当前位置:文档之家› 热设计讲座

热设计讲座

电子产品热设计、热分析及热测试

电子产品热设计、热分析及热测试培训 各有关单位: 随着微电子技术及组装技术的发展,现代电子设备正日益成为由高密度组装、微组装所形成的高度集成系统。电子设备日益提高的热流密度,使设计人员在产品的结构设计阶段必将面临热控制带来的严酷挑战。热设计处理不当是导致现代电子产品失效的重要原因,电子元器件的寿命与其工作温度具有直接的关系,也正是器件与PCB中热循环与温度梯度产生热应力与热变形最终导致疲劳失效。而传统的经验设计加样机热测试的方法已经不适应现代电子设备的快速研制、优化设计的新需要。因此,学习和了解目前最新的电子设备热设计及热分析方法,对于提高电子设备的热可靠性具有重要的实用价值。所以,我协会决定分期组织召开“电子产品热设计、热分析及热测试讲座”。现具体事宜通知如下 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 一、课程提纲:课程大纲以根据学员要求,上课时会有所调整,具体以报到时的讲义为准。 一、热设计定义、热设计内容、传热方法 1 热设计定义 2 热设计内容 3 传热方法简介 二、各种元器件典型的冷却方法 1 哪些元器件需要热设计

2 冷却方法的选择 3.常用的冷却方法及冷却极限各种元器件典型的冷却方法 4. 冷却方法代号 5 各种冷却方法的比较 三、自然冷却散热器设计方法 1 自然冷却散热器设计条件 2 热路图 3 散热器设计计算 4 多个功率器件共用一个散热器的设计计算 5 正确选用散热器 6 自然冷却散热器结温的计算 7 散热器种类及特点 8 设计与选用散热器禁忌 四、强迫风冷设计方法 1 强迫风冷设计基本原则 2 介绍几种冷却方法 3. 强迫风冷用风机 4. 风机的选择与安装原则 5 冷却剂流通路径的设计 6 气流倒流问题及风道的考虑 7 强迫风冷设计举例(6个示例) 五、液体冷却设计方法

热 设 计 讲 座

热设计讲座 (一)常用词汇和三种传热方式 热设计是设备开发中必不可少的环节。本连载将为大家讲解热设计中的常见词汇,然 后结合习题,学习三种传热方式及各种方式的作用,以及能够简化散热措施相关计算的“热欧姆定律”等。 关于“热”,最重要的定律是“能守恒定律”,因为热也是一种能量。热能出现后不会消失,只能转移到其他物体或转移成其他形式。也就是说,制造散热机构的目的,就是想办法让热尽快转移。水会蒸发但是不会消失,与热类似。下面就以水为例来解释热(图1)。水从水龙头中流出相当于发热,积存的水量(L)相当于热量(J),水位(m)相当于温度(K 或℃)。 图1:用水打比方,思考热的移动 从宏观来看,热是“能量的集合”,可以认为与水相同。热量的单位是“J(焦耳)”,温度(相当于水位)由单位时间产生的热能及其移动量决定,因此,热计算中主要使用的公式是热流量(J/s或W)。 根据能量守恒定律,能量是守恒的,但温度不守恒。守恒意味着加法成立,例如,1J 热量加上1J热量等于2J热量。但另一方面,就像容器改变大小后水位会发生变化一样,温度也会随状态改变,加法自然不成立。 根据守恒守恒定律,热能只能转移,因此,要想实现散热,就必须要把热释放出去。如果水龙头一直出水,容器(图1中的水箱A)的水位就会一直上升,最终灌满整个容器。而散热措施的作用,就是防止水位上升。因此,我们通过用管道将水箱A与其他容器(图1中的水箱B)连接的方法来放水。管道越粗,释放到水箱B里的水就越多,A的水位也就越低。这种对管道的控制就是热设计。 热设计中的常用词汇 电子产品中经常会用到“热阻”(K/W)这个词。在图1的示例中,连接A和B的管道越细,

热设计基础

热设计基础(一):热即是“能量”,一切遵循能量守恒定律 在开发使用电能的电子设备时,免不了与热打交道。“试制某产品后,却发现设备发热超乎预料,而且利用各种冷却方法都无法冷却”,估计很多读者都会有这样的经历。如果参与产品开发的人员在热设计方面能够有共识,便可避免这一问题。下面举例介绍一下非专业人士应该知道的热设计基础知识。 “直径超过13cm,体积庞大,像换气扇一样。该风扇可独立承担最大耗电量达380W的PS3的散热工作”。 以上是刊登在2006年11月20日刊NE Academy专题上的“PlayStation3”(PS3)拆解报道中的一句话。看过PS3内像“风扇”或“换气扇”一样的冷却机构,估计一定会有人感到惊讶。 “怎么会作出这种设计?” “这肯定是胡摸乱撞、反复尝试的结果。” “应该运用了很多魔术般的最新技术。” “简直就是胡来……” 大家可能会产生这样的印象,但事实上并非如此。 PS3的冷却机构只是忠实于基础,按照基本要求累次设计而成。既没有胡摸乱撞,也不存在魔术般的最新技术。

