。提取过程中不需要载体图像,实现了盲检测。

3 算法简介

基于能量的嵌入算法是一种利用DCT系数块不同区域能量关系的水印嵌入方案。首先同非自适应加性嵌入算法选取DCT块的方法一样选取DCT块,然后从选取的8×8 DCT系数块

的中频部分取出三个区域。

嵌入算法的基本思想如下:

输入:载体图像,水印图像

输出:含水印图像

基于DCT图像数字水印技术研究的开题报告

毕业设计开题报告 基于DCT的图像数字水印技术的研究

基于DCT的图像数字水印技术研究 国内外研究现状: 20世纪80年代,索尼和菲利浦公司首次提出了数字媒体版权保护的方案SCMS(Serial copy management system),数字水印技术也是在继数字隐藏技术后提出的一种数字媒体版权保护方案,发展到现在不仅仅局限于版权保护,也延伸到商务交易中的票据防伪、声像数据的隐藏标识和篡改提示、隐蔽通信及其对抗等领域。随着电子政务的广泛应用,其安全性问题也日益突出,电子政务所涉及的相当多的信息都带有机密性,除黑客攻击.病毒感染等来自网络的安全威胁外,也易受到来自系统应用的假冒用户登录、非法篡改等数据安全的威胁。我国现有的电子政务网络基础设施和系统安全解决方案大多是通过防火墙、入侵检测、漏洞扫描、网络隔离等技术和设备来保障系统的安全,这在一定程度上可以保证电子政务信息系统的安全,但仍存在着安全漏洞,我们在电子政务的建设中,除了必要的网络安全技术外,还必须重视对数字信息安全认证的问题。 数字水印技术为上述问题提供了一个有效的解决方案,是目前多媒体信息安全研究领域的一个热点。该技术采用信息处理技术把版权信息、认证信息等秘密信息,即水印,嵌入到原始数据中去,但不影响原内容的价值和使用,水印信息可以是产品的序列号、版权所有者的标志等认证信息。通过特定的算法恢复和检测被嵌水印后,可有效地分析信息失真的情况,判断信息是否被篡改,为版权所有者提供信息被盗版的有利证据。因此,一个实用的数字水印技术必须具有较强的鲁棒性、安全性和不可见性。 所谓数字水印技术,就是将代表数字媒体著作权人身份的特定信息、用户指定的标志或序列码等,按照某种方式嵌入被保护的信息中,在产生版权纠纷时,通过相应的算法提取出该数字水印,从而验证版权的归属,确保媒体著作权人的合法利益,避免非法盗版的威胁。被保护的信息是任何一种数字媒体,如软件、图像、音频、视频或一般性的电子文档等。数字水印是嵌在数字产品中的数字信号,水印的存在要以不破坏原数据的欣赏价值、使用价值为原则。

LSB数字水印算法

一.数字水印 数字水印技术 数字水印技术(Digital Watermark):技术是将一些标识信息(即数字水印)直接嵌入数字载体(包括多媒体、文档、软件等)当中,但不影响原载体的使用价值,也不容易被人的知觉系统(如视觉或听觉系统)觉察或注意到。目前主要有两类数字水印,一类是空间数字水印,另一类是频率数字水印。空间数字水印的典型代表是最低有效位(LSB)算法,其原理是通过修改表示数字图像的颜色或颜色分量的位平面,调整数字图像中感知不重要的像素 来表达水印的信息,以达到嵌入水印的目的。频率数字水印的典型代表是扩展频谱算法,其原理是通过时频分析,根据扩展频谱特性,在数字图像的频 率域上选择那些对视觉最敏感的部分,使修改后的系数隐含数字水印的信息。 可视密码技术 二.可视密码技术:可视密码技术是Naor和Shamir于1994年首次提出 的,其主要特点是恢复秘密图像时不需要任何复杂的密码学计算,而是以人的视觉即可将秘密图像辨别出来。其做法是产生n张不具有任何意义的胶片,任取其中t张胶片叠合在一起即可还原出隐藏在其中的秘密信息。其后,人们又对该方案进行了改进和发展。主要的改进办法办法有:使产生的n张胶片都有一定的意义,这样做更具有迷惑性;改进了相关集合的造方法;将针对黑白图像的可视秘密共享扩展到基于灰度和彩色图像的可视秘密共享。 三. 数字水印(Digital Watermark或称Steganography)技术是指用信号处理的方法在数字化的多媒体数据中嵌入隐蔽的标记,这种标记通常是不可见的,只有通过专用的检测器或阅读器才能提取。数字水印是信息隐藏技术的一个重要研究方向。 数字水印技术源于开放的网络环境下保护多媒体版权的新型技术,它可验证数字产品的

