当前位置:文档之家› 弹塑性力学基本理论及应用 刘土光 华中科技大学研究生院教材基金资助 第一章绪论

弹塑性力学基本理论及应用 刘土光 华中科技大学研究生院教材基金资助 第一章绪论

弹塑性力学基本理论及应用 刘土光   华中科技大学研究生院教材基金资助 第一章绪论
弹塑性力学基本理论及应用 刘土光   华中科技大学研究生院教材基金资助 第一章绪论

第一章绪论

1.1弹塑性力学的任务

固体力学是研究固体材料及其构成的物体结构在外部干扰(载荷、温度交化等)下的力学响应的科学,按其研究对象区分为不同的学科分支。弹性力学和塑性力学是固体力学的两个重要分支。弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效难则。

以弹性分析为基础的结构设计是假定材料为理想弹性,相应于这种设计观点就以分析结果的实际适用范作为设计的失效准则,即认为应力(严柞地说是应力的某一函数值)到达一定限值(弹性界限),将进入塑性变形阶段时、材料将破坏。结构中如果有一处或—部分材料“破坏”,则认为结构失效(丧失设计所规定的效用)。由于一般的结构都处于非均匀受力状态,当高应力点或高应力区的材料到达弹性界限时,类他的大部分材料仍处于弹性界限之内;而实际材料在应力超过弹性界限以后并不实际发生破坏,仍具有一定的继续承受应力(载荷)的能力,只

不过刚度相对地降低。因此弹性设计方法不能充分发挥材料的潜力,导致材料的某种浪费。实际上、当结构内的局部材料进入塑性变形阶段,在继续增加外载荷时,结构的内力(应力)分布规律与弹性阶段不同,即所谓内力(应力)重分布,这种重分布总的是使内力(应力)分布更趋均匀,使原来处于低应力区的材料承受更大的应力,从而更好地发挥材料的潜力,提高结构的承载能力。显然,以塑性分析为基础的设计比弹性设计更为优越。但是,塑性设计允许结构有更大约变形,

以及完全卸载后结构将存在残余变形。因此,对于刚度要求较高及不允许出现残余变形的场合、这种设计方法不适用。

另外.在有些问题(如金属压延成型工艺)中,需要利用全局的塑性;在有些问题(如集中力作用点附近及裂纹尖端附近的应力场问题)中,如果不考虑材料的塑性,就从本质上得不到切合实际的结果。综上所述可见。弹塑性力学是近代工程技术所必需的基础技术学科。

材料力学、弹性力学和塑性力学在研究的基本内容及方法上有某些相同之处。例如.它们都是研究结构(构件)在外部干扰下的力学响应。具体地说、是研究结构的强度、刚度和稳定性问题(有时统称为强度问题)。以及结构的“破坏”准则或失效准则。在方法上都是在一定的边界条件(或再加上初始条件)下求解三类基本方程:平衡(运动)方程、几何方程和本构(物理)方程。同时.都是以实验结果为依据,所得结果由实验来检验等。但是,由于材料力学(严格地说,是一般材料力学教材和课程)研究的对象主要限于细长体,即杆件,从而在三类基本方程之外,还根据实验观察引入了几何性的假设,即平面假设。这实际上是对应变沿杆件横截面的分布规律作了近似的(线性的)假设,从而大大简化了计算,使得用初等方法就可获得解答。弹塑性力学一般地不需引入这类假设,从而可以获得更为精确的结果,更重要的是扩大了研究对象的范围,它可包括各种实体结构(如挡土墙、堤等)、深梁、非圆截面杆的扭转、孔边应力集中,以及板壳等材料力学初等理沦所不能解决的力学问题。当然。在弹塑性理论中,有时也引入某些几何性的假设,如薄板、薄壳变形中的直法线假设等;又如在处理边界条件中同样要应用圣维南(saint-venat)原理等,以便既使求解成为可能或得到一定程度的简化,又能获得足够精确的结果。

作为一门课程,弹塑性力学以理论力学、材料力学、高等数学、数理方程等课程为基础,较系统地介绍弹性力学和塑性力学的基本概念、基本理论和基本方法,为进一步学习板壳理论、断裂力学、连续介质力学、实验应力分析、有限元法等后续课程打下基础。无疑、在船舶与海洋工程专业、建筑结构专业学生的培养中、无疑这是一门重要的专业基础课程。

1.2力学模型

在弹塑性力学的研究中,如同在所有科学研究中一样,都要对研究对象进行模拟,建立相应的力学模型(科学模型)。“模型”是“原型”的近似描述或表示。建立模型的原则,一是科学性--尽可能地近似表示原型;二是实用性--能方便地