在大家的印象里,什么是“热设计”呢?是否认为像下图一样,是“一个接着一个采取对策”的工作呢?其实,那并不能称为是“热设计”,而仅仅是“热对策”,实际上是为在因热产生问题之后,为解决问题而采取的措施。 如果能够依靠这些对策解决问题,那也罢了。但是,如果在产品设计的阶段,其思路存在不合理的地方,无论如何都无法冷却,那么,很可能会出现不得不重新进行设计的最糟糕的局面。 而这种局面,如果能在最初简单地估算一下,便可避免发生。这就是“热设计”。正如“设计”本身的含义,是根据产品性能参数来构想应采用何种构造,然后制定方案。也可称之为估计“大致热量”的作业。 虽说如此,但这其实并非什么高深的话题。如果读一下这篇连载,学习几个“基础知识”,制作简单的数据表格,便可制作出能适用于各种情况的计算书,甚至无需专业的理科知识。 第1章从“什么是热”这一话题开始介绍。大家可能会想“那接下来呢”?不过现在想问大家一个问题。热的单位是什么? 如果你的回答是“℃”,那么希望你能读一下本文。 热是能量的形态之一。与动能、电能及位能等一样,也存在热能。热能的单位用“J”(焦耳)表示。1J能量能在1N力的作用下使物体移动1m,使1g的水温度升高0.24℃。

技术讲座--热设计基础

【技术讲座】热设计基础(一):热即是“能量”,一切遵循能量守恒定律 在开发使用电能的电子设备时,免不了与热打交道。“试制某产品后,却发现设备发热超乎预料,而且利用各种冷却方法都无法冷却”,估计很多读者都会有这样的经历。如果参与产品开发的人员在热设计方面能够有共识,便可避免这一问题。下面举例介绍一下非专业人士应该知道的热设计基础知识。 “直径超过13cm,体积庞大,像换气扇一样。该风扇可独立承担最大耗电量达380W的PS3的散热工作”。 以上是刊登在2006年11月20日刊NE Academy专题上的“PlayStation3”(PS3)拆解报道中的一句话。看过PS3内像“风扇”或“换气扇”一样的冷却机构,估计一定会有人感到惊讶。 “怎么会作出这种设计?” “这肯定是胡摸乱撞、反复尝试的结果。” “应该运用了很多魔术般的最新技术。” “简直就是胡来……” 大家可能会产生这样的印象,但事实上并非如此。 PS3的冷却机构只是忠实于基础,按照基本要求累次设计而成。既没有胡摸乱撞,也不存在魔术般的最新技术。 在大家的印象里,什么是“热设计”呢?是否认为像下图一样,是“一个接着一个采取对策”的工作呢?其实,那并不能称为是“热设计”,而仅仅是“热对策”,实际上是为在因热产生问题之后,为解决问题而采取的措施。

如果能够依靠这些对策解决问题,那也罢了。但是,如果在产品设计的阶段,其思路存在不合理的地方,无论如何都无法冷却,那么,很可能会出现不得不重新进行设计的最糟糕的局面。 而这种局面,如果能在最初简单地估算一下,便可避免发生。这就是“热设计”。正如“设计”本身的含义,是根据产品性能参数来构想应采用何种构造,然后制定方案。也可称之为估计“大致热量”的作业。 虽说如此,但这其实并非什么高深的话题。如果读一下这篇连载,学习几个“基础知识”,制作简单的数据表格,便可制作出能适用于各种情况的计算书,甚至无需专业的理科知识。 第1章从“什么是热”这一话题开始介绍。大家可能会想“那接下来呢”?不过现在想问大家一个问题。热的单位是什么? 如果你的回答是“℃”,那么希望你能读一下本文。 热是能量的形态之一。与动能、电能及位能等一样,也存在热能。热能的单位用“J”(焦耳)表示。1J能量能在1N力的作用下使物体移动1m,使1g的水温度升高0.24℃。

电子设备热设计

习题1 1. 平壁的厚度为δ,两表面温度分别为t 1和t 2,且t 1>t 2。平壁材料之导热系数与温度的关系呈线性,即()01t λλβ=+。试求热流密度和壁内温度分布的表达式。 2. 变压器的钢片束由n 片钢片组成,每一钢片的厚度为0.5mm ,钢片之间敷设有厚度为0.05mm 的绝缘纸板。钢的导热系数为58.15W/(m ·℃),绝缘纸的导热系数为0.116 W/(m ·℃)。试求热流垂直通过钢片束时的当量导热系数。 3. 用稳定平板导热法测定固体材料导热系数的装置中,试件做成圆形平板,平行放置于冷、热两表面之间。已知试件直径为150mm ,通过试件的热流量Φ=60W ,热电偶测得热表面的温度和冷表面的温度分别为180℃和30℃。检查发现,由于安装不好,试件冷、热表面之间均存在相当于0.1mm 厚空气隙的接触热阻。试问这样测得的试件导热系数有多大的误差? 4. 蒸汽管道的外直径为30mm ,准备包两层厚度均为15mm 的不同材料的热绝缘层。第一种材料的导热系数λ1=0.04W/(m ·℃),第二种材料的导热系数λ2=0.1W/(m ·℃)。若温差一定,试问从减少热损失的观点看下列两种方案:⑴第一种材料在里层,第二种材料在外层;⑵第二种材料在里层,第一种材料在外层。哪一种好?为什么? 5. 导热复合壁,由λ1=386W/(m ·℃)的铜板,λ2=0.16W/(m ·℃)的石棉层及λ3=0.038W/(m ·℃)的玻璃纤维层组成,它们的厚度分别为2.5cm 、3.2mm 和5cm 。复合壁的总温差为560℃,试求单位面积的热流量为多少? 6. 内径为300mm 、厚度为8mm 的钢管,表面依次包上一层厚度为25mm 厚的保温材料(λ=0.116W/(m ·℃))和一层厚度为3mm 的帆布(λ=0.093W/(m ·℃))。钢的导热系数为46.5W/(m ·℃)。试求此情况下的导热热阻比裸管时增加了多少倍? 7. 蒸汽管道材料为铝,导热系数为204W/(m ·℃),内、外直径分别为86mm 和100mm ,内表面温度为150℃。用玻璃棉(λ=0.038W/(m ·℃))保温,若要求保温层外表面温度不超过40℃,且蒸汽管道允许的热损失为φ1=50W/m ,试求玻璃棉保温层的厚度至少应为多少?