数字图像处理在数字水印中的应用

数字图像处理课程报告——图像处理在数字水印中的应用 姓名:蒋运文 学号:12212842 专业:通信与信息系统 指导老师:沈伟教授 2013.06

一、研究背景及意义 数字图像处理方法的研究源于两个主要应用领域:其一是为了便于人们分析而对图像信息进行改进,其二是为使机器自动理解而对图像数据进行存储、传输及显示。 数字图像处理技术已经在各个领域上都有了比较广泛的应用,图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大,本文主要介绍数字图像处理技术在信息安全领域的数字水印中的应用。 在信息安全领域,数字图像还承担着作为法庭证据的责任,其真实性和完整性直接影响到执法结果,随着互联网的发展,人们越来越容易从互联网上获取数字多媒体信息,而与此同时,数字多媒体信息 的版权、保密等问题也变得日益突出起来。本文在介绍数字水印技术的相关概念、特点和分类的基础上,分析了实现数字水印的步骤,并对数字图像处理技术在数字水印中的应用进行了研究。 人们由于不同的应用需求造就了不同的水印技术,数字水印技术则是其中最新的一种,数字水印是把主要内容隐藏在图像,声音中,水印与内容结合在一起。这大大改善了传统水印的肉眼即可分辨性,数字水印在不同的环境同时也具有不同的特征性质,它还能够被特定的机器所识别,正是其具有的这些优点,越来越多的各个领域的人们开把把眼光看向它。数字图像水印可以用于鉴别信息真伪、认证身份、图像保护、版权保护、隐藏信息、以及做标记等等方面。数字图像不

仅包含信息量大,而且其传输和处理极其方便,成为人们获得信息的一种重要来源,所以数字图像水印也是应用得非常广泛的一项技术。 二、数字水印的衡量标准 安全性:数字水印的信息应是安全的,难以篡改或伪造,同时,应当有较低的误检测率,当原内容发生变化时,数字水印应当发生变化,从而可以检测原始数据的变更;当然数字水印同样对重复添加有很强的抵抗性 隐蔽性:数字水印应是不可知觉的,而且应不影响被保护数据的正常使用;不会降质; 鲁棒性:是指在经历多种无意或有意的信号处理过程后,数字水印仍能保持部分完整性并能被准确鉴别。可能的信号处理过程包括信道噪声、滤波、数/模与模/数转换、重采样、剪切、位移、尺度变化以及有损压缩编码等。主要用于版权保护的数字水印易损水印(Fragile Watermarking),主要用于完整性保护,这种水印同样是在内容数据中嵌入不可见的信息。当内容发生改变时,这些水印信息会发生相应的改变,从而可以鉴定原始数据是否被篡改。 三、数字水印的分类 数字水印的分类方法很多,下面按主要特征对其作一简单概述:从含水印图象中的水印是否可见分为可见水印和不可见水印两大类。当前学者们主要致力于研究不可见水印,即水印是不可被感知的,这也是本文的研究重点。为了保证水印嵌入引起的改变不被感知,需要

数字水印基本原理

介绍了数字水印技术的基本原理 随着信息技术和计算机网络的飞速发展,人们不但可以通过互联网和CD-ROM方便快捷地获得多媒体信息,还可以得到与原始数据完全相同的复制品,由此引发的盗版问题和版权纷争已成为日益严重的社会问题。因此,数字多媒体产品的水印处理技术已经成为近年来研究的热点领域之一。 虽然数字水印技术近几年得到长足发展,但方向主要集中于静止图像。由于包括时间域掩蔽效应等特性在内的更为精确的人眼视觉模型尚未完全建立,视频水印技术的发展滞后于静止图像水印技术。另一方面,由于针对视频水印的特殊攻击形式的出现,为视频水印提出了一些区别于静止图像水印的独特要求。 本文分析了MPEG-4视频结构的特点,提出了一种基于扩展频谱的视频数字水印改进方案,并给出了应用实例。 1视频数字水印技术简介 1.1数字水印技术介绍 数字水印技术通过一定的算法将一些标志性信息直接嵌入到多媒体内容当中,但不影响原内容的价值和使用,并且不能被人的感知系统觉察或注意到。与传统的加密技术不同,数字水印技术并不能阻止盗