应用。显然,一种科学(力学)模型的建立,要受到科学技术水平的制约。总的来说,力学模型大致有三个层次:材料构造模型、材料力学性质模型,以及结构计算模型。第一类模型属基本的,它们属于科学假设范畴。因此,往往以“假设”的形式比现。“模型”有时还与一种理论相对应;因而在有些情况下,‘模型”、“假设”和“理论”可以是等义的。

1.2.1材料构造模型

(1)连续性假设

假定固体材料是连续介质,即组成物体的质点之间不存在任何间隙,连续紧密地分布于物体所占的整个空间。由此,我们可以认为一些物理量如应力,应变和位移等可以表示为坐标的连续函数,从而在作数学推导时可方便地运用连续和极限的概念,事实上,一切物体都是由微粒组成的、都不可能符合这个假设。我们可以想象,微粒尺寸及各微粒之间的距离远比物体的几何尺寸小时,运用这个假设不会引起显著的误差。

(2)均匀及各向同性假设

假设物体由同一类型的均匀材料组成,则物体内各点与各方向上的物理性质相同(各向同性);物体各部分具有相同的物理性质,不会随坐标的改变而变化(均匀性)。

2.2 材料力学性质模型

(1)弹性材料

弹性材料是对实际固体材料的一种抽象,它构成一个近似于真实材料的理想模型。弹性材料的特征是:物体在变形过程中,对应于一定的温度,应力与应变之间呈一一对应的关系,它和载荷的持续时间及变形历史无关;卸载后,类变形可以完全恢复。在变形过程中,应力与应变之司呈线性关系,即服从胡克 (Hooke R)规律的弹性材料称为线性弹性材料;而某些金属和塑料等,其应力与应变之间呈非线性性质,称为非线性弹性材料。材料弹性规律的应用,就成为弹性力学区别于其它固体力学分支学科的本质特征。

(2)塑性材料

塑性材料也是固体材料约一种理想模型。塑性材料的特征是:在变形过程中,应力和应变不再具有一一对应的关系,应变的大小与加载的历史有关,但与时间无关;卸载过程中,应力与应变之间按材料固有的弹性规律变化,完全卸载后,物体保持一定的永久变形、或称残余变形。部分变形的不可恢复性是塑性材料的基本特征。

(3)粘性材料

当材料的力学性质具有时间效应,即材料的力学性质与载荷的持续时间和加载速率相关时,称为粘性材料。实际材料都具有不同程度的粘性性质,只不过有时可以略去不计。

1.2.3 结构计算模型

(1)小变形假设

假定物体在外部因素作用下所产生的位移远小于物体原来的尺寸。应用该假设,可使计算模型大力简化。例如,在研究物体的平衡时,可不考虑由于变形所引起的物体尺寸位置的变化,在建立几何方程和物理方程时,可以略天其中的二次及更高次项,使得到的基本方程是线性偏微分方程组。与之相对应的是大变形情况,这时必须考虑几何关系中的二阶或高阶非线性项,导致变形与载荷之间为非线性关系,得到的基本方程是更难求解的非线性偏微分方程组。

(2)无初应力假设

假定物体原来是处于一种无应力的自然状态。即在外力作用以前,物体内各点应力均为零。分析计算是从这种状态出发的。

(3)载荷分类

作用于物体的外力可以分为体积力和表面力,两F ?者分别简称

为体力和面力。所谓体力是分布在物体体积内的 力。例如重力和惯性力,物体内各点

所受的体力一般是不同的。为了表明1物体内某一点A 所受体力的大小和方 图 1.1 体力示意图 问,在这—点取物体的一小微元体V ?,它包含A 点 (图1.1)。

设作用于V ?的体力为F ?,则体力的平均集度为F ?/V ?。如果把所取的这一小部分物体V ?不断减小,则F ?和F ?/V ?都将不断地改变大小、方向和作用点。现在,假定体力为连续分布,则V ?无限减小而趋于A 点.则F ?/V ?将趋于—定的极限f 。即 f V

F V =??→?0lim 这个极限矢量f 就是该物体在A 点所受体力的集度。由于V ?是标量,所以f 的方问就是F ?的极限方向。矢量f 在坐标轴)3,2,1(=i x i 上的投影i X 称为该物体在A 点的体力分量,以沿坐标轴正方向时为正,它们的因次是[力][长度]3。

所谓面力是分布在物体表面上的力。如风力、流体压力、两固体间的接触力

等。物体上各点所受的面力一般也是不同的。为了表明物体表面上一点B 所受面力的大小和方向,可仿照对体力的讨论,得出当作用于S ?面积上的面力为P ?,而面力的平均集度为S P ??/,微小面S ?无限缩小而趋于点B 时的极限矢量p ,即 p S