热设计和热分析基础知识培训

热设计和热分析基础知识培训 1 为什么要进行热设计 在许多现代化产品的设计,特别是可靠性设计中,热的问题已占有越来越重要的地位:电子产品:高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。从而导致整个产品的性能下降以至完全失效。这对于无论民用或军用产品都是一个重要问题。 航天产品,如卫星、载人飞船等,对内部温度环境有非常严格的要求;再如宇航员的装备,既要保证宇航员的周围环境,又要灵活、轻便。对于处于宇宙环境中的产品还要考虑超低温的影响等。 建筑方面:环保和节能的要求,冬季的保温和夏季的通风、降温等。各种家电产品自身的热设计和对周围环境的影响。实际上,热设计并不是什么新的东西,在日常生活中,在以往的产品中,都有意无意的使用了热设计,只是没有把它提高到科学的高度,仅仅凭经验在做。比如:在电子产品的设计中,如何合理的布置发热元件,使其尽量远离对温度比较敏感的其它元器件;合理的安排通风器件(风扇等),通过机箱内、外的空气流动,使得机箱内部的温度不致太高;还有生产厂房中如何合理安排通风和排气设备,以及空调、暖气设备等,以达到冬季的保温和夏季的通风、降温要求,为工人提供一个较为舒适的工作环境。家居方面,则通过暖气、风扇、空调等为居民提供一个较为舒适的生活环境。 各种载人的交通工具,如汽车、火车、飞机等也都需要考虑如何为乘客提供舒适的环境。所有这些,说到底都是与热设计有关的问题,过去要求不高,凭经验就可以基本满足要求。但是,随着技术的进步,要求越来越高,光凭经验就不够了。 1.1 热设计的目的 根据相关的标准、规范或有关要求,通过对产品各组成部分的热分析,确定所需的热控措施,以调节所有机械部件、电子器件和其它一切与热有关的组份的温度,使其本身及其所处的工作环境的温度都不超过标准和规范所规定的温度范围。对于电子产品,最高和最低允许温度的计算应以元器件的耐热性能和应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。对于航天产品,必须同时考虑严酷的空间环境(超低温-269。C、太阳辐射、轨道热等) 和内部的热环境,尤其是载人航天器,其热设计的要求也更加复杂和严格,难度也更大。 1.2 热设计的基本问题 1.2.1 发生和耗散的热量决定了温升,因此也决定了任一给定结构的温度; 1.2.2 热量以生热(其它能量形式->热能)、导热、对流及辐射进行传递,每种形式传递的热量与其热阻成反比; 1.2.3 热量、热阻和温度是热设计中的重要参数; 1.2.4 所有的热控系统应是最简单又最经济的,并适合于特定的电气和机械、环境条件,同时满足可靠性要求; 1.2.5 热设计应与电气设计、结构设计、可靠性设计同时进行,当出现矛盾时,应进行权衡分析,折衷解决; 1.2.6 热设计中允许有较大的误差–源于各种热条件的不确定性,例如同类电子元器件,其热耗的分散性;空气的湿度使得对流换热的效果有较大不同; 1.2.7 热设计应考虑的因素:包括结构与尺寸、系统各组成部分的功耗、产品的经济性、与所要求的结构和元器件的失效率相应的温度极限、(对于载人航天还要考虑人能忍受的极限条件)、结构和设备、电路等的布局、工作环境(外部环境和内部环境)

电子产品热设计

目录 摘要: (2) 第1章电子产品热设计概述: (2) 第1.1节电子产品热设计理论基础 (2) 1.1.1 热传导: (2) 1.1.2 热对流 (2) 1.1.3 热辐射 (2) 第1.2节热设计的基本要求 (3) 第1.3节热设计中术语的定义 (3) 第1.4节电子设备的热环境 (3) 第1.5节热设计的详细步骤 (4) 第2章电子产品热设计分析 (5) 第2.1节主要电子元器件热设计 (5) 2.1.1 电阻器 (5) 2.1.2 变压器 (5) 第2.2节模块的热设计 (5) 电子产品热设计实例一:IBM “芯片帽”芯片散热系统 (6) 第2.3节整机散热设计 (7) 第2.4节机壳的热设计 (8) 第2.5节冷却方式设计: (9) 2.5.1 自然冷却设计 (9) 2.5.2 强迫风冷设计 (9) 电子产品热设计实例二:大型计算机散热设计: (10) 第3章散热器的热设计 (10) 第3.1节散热器的选择与使用 (10) 第3.2节散热器选用原则 (11) 第3.3节散热器结构设计基本准则 (11) 电子产品热设计实例三:高亮度LED封装散热设计 (11) 第4章电子产品热设计存在的问题与分析: (15) 总结 (15) 参考文献 (15)