版活动的发生,但可以判别对象是否受到保护,监视被保护数据的传播,鉴别真伪,解决版权纠纷并为法庭提供认证证据。为了给攻击者增加去除水印的难度,目前大多数水印制作方案都采用密码学中的加密体系来加强,在水印嵌入、提取时采用一种密钥,甚至几种密钥联合使用。水印嵌入和提取的一般方法如图1所示。 1.2视频数字水印设计应考虑的几个方面 ·水印容量:嵌入的水印信息必须足以标识多媒体内容的购买者或所有者。 ·不可察觉性:嵌入在视频数据中的数字水印应该不可见或不可察觉。·鲁棒性?押在不明显降低视频质量的条件下,水印很难除去。 ·盲检测:水印检测时不需要原始视频,因为保存所有的原始视频几乎是不可能的。 ·篡改提示:当多媒体内容发生改变时,通过水印提取算法,能够敏感地检测到原始数据是否被篡改。 1.3视频数字水印方案选择 通过分析现有的数字视频编解码系统,可以将目前MPEG-4视频水印的嵌入与提取方案分为以下几类,如图2所示。

基于Matlab的数字水印设计——基于DCT域的水印实现

摘要 数字水印(Digital Watermark)技术是指用信号处理的方法在数字化的多媒体数据中嵌入隐蔽的标记,这种标记通常是不可见的,只有通过专用的检测器或阅读器才能提取。数字水印是信息隐藏技术的一个重要研究方向。随着数字水印技术的发展,数字水印的应用领域也得到了扩展,数字水印的基本应用领域是版权保护、隐藏标识、认证和安全不可见通信。 当数字水印应用于版权保护时,潜在的应用市场在于电子商务、在线或离线地分发多媒体内容以及大规模的广播服务。数字水印用于隐藏标识时,可在医学、制图、数字成像、数字图像监控、多媒体索引和基于内容的检索等领域得到应用。数字水印的认证方面主要ID卡、信用卡、ATM卡等上面数字水印的安全不可见通信将在国防和情报部门得到广泛的应用。 本文主要是根据所学的数字图象处理知识,在MATLAB环境下,通过系统编程的方式,建立并实现基于DCT域的数字水印加密系统。该系统主要包含数字水印的嵌入与提取,仿真结果表明,数字水印算法具有有效性、可靠性、抗攻击性、鲁棒性和不可见性,能够为数字媒体信息在防伪、防篡改、认证、保障数据安全和完整性等方面提供有效的技术保障。 关键词:数字水印;MATLAB;DCT

目录 1 课程设计目的 (1) 2 课程设计要求 (2) 3 数字水印技术基本原理 (3) 3.1 数字水印基本框架 (3) 3.2 算法分类 (3) 3.2.1 DCT法 (4) 3.2.2 其他方法 (4) 3.3 实际需要考虑的问题 (4) 3.3.1 不可见性 (4) 3.3.2 鲁棒性 (5) 3.3.3 水印容量 (5) 3.3.4 安全性 (5) 4 基于DCT变换仿真 (6) 4.1 算法原理 (6) 4.1.1 准备工作 (6) 4.1.2 选取8*8变换块 (7) 4.1.3 边界自适应 (7) 4.1.4 DCT变换与嵌入 (7) 4.1.5 恢复空域 (8) 4.2 嵌入算法扩展 (8) 4.2.1 RGB彩色图像三个矩阵的划分 (8) 4.2.2 八色彩色水印 (8) 4.3 水印的提取 (9) 4.4 仿真程序 (9) 5 结果分析 (14) 结束语 (16) 参考文献 (17)