电子产品热设计 摘要: 电子产品工作时,其输出功率只占产品输入功率的一部分,其损失的功率都以热能形式散发出去,尤其是功耗较大的元器件,如:变压器、大功耗电阻等,实际上它们是一个热源,使产品的温度升高。因此,热设计是保证电子产品能安全可靠工作的重要条件之一,是制约产品小型化的关键问题。另外,电子产品的温度与环境温度有关,环境温度越高,电子产品的温度也越高。由于电子产品中的元器件都有一定的温度范围,如果超过其温度极限,就将引起产品工作状态的改变,缩短其使用寿命,甚至损坏,使电子产品无法稳定可靠地工作。 第1章电子产品热设计概述: 电子产品的热设计就是根据热力学的基本原理,采取各种散热手段,使产品的工作温度不超过其极限温度,保证电子产品在预定的环境条件下稳定可靠地工作。 第1.1节电子产品热设计理论基础 热力学第二定律指出:热量总是自发的、不可逆转的,从高温处传向低温处,即:只要有温差存在,热量就会自发地从高温物体传向低温物体,形成热交换。热交换有三种模式:传导、对流、辐射。它们可以单独出现,也可能两种或三种形式同时出现。 1.1.1 热传导: 气体导热是由气体分子不规则运动时相互碰撞的结果。金属导体中的导热主要靠自由电子的运动来完成。非导电固体中的导热通过晶格结构的振动实现的。液体中的导热机理主要靠弹性波的作用。 1.1.2 热对流 对流是指流体各部分之间发生相对位移时所引起的热量传递过程。对流仅发生在流体中,且必然伴随着有导热现象。流体流过某物体表面时所发生的热交换过程,称为对流换热。 由流体冷热各部分的密度不同所引起的对流称自然对流。若流体的运动由外力(泵、风机等)引起的,则称为强迫对流。 1.1.3 热辐射 物体以电磁波方式传递能量的过程称为热辐射。辐射能在真空中传递能量,且有能量方

热设计知识

热设计 林小平

热设计

目录 1 传热学基础 (1) 1.1热传导 (1) 1.2 热对流 (1) 1.3 热辐射 (1) 1.4增强散热的方式 (2) 1.5 基本概念 (3) 2 流体力学基础 (5) 2.1 控制方程 (5) 2.2准则参数 (6) 3 散热方式 (7) 3.1 自然冷却 (7) 3.2 强迫空气冷却 (7) 3.3 液体冷却方案 (7) 3.4 冷板冷却 (8) 3.5 热管 (8) 3.6 热电冷却 (8) 3.7 蒸发冷却 (8) 3.8 相变冷却 (9) 3.9 冷却方式选择 (9) 4 热设计要点 (11) 4.1 热设计的基本步骤和流程图 (11) 4.2 热设计应考虑的问题 (12) 4.3 热设计基本要求 (13) 4.4 热设计基本原则 (13) 5 常见热设计 (14) 5.1 风冷设计 (14) 5.2 液体冷却系统的设计 (17)

5.3 冷板设计 (17) 5.4 热管 (19) 6 热仿真 (21) 6.1 仿真模拟的求解过程 (21) 6.2 软件结构 (22) 6.3 边界条件 (23) 7 热测试 (25) 7.1 热测试概述 (25) 7.2 热负载测试过程 (26) 7.3热测试时的注意事项 (27)

1.传热学基础 热量传递的三种基本方式:导热、对流、辐射。 1.1热传导 导热是在同一种介质中由于存在温度梯度所产生的传热现象。 式中:Φ —热流量,W; —比例系数,热导率或导热系数,W/(m·K); A —传导换热面积,m2; Δt —导热温差,℃或K; δ —厚度,m。 要想获得较为准确的热分析,首先得获得准确的材料的导热系数。 1.2 热对流 热对流是指在流体中不同温度的东西之间有相对的位移产生时所引起的热量传递的过程。自然对流是指因为流体存在密度的差异而导致的各物质间产生相对的运动;而强迫对流是因为机器(泵或风机)相对运动的影响或其他压力差所产生的。 c h c ? ? t 式中:Φc—热流量,W; hc —比例系数,称为对流传热系数,W/(m2·K); A —换热面积,m2; Δt —流体与壁面的温差,℃或K; 用于指代对流传热性能好坏的是对流传热系数。 1.3 热辐射 热辐射是指物体因为热的原因使得内能向电磁波转化而引起的辐射过程。 式中:Φr—热流量,W;

电子散热设计基础理论

电子散热设计基础理论

内容 第一节 概述 1 第二节 热传导 1 第三节 热辐射7 第四节 热对流8 第五节 影响对流换热的因素11 5.1 流体运动产生的原因 5.2 流动状态的影响 5.3 流体物性的影响 5.4 温度因素的影响 5.5 几何因素的影响 5.6 其他 第六节 复合换热20 第七节 模拟分析软件ICEPAK在传热设计中的应用 22 附件1,ICEPAK在传热设计中的应用举例

电子散热设计基础理论 第一节 概 述 传热现象在自然界普遍存在,有温差的地方就会有热量传递发生。具体到在工程技术领域中,掌握传热体系内的传热量和温度分布最具有实际意义。一般来说,对于无内热源的稳定传热过程,传热量(Q 或q )和传热温差⊿t 的关系可表示为下列一般形式: Q=qF=⊿t/ R W 或 q=Q/F=⊿t/r W/m 2 式中Q 亦称热流量。q 亦称热流率或热流密度,⊿t[℃]亦称传热推动力,F[m 2]为传热面积,R[℃/W]为热阻,r =RF[m 2. ℃/W]称单位面积热阻. 传热的基本方式有传导、辐射和对流三种,但实际换热过程往往是以一种形式为主的复合换热方式。下面,结合实践经验,对这几种理论分别加以阐述。 第二节 热 传 导 同一物体内部或互相接触的物体之间,当温度 不同但没有相对的宏观位移时的传热方式叫热传导 或导热。微观来看,气体导热基于分子或原子的彼 此碰撞;液体和非导电固体导热的机理是分子或原 子振动产生的弹性波作用;而金属导热则主要靠自 由电子的扩散传播能量[s] 。其微观现象如(图2-1) 热源 所示, 从图中可以看出,热传导是热量从高温部分 (图示最红色)往低温部分均匀传递,温度随之降低。 图2-1 热传导微观示意图

产品的热设计介绍

本课程详细讲述了风路的设计方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。 为什么要进行热设计? 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC 增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 介绍 热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 在本次讲座中将学到那些内容 风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。 授课内容 风路的设计方法 20分钟 产品的热设计计算方法 40分钟 风扇的基本定律及噪音的评估方法 20分钟 海拔高度对热设计的影响及解决对策 20分钟 热仿真技术、热设计的发展趋势 50分钟 概述 风路的设计方法:通过典型应用案例,让学员掌握风路布局的原则及方法。 产品的热设计计算方法:通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法。 风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法。 海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响。 热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍。 热设计的发展趋势:了解最新散热技术、了解新材料。 风路设计方法 自然冷却的风路设计 设计要点 ?机柜的后门(面板)不须开通风口。 ?底部或侧面不能漏风。 ?应保证模块后端与机柜后面门之间有足够的空间。 ?机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间。

LED封装基本知识

LED封装基本知识 LED(发光二极管)封装是指发光芯片的封装,相比集成电路封装有较大不同。LED的封装不仅要求能够保护灯芯,而且还要能够透光,所以LED的封装对封装材料有特殊的要求。 封装简介 LED封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而LED封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于LED。 自上世纪九十年代以来,LED芯片及材料制作技术的研发取得多项突破,透明衬底梯形结构、纹理表面结构、芯片倒装结构,商品化的超高亮度(1cd以上)红、橙、黄、绿、蓝的LED产品相继问市,2000年开始在低、中光通量的特殊照明中获得应用。LED的上、中游产业受到前所未有的重视,进一步推动下游的封装技术及产业发展,采用不同封装结构形式与尺寸,不同发光颜色的管芯及其双色、或三色组合方式,可生产出多种系列,品种、规格的产品。 技术原理 大功率LED封装由于结构和工艺复杂,并直接影响到LED的使用性能和寿命,特别是大功率白光LED封装更是研究热点中的热点。

LED封装的功能主要包括:1.机械保护,以提高可靠性;2.加强散热,以降低芯片结温,提高LED性能;3.光学控制,提高出光效率,优化光束分布;4.供电管理,包括交流/直流转变,以及电源控制等。 LED封装方法、材料、结构和工艺的选择主要由芯片结构、光电/机械特性、具体应用和成本等因素决定。经过40多年的发展,LED 封装先后经历了支架式(Lamp LED)、贴片式(SMD LED)、功率型LED(Power LED)等发展阶段。随着芯片功率的增大,特别是固态照明技术发展的需求,对LED封装的光学、热学、电学和机械结构等提出了新的、更高的要求。为了有效地降低封装热阻,提高出光效率,必须采用全新的技术思路来进行封装设计。 关于LED封装结构说明 LED的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高LED的内、外部量子效率。常规Φ5mm型LED封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用环氧树脂包封。反射杯的作用是收集管芯侧面、界面发出的光,向期望的方向角内发射。顶部包封的环氧树脂做成一定形状,有这样几种作

热设计的基础知识

2 热设计的基础知识 2.1基本术语 2.1.1 热环境 设备或元器件的表面温度、外形及黑度,周围流体的种类、温度、压力及速度,每一个元器件的传热通路等情况 2.1.2 热特性 设备或元器件温升随热环境变化的特性,包括温度、压力和流量分布特征。 2.1.3 热阻 热量在热流路径上遇到的阻力,反映介质或介质间的传热能力的大小,表明了1W热量所引起的温升大小,单位为℃/W或K/W,可分为导热热阻,对流热阻,辐射热阻及接触热阻四类 (热扩展效应) 2.1.4 导热系数 表征材料导热性能的参数指标,它表明单位时间、单位面积、负的温度梯度下的导热量,单位为W/m.K或W/m.℃ 2.1.5 对流换热系数 反映两种介质间对流换热过程的强弱,表明当流体与壁面的温差为1 ℃时,在单位时间通过单位面积的热量,单位为W/m2.K或W/m2.℃ 2.1.6 流阻 反映流体流过某一通道时所产生的压力差。单位帕斯卡或mm.H2O或巴 2.1.7 定性温度 确定对流换热过程中流体物理性质参数的温度 2.1.8 肋片的效率 表示某一扩展表面单位面积所能传递的热量与在同样条件下光壁所能传递的热量之比 2.1.9 黑度 实际物体的辐射力和同温度下黑体的辐射力之比,它取决于物体种类、表