基于MATLAB的数字水印算法实现

数字水印作为一门新的学科, 自 1993 年 Tirkel 等人正式提出到现在十几年里, 国内外对数字水印的研究都引起了极大的关注, 从最初的版权保护, 已扩展到多媒体技术, 广播监听, in-ternet 等多个领域。数字水印是永久镶嵌在其他数据( 主要指宿主数据) 中具有可鉴别性的数字信号或数字模式, 其存在不能影响宿主数据的正常使用。为了使数字水印技术达到一定的设计要求, 当前水印数据一般应具备不可感知性(imperceptible) 、鲁棒性(Robust) 、可证明性、自恢复性和安全保密性等特点。在数字水印技术中, 水印的数据量和鲁棒性构成了一对基本矛盾。理想的水印算法应该既能隐藏大量数据, 又可以抗各种信道噪声和信号变形。然而在实际中, 这两个指标往往不能同时实现, 实际应用往往只偏重其中的一个方面。如果是为了隐蔽通信, 数据量显然是最重要的, 由于通信方式极为隐蔽, 遭遇敌方篡改攻击的可能性很小, 因而对鲁棒性要求较为不高。但对保证数据安全来说, 情况恰恰相反, 各种保密的数据随时面临着被盗取和篡改的危险, 对鲁棒性的要求很高, 而对隐藏数据量的要求则居于次要地位。典型的数字水印系统至少包含两个组成部分- - 水印嵌入单元和水印检测与提取单元。将水印信息进行预处理后加入到载体中, 称为嵌入。从水印化数据中提取出水印信息或者检测水印信息的存在性称为水印的提取和检测。数字水印算法主要

是指水印的嵌入算法, 而提取算法往往被看成是嵌入算法的逆变换。 当前典型的嵌入算法主要被分为空间域水印算法和变换域水印算法。DCT 变换域算法是数字水印算法的典型代表, 也是数字水印中较为常用的一种稳健的算法。其算法思想是选择二值化灰度图像作为水印信息, 根据水印图像的二值性来选择不同的嵌入系数, 并将载体图像 ( 原始图像) 进行 8×8 的分块, 再将灰度载体图像( 原始图像) 进行 DCT变换。然后, 将数字水印信息的灰度值直接植入到载体灰度图像的 DCT 变换域中, 实现水印的嵌入。而后, 将嵌入了水印信息灰度图像进行 IDCT( 逆离散的余弦变换) 变换, 得到含有了嵌入水印信息的图像, 嵌入过程完毕。水印的提取、检测过程为嵌入过程的逆过程, 其方法和嵌入方法有所雷同不再进行介绍。 下面以 MATLAB 为工具, 给出一个在频域嵌入和提取黑白二值水印图像的实现过程。(1) 水印图像的预处理: 将水印信息图像进行灰度处理, 然后再将转换后的图像进行二值转换。而这些都是为了提高水印信息的安全性对图像所做的处理。(2) 读取原始公开图像(大小为 256×256) 和黑白水印图像(大小为 32×32, 模式为灰度) 到二维数组 I 和 J。(3) 将原始公开图像I 分割为互不覆盖的图像块, 每块大小为 8×8, 共分为 32×32 块。然后对分割后的每个小块Block- dct(x,y) 进行 DCT 变换, 得到变换后的小块 Block-dct(x, y)。(4) 取黑白水印图像中的一个元素 J(p, q) , 通过嵌入算法嵌入到原始公开图像块的中频系数中。(5) 对嵌入水印信息后的图像块Block- dct (x, y) 进行逆DCT 变换, 得到图像块 Block(x′, y′)。