面状况、表面温度及表面颜色。 2.1.10 雷诺数R e(Reynlods) 雷诺数的大小反映了流体流动时的惯性力与粘滞力的相对大小,雷诺数是说明流体流态的一个相似准则。 2.1.11普朗特数P r(Prandtl) 普朗特数是说明流体物理性质对换热影响的相似准则。 2.1.12 格拉晓夫数G r(Grashof) 格拉晓夫数反映了流体所受的浮升力与粘滞力的相对大小,是说明自然对流换热强度的一个相似准则,G r越大,表面流体所受的浮升力越大,流体的自然对流能力越强。 2.1.13努谢尔特数N u(Nusseltl) 反映出同一流体在不同情况下的对流换热强弱,是一个说明对流换热强弱的相似准则。 2.1.14 传热单元数NTU 为无因次量,其数值反映了在给定条件下所需传热面积的大小,是一个反映冷板散热器综合技术经济性能的指标。 2.1.15 冷板的传热有效度E 衡量冷板散热器在传递热量方面接近于理想传热状况的程度,它定义为冷板散热器的实际传热量和理论传热量之比,为无因次量。 2.1.16 通风机的特性曲线 指通风机在某一固定转速下工作,静压、效率和功率随风量变化的关系曲线。当风机的出风口完全被睹住时,风量为零,静压最高;当风机不与任何风道连接时,其静压为零,而风量达到增大。 2.1.17 系统的阻力特性曲线 系统(或风道)的阻力特性曲线:是指流体流过风道所产生的压力随空气流量变化的关系曲线,与流量的平方成正比。 2.1.18 通风机工作点 系统(风道)的特性曲线与风机的静压曲线曲线的交点就是风机的工作点。 2.2几种容易混淆的概念 2.2.1温度与温升的区别

电子设备的热设计

2010-02兵工自动化 29(2)Ordnance Industry Automation ·49·doi: 10.3969/j.issn.1006-1576.2010.02.016 电子设备的热设计 郝云刚1,刘玲2 (1. 中国兵器工业第五八研究所投资管理处,四川绵阳 621000; 2. 中国兵器工业第五八研究所数控事业部,四川绵阳 621000) 摘要:热设计是保证电子设备能安全可靠工作的重要条件。介绍了热力学散热理论,从散热方法的选择以及器 件的布局等方面详细地说明了电子设备结构设计中热设计的基本步骤,介绍了一些新的散热技术与方法。总结得来 的热设计技术和经验对于结构设计有重要辅助作用。 关键词:热设计;对流;散热 中图分类号:O551.3 文献标识码:A Thermal Design of Electronic Equipment HAO Yun-gang1, LIU Ling2 (1. Management Office of Investment, No. 58 Research Institute of China Ordnance Industries, Mianyang 621000, China; 2. Dept. of CNC Engineering, No. 58 Research Institute of China Ordnance Industries, Mianyang 621000, China) Abstract: Thermal design is an important condition for electron-equipment’s reliability. Introduce thermodynamic theory about elimination of heat, expound the basic steps of thermal design from how to choose the technique about elimination of heat and the element layout in detail, discuss some new technique and methods about elimination of heat. The theory and experience from practice about thermal design have important assistant effect in configuration design. Keywords: Thermal design; Convection; Elimination of heat 0 引言 电子设备工作时,其输出功率只占设备输入功率的一部分,其损失的功率都以热能形式散发出去,尤其是功耗较大的元器件,如:变压器、功耗大的电阻等,实际上它们是一个热源,使设备的温度升高。因此,热设计是保证电子设备能安全可靠工作的重要条件之一,是制约设备小型化的关键问题。 另外,电子设备的温度与环境温度有关,环境温度越高,电子设备的温度也越高。由于电子设备中的元器件都有一定的温度范围,如果超过其温度极限,就将引起设备工作状态的改变,缩短其使用寿命,甚至损坏,使电子设备无法稳定可靠地工作。 电子设备的热设计就是根据热力学的基本原理,采取各种散热手段,使设备的工作温度不超过其极限温度,保证电子设备在预定的环境条件下稳定可靠地工作。故对其进行研究。 1 理论基础 热力学第二定律指出:热量总是自发的、不可逆转的,从高温处传向低温处,即:有温差存在,就有热量的传递。热量传递是一种普遍的自然现象。热传递现象常是不同基本方式的主次组合。这些基本方式包括热传导、热对流和热辐射。 在电子设备的冷却中普遍采用对流方式。对流是固体表面与流体表面间传热的主要方式。功耗首先以传导方式传递到与流体相接触的表面,通过对流传入流体中,然后该流体再流到其他地方。 2 一般热设计步骤 2.1 熟悉元器件的参数 确定元器件的各种参数,如:结温、内阻、标称额定功率、使用功率、耗散功率、满足可靠性指标时的结温以及工作环境的温度范围,先尽量选用耐高温的元器件。 2.2 散热方法的选择 对于一些小型化、高功率密度的元器件来说,由于体积、成本等因素的影响,采用自然风冷作为主要的散热方式,有2个要点: 1) 通过自然对流的方式,将热量从模块外壳和暴露表面传至空气中,热量由元器件间形成的沟道散发到周围的环境中。 2) 通过辐射的方式,将热量从器件的暴露外壳辐射到周围物体表面上。主要依靠自然对流和热辐射来散热,所以器件周围的环境一定要通风良好, 收稿日期:2009-09-04;修回日期:2009-10-30 作者简介:郝云刚(1982-),男,江苏人,助理工程师,2004年毕业于重庆大学,从事投资管理研究。