彩色图像数字水印嵌入和提取模型研究

彩色图像数字水印嵌入和提取模型研究 (信阳师范学院计算机与信息技术学院,河南信阳464000) 将DCT和DWT相结合,提出了基于DWT和DCT的彩色图像版权保护数字水印模型。该模型根据离散小波变换中低频子图的人类视觉特性,用自适应方法选择色彩通道,用Logistic混沌加密方法预处理数字水印的图像,在离散小波变换的低频域进行离散余弦变换的去相关性,且用子采样技术调整对应子图间系数的大小相对性,实现数字水印的盲提取。 标签:Logistic混沌加密;水印嵌入;盲提取 在网络技术快速发展的今天,数字信息的版权保护问题,特别是彩色图像版权保护问题是摆在眼前,迫切需要解决的问题,而数字水印技术是解决这类问题的最有效和最具有潜力的技术之一。 数字水印技术主要分为嵌入和提取两部分,后者也是水印技术的一个极其重要的组成部分,因为数字水印技术的关键之处就在于能否正确有效地提取出嵌入到图像中的水印信息,这在证明数字图像的合法所有权方面起着非常重要的作用。近年来,由于需要原始图像的非盲水印提取技术在实际应用中具有很多困难,并且一些学者认为在水印提取中不使用原始图像是解决版权问题的前提,因此,无需原始图像的盲提取技术己成为数字水印研究中的焦点之一,具有更加广阔的应用前景。现在的水印算法主要集中在变换域算法上,最常见的就是基于DCT 的水印算法或者基于DWT的水印算法,而它们两个又分别是JPEG和JPEG-2000图像压缩标准的理论基础。 1 水印嵌入 文献[1]是DCT域的子采样盲水印算法,本文将该文献算法的系数选择加以改进,并加入色彩选择自适应机制,然后应用于离散小波低频域,解决离散小波低频域嵌入水印不可见性差的特点,提出了基于DWT和DCT的彩色图像数字水印嵌入和提取模型。 定义原始图像尺寸为M*N的RGB彩色图像,记为X;水印图像尺寸为K*K 有意义的二值图像(含版权相关信息),记为W。 基于DWT和DCT的彩色图像版权保护数字水印模型表示为: YEmbed(X,W,Key)。 其中,Y表示嵌入水印后重构图像;X表示原始彩色图像;W表示二值水印图像;Key为水印密钥。

一种多重水印嵌入的解决方案研究

DOI:CNKI:11-4415/P.20101119.1814.020 网络出版时间:2010-11-19 18:14 网络出版地址:https://www.doczj.com/doc/de17561860.html,/kcms/detail/11.4415.p.20101119.1814.020.html 一种多重水印嵌入的解决方案研究 李强①②,闵连权①,何宏志②,杨永强② (①信息工程大学测绘学院,郑州450052;②69027部队,乌鲁木齐830006)【摘要】由于矢量地图数据易于复制、分发等特点,同时矢量地图的制作成本高、安全性要求高 等,使得用近年来新兴的数字水印技术对矢量地图数据进行保护,成为一个新的重要的研究方向。 本文针对矢量地图数据的多重水印嵌入这一难题,提出了一种通过水印嵌入时生成附加信息的方式 来进行水印多重嵌入的解决方案,并通过使用作者提出的抗道格拉斯压缩算法进行了实验,取得了 较好的效果。 【关键词矢量地图数据;多重水印;嵌入;方案 【中图分类号】TP391.41 【文献标识码】A 【文章编号】1009-2307(2011)02- - A solution research on multiple watermark embedding Abstract:The vector map data is easy to duplicate and distribute, its production cost and the safety requirements are high, so protecting the vector map data with digital watermark technology becomes a new important research direction. This article studied the problem of multiple watermark embedding of the vector map data, proposed a multiple watermark embedding solution through the generation of additional information when watermark embedding, and carried out an experiment through anti-Douglas algorithm, and finally achieved good results. Key words:vector map data; multiple watermark; embedding; solution LI Qiang①②, MIN Lian-quan①, HE Hong-zhi②, YANG Y ong-qiang②(①Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450052, China; ②Troops 69027, Urumchi 830006, China) 1 引言 矢量地图数据在军事、旅游、导航等方面发挥了重要作用,在人类的社会、经济活动中应用越来越广泛。由于矢量地图数据易于复制、分发等特点,同时矢量地图数据的制作成本高、安全性要 求高等,使得用近年来新兴的数字水印技术对矢量地图数据进行保护,成为一个新的重要的研究方 向。当前,针对数字水印嵌入的研究主要是单重嵌入,即只能嵌入一次水印信息并进行提取,进行 多重水印嵌入时可能就提取不出水印信息,这就一定程度上限制了水印的使用范围,现在对多重水印 潜入研究极少。本文针对现实需求和实践总结,提出了一种通过水印嵌入时生成附加信息的方式实 现水印多重嵌入的解决方案。 2 矢量地图数据水印技术 2.1 矢量地图数据水印多重嵌入研究的意义和现状 矢量地图数据数字水印技术的研究意义在于标示地图数据的版权保护信息,在许多情况下,需要对嵌入水印后的地图数据再次或多次潜入水印信息,但不论是采用相同或不同的嵌入算法,经过 多重嵌入后的数据很难提取出水印信息,目前对这种水印多重嵌入的研究很少,特别是针对矢量地 图数据的水印多重嵌入研究更少。 现阶段水印嵌入的研究主要集中在单次嵌入算法的相关研究[2-4],即将水印信息单次嵌入到地图数据中,例如对于嵌入水印后的数据的下一级分发,没有一个好的解决方案,确保矢量地图数据的 安全,如果采取与上一级相同的水印嵌入方案,会引起数据精度的降低或者提取不出水印信息等问 题,如果采取与上一级不同的水印嵌入方案,一是在实践操作上存在可行性不高的问题,二是可能 也会引起数据精度的降低或者提取不出水印信息等问题。 2.2 矢量地图数据水印嵌入分析 1) 水印嵌入空间分析 矢量地图数据是通过分层存储来实现的,每层存储位置信息和属性信息等,位置信息一般用几何数据来表示,通过图元来描述目标的,基本的图元有点、线段、多边形,点是通过坐标惟一定义 的,线段是通过组成线段的一系列点定义的,多边形是由封闭的线段组成的。点的位置由平面坐标