热设计技术规范

产品热设计技术规范

前言 本规范根据通信产品热设计相关资料及热实验结果等编制而成。本规范起草单位: 本规范授予解释单位: 本规范主要起草人: 本规范批准人: 目录

1 概述 (1) 1.1 热设计的目的 (1) 1.2 热设计的基本问题 (1) 1.3 热设计应遵循的原则 (1) 2 热设计的基本知识 (3) 2.1 基本概念 (3) 2.2 热量传递的基本方式极其基本方程式 (5) 2.3 增强散热的方式 (6) 3 自然对流散热 (7) 3.1 自然对流热设计应考虑的问题 (7) 3.2 自然对流换热系数的计算 (9) 4 强迫对流散热——风扇冷却 (11) 4.1 风道的设计 (11) 4.2 抽风与鼓风的区别 (16) 4.3 风扇选型设计 (17) 4.4 机柜/箱强迫风冷热设计 (22) 5 单板元器件安全性热分析 (24) 5.1 元器件温升校核计算 (24) 5.2 元器件的传热分析 (27) 5.3 散热器选型参数的确定 (27) 5.4 散热器选用与安装的原则 (29) 6 通信产品热设计步骤 (30) 7 附录 (32) 7.1 热仿真软件介绍 (32) 7.2 参考文献 (32) 本文针对公司产品的特点,提供了热设计的基础理论知识、热设计的基本方法与步骤、热设计的原则等内容。

产品热设计技术规范 第一章概述 1.1 热设计的目的 采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。 1.2 热设计的基本问题 1.2.1 耗散的热量决定了温升,因此也决定了任一给定结构的温度; 1.2.2 热量以导热、对流及辐射传递出去,每种形式传递的热量与其热阻成反比; 1.2.3 热量、热阻和温度是热设计中的重要参数; 1.2.4 所有的冷却系统应是最简单又最经济的,并适合于特定的电气和机械、环境条件,同时满足可靠性要求; 1.2.5 热设计应与电气设计、结构设计、可靠性设计同时进行,当出现矛盾时,应进行权衡分析,折衷解决; 1.2.6 热设计中允许有较大的误差; 1.2.7 热设计应考虑的因素:包括 结构与尺寸 功耗 产品的经济性 与所要求的元器件的失效率相应的温度极限 电路布局 工作环境 1.3 遵循的原则 热设计应与电气设计、结构设计同时进行,使热设计、结构设计、电气设计相互兼顾; 1.3.2 热设计应遵循相应的国际、国内标准、行业标准; 1.3.3 热设计应满足产品的可靠性要求,以保证设备内的元器件均能在设定的热环境中长期正常工作。

电子设备热设计实验4

实验四热管换热器测试(选做) 一、实验目的 1.了解热管换热器实验台的工作原理; 2.熟悉热管换热器实验台的使用方法; 3.掌握热管换热器换热量Φ和传热系数K的测量和计算方法。 二、实验台结构及原理 1 6 11—热段风机 热段中的电加热器使空气加热,热风经热段风道时,通过翅片管进行换热和传递,从而使冷段风道的空气温度升高。利用风道中的热电偶对冷、热段的进出口温度进行测量,并用热球风速仪对冷、热段的出口风速进行测量,从而可以计算换热器的换热量Φ和传热系数K。 三、实验台参数 1.冷段出口内径:直径D=61mm 2.热段出口尺寸:长158mm。宽70mm 3.冷段传热表面参数:

翅片管长280mm 钢管直径20mm 翅片直径40mm 翅片个数104个 4.热段传热表面参数: 翅片管长280mm 钢管直径20mm 翅片直径40mm 翅片个数104个 5.笛形管修正系数(用于毕托管测量风速) 热端:动压修正系数ξ=0.845 流量修正系数α=0.925 冷端:动压修正系数ξ=0.943 流量修正系数α=0.980 6.换热器面积:A=5.06 m2 四、实验步骤 1.接通电源; 2.打开冷、热段风机; 3.将工况开关按在“加热Ⅰ”位置(Ⅰ—450W),此时电加热器开始工作; 4.用热线风速仪在冷、热段出口的测孔中测量风速(为使测量工作在风道温 度不超过40℃的情况下进行,必须在开风机后立即测量)。风速仪使用方法,请参阅该仪器说明书; 5.待工况稳定后(约10分钟),按下琴键开关,切换测温点,逐点测量工况 Ⅰ的冷热段进出口温度(参看实验台结构图);同时根据加热电流和电压计算出加热功率; 6.将工况开关按在“加热Ⅱ”位置(Ⅱ—1000W),重复上述步骤,测量工况Ⅱ 的冷热段进出口温度; 7.实验结束后,切断所有电源。 五、实验数据的整理 将实验测得的数据填入下表中:

电子产品的热设计方法讲解

电子产品的热设计方法 v 为什么要进行热设计? 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 v 热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 v 在本次讲座中将学到那些内容 风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。 授课内容 v 风路的设计方法20分钟 v 产品的热设计计算方法40分钟 v 风扇的基本定律及噪音的评估方法20分钟 v 海拔高度对热设计的影响及解决对策20分钟 v 热仿真技术、热设计的发展趋势50分钟 概述 v 风路的设计方法:通过典型应用案例,让学员掌握风路布局的原则及方法。 v 产品的热设计计算方法:通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法。 v 风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法。v 海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响。 v 热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍。 v 热设计的发展趋势:了解最新散热技术、了解新材料。 风路设计方法 v 自然冷却的风路设计 ? 设计要点 ü机柜的后门(面板)不须开通风口。 ü底部或侧面不能漏风。 ü应保证模块后端与机柜后面门之间有足够的空间。 ü机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间。

华为校园招聘

华为校园招聘

招聘职位DSP工程师 工作职责1、负责基于GSM/WCDMA/LTE等无线通信标准的算法软件设计、开发、测试和维护; 2、负责多核SOC芯片软件设计、开发和验证工作; 3、分析解决产品商用过程中的算法相关问题,对技术问题的解决进度和质量负责,对商 用产品的功能和性能保障负责。 职位要求1、通信、电子、计算机、信号处理、应用数学等专业,有扎实的计算机基础知识,本科及以上学历; 2、具备通信基础理论知识,有一定的算法理论功底; 3、精通C/C++编程语言; 4、具备一定的软件工程知识,掌握基本软件开发流程和开发工具; 5、具有华为公司系列认证证书(HCIE/HCNP/HCNA)者优先。 招聘职位UCD设计工程师 工作职责用户研究:负责用户研究和用户测试,通过用户行为的定性、定量分析,发现产品用户体验提升的机会点,评估可用性现状; 交互设计:负责设计人机交互场景、任务和操作流程; 视觉设计:负责产品视觉风格和VI设计; 前端技术:负责与设计师配合快速在各种前端平台上构建UI原型。 职位要求1、艺术设计、工业设计、数字媒体、人因工程、交互设计、心理学、计算机等专业本科及以上学历; 2、掌握以下一项或多项技能:平面/3D视觉设计、信息架构设计、界面原型设计、用户测 试、用户行为跟踪与数据挖掘、眼动分析、HTML5/iOS/Android/WP/C/C++/JAVA/Java script/HTML/Flash/CSS等前端界面编程; 3、用户研究和交互设计方向要求英语四级以上,要求逻辑思维能力和沟通协调能力强; 4、动手能力强、熟练掌握各种UI设计工具者优先。

热设计讲座

【热设计讲座】(一)常用词汇和三种传热方式 作者简介 国峰尚树 1977年毕业于早稻田大学理工学部机械工学科,同年进入冲电气工业,从事电子交换机、迷 你电脑、个人电脑、打印机、FDD等产品的冷却方式的开发和热设计。之后还曾参与开发电子产品热分析软件XCOOL(后更名为Star-Cool),CAD/CAM/CAE及综合PDM的构筑等。2007 年离开该公司,成立了Thermal Design Laboratory,以电器企业为中心,开展产品的热设计、工艺改革顾问、培训等工作。 传热有三种基本方式 下面来看热的转移。热转移的本质是物体内部的分子、原子、电子的动能向外传播。传 热有“热传导”、“热对流”和“热辐射”三种方式(图2)。这三种方式有层次之分,并非平等关系。大致可以区分为“物质传热”和“电磁波传热”两种。热传导和热对流属于前者,是利用物质 的振动传递热量的现象,热辐射属于后者。

图2:微观的热移动 传热方式有热传导、热对流、热辐射三种。热传导与热对流都是利用物质传热, 热辐射则是通过电磁波传热。 首先,热传导依靠的是晶格振动的传播,以及金属中自由电子的移动。金属的电导率与 热导率成正比。这是因为二者的原理相同,自由电子的移动越容易,金属就越容易导电、导热。因此,自由电子越容易移动(电阻小)的金属,热导率越高。 热对流是利用流体的运动传热。每一个分子的运动其实都是热运动,热运动会产生热能,在不受拘束的流体中,热能是以整体的形式流动。 第三个方式热辐射是经由电磁波的移动,无需物质。太阳热穿越宇宙空间抵达地球的现 象就属于这种方式。携带电荷的粒子振动会产生电磁场,释放出电磁波。只要温度不是绝对零度,任何物体都在振动,物质必然释放电磁波。某种物质释放的电磁波在抵达温度较低的物体后,会激发振动,转化成热能。因此可以说,热辐射是在与可见的所有空间进行热交换。 热传导与热对流不是独立的现象。比如,把空气封闭在狭小的空间内时,空气将停止运 动(热传导),但开放空间后,空气将恢复运动(热对流)。这样一来,根据缝隙大小的不同,空气时而发生热传导,时而发生热对流。但热辐射是与二者完全不同的现象,热传导不可能转化成热辐射。 如果按照热传导、热对流、热辐射三种方式,分别推导热移动的公式,公式将大相径庭。对于热设计而言,这样的情况很让人头疼。整合不同的公式费时费力,如果可能的话,公式最好相同。 这就到了“热欧姆定律”登场的时候了,具体内容将在下次介绍 【热设计讲座2】热欧姆定律及三种传热方式在散热中的作用 无论是热传导、热对流,还是热辐射,传热基本与温差成正比。温差越大,传递的热量越多。 不只是热能,这样的现象还有许多。例如,不管是电、水,还是空气,只要施加压力, 就会产生一定的流量。 表1进行了简单的汇总。温度、电压和压力都是“势能”。能量密度一旦出现落差,就会产

相关主题
文本预览
相关文档 最新文档