数字水印算法介绍

数字水印算法列举 湖南科技大学计算机科学与工程学院 ①基于LSB 的数字水印方案(空间域、不可逆、不可见和盲检测) 嵌入步骤: (1)先把水印信息转化为二进制比特流I。 (2)根据I的长度生成密钥K,并且严格保存。密钥K是对图像载体像素位置的一个映射。 (3)把I中的每一位依次根据密钥K,置换掉原始载体图像中相应位置的像素最后一位。提取步骤: (1)根据严格保存的密钥K遍历嵌入了水印的图像中的相应像素,提取出最后一位。 (2)将提取出来的每一位重新组合成水印信息。 ②基于差分扩展的数字水印方案(变换域、可逆、不可见和盲检测) 嵌入步骤: (1)将图像M分成像素点对(x,y),将水印信息转化为二进制比特流,比特流的每一位用m 表示。 (2)根据水印信息比特流的长度随机生成信息的嵌入位置k作为密钥信息严格保存。(3)对图像M计算均值l和差值h:?????-=+=y x h y x floor l 2((floor表示向下取整) (4)将水印比特信息m以差值扩展的方法嵌入到差值h中:m h h +?='2(5)将得到的h '代入(3)中,得到新的图像像素对,形成嵌入秘密信息后的图像C。提取步骤: (1)将图像C分成像素点对(x,y),读入密钥信息K。 (2)将图像C依旧按照嵌入步骤中的(3)式计算均值l和差值h。 (3)根据密钥k找到相应位置,提取差值h的最后一位比特信息m,再将差值h进行变换得到1>>='h h 。 (4)将提取到的比特信息m进行组合可以恢复水印信息,将得到的h '代入嵌入步骤的(3)中计算新的图像像素对可以恢复原始图像载体M。 ③基于直方图修改的数字水印算法(空间域、可逆、不可见和盲检测) 嵌入步骤:(1)找到直方图的零点z和峰值点p,将z v p <<的像素值v自加1。 (2)漂移后的直方图v=p处即为嵌入水印的位置,将水印信息转化为二进制流并记为k,按顺序嵌入,即k v v +=';(3)得到的由像素值v '组成的图像就是嵌入秘密信息后的图像。同时p、z以密钥的形式保存。 提取步骤: (1)读取密钥,得到p、z的值。 (2)遍历图像的每个像素,当像素v=p时,提取信息0并保持数据不变;当v=p+1时,提取信息1并将数据减1。 (3)当vz时,数据保持不变;当p-1