P s =??→?0lim 矢量p 在坐标轴i x 上的投影-

i X 称为B 点的面力分量,以沿坐标轴正方向时为正,它们的因次是[力][长度]2。作用在物体表面上的力都占有一定的面积,当作用面很小或呈狭长形时,可分别理想化为集中力或线分布力。

本节所述材料构造模型、结构计算模型是本书讨论问题的共同基础;而材料力学性质模型的选取,则需根据材料本身的力学性质、工作环境及限定的研究范围来确定。弹性、塑性和粘性只是材料的三种基本理想性质,在一定条件下可近似地反映材料在一个方面的力学行为。因而.它们是材料力学性质的理想模型。大多数材料的力学性质在一定条件下可采用上述三种模型之一或其组合加以近似描述。

由于弹塑性力学问题的复杂性.还有一些针对具体问题所作的假设,将在以后各章节中给出.

1.3 材料的基本力学性能试验

固体材料在受力后产生变形,从变形开始到破坏一般要经历弹性变形和塑性变形这两个阶段。根据材料力学性质的不同,有的弹性阶段较明显,而塑性阶段很不明显。象铸铁等脆性材料,往往经历弹性阶段后就破坏。有的则弹性阶段很不明显,从开始变形就伴随着塑性变形,弹塑性变形总是耦联产生,象混凝土材料就是这样。而大部分固体材料都呈现出明显的弹性变形阶段和塑性变形阶段。今后我们主要是讨论这种有弹性与塑性变形阶段的固体材料,并统称为弹塑性材料。

(一)应力府变曲线

应力班变曲线可以通过单向拉伸(或压缩)、

薄壁管扭转实验得到,这是弹塑性理论最基本的

实验资料之—,由于纯扭转试验所得的曲线几乎

与拉伸图完全相似,因此只介绍单向拉伸(或压

缩)的某些实验结论:

1.塑性变形的分类

一般的金属材料可根据其塑性性能的不同分

图 1.2 退火软纲拉伸试验图

成两类,一类是具有明显的屈服流动阶段,有的材料流动阶段很长,往往变形可以达到1%,例如低碳钢、铸钢、某些合金钢等,通常把初

始屈服时的应力作为屈服极限,用s σ表示,又如退火软钢及某些铝合金有上、下屈服点时,上屈服点一般不稳定,对实验条件很敏感,采用下屈服点C 为s σ。如图l.2所示。另一类是没有明显的屈服流动阶段,例如中碳钢、某些高强度合金钢及某些有色金属等,则规定以%2.0残余应变时的应力作为条件屈服极限,记为2.0σ。

2.按照原始断面计算的应力应变曲线与按瞬时断面计算的真应力图。

在小弹塑性阶段,两者基本一致,当塑性变形较大时,两种拉伸曲线才有明显的差异。这时应力应变曲线必须以真应力图表示。

令拉伸试验的瞬时长度为l ,原始长度为0l ,则瞬时应变(也称“对数应变”或“自然应变”)用∑表示。因 l

dl d =∑,因此有 )ln(00l l l dl l l ==∑?

常用的条件应变(工程应变) 0

0l l l -=

ε 自然应变与条件应变的关系为 )1ln(ε+=∑

在小变形阶段,∑与ε几乎相等,但随着应变量的增加,两者差别越来越大,如图1.3所示。

2.拉伸与压缩曲线

对一般金属材料,拉伸与压缩试验曲线在小弹塑性变形阶段基本重合,但在大塑性变形阶段就有显著差别(压缩曲线略高于拉仲曲线)。但精确的试验发现某些高强度合金钢的s σ和ε在拉伸和压缩情况下也有区别,因此对于一般金属材料,在变形不大的情况下,用简单拉伸试验代替简单压缩试验进行塑性分析是偏于安全的。但对拉伸与压缩曲线有明显区别的材料如铸铁、混凝土则将需作专门研究。因此下面继续讨论拉伸图的主要塑性特性。

图 1.3 工程应变和自然应变

4.应力极限点

图1.2所示A 点为比例极限p σ,应力略有增加到达B 点为弹性极限e σ,是材料在弹性范围内习用的界限。应力在B 点以前应力应变关系是线性的;应力在B 点以后应力应变关系是非线性的,并且曲线发生显著的弯曲。能观察到永久变形时的应力点C 即屈服应力s σ。由B 点到C 点可以认为是晶粒逐步从弹性状态开始屈服到全部达到塑性状态的过渡。实际上p σ、e σ 、s σ三者相差十分微小,可近似地看作—个点,因此,在塑性理论中将C 点作为塑性变形的起点。

(a) (b)

图1.4 二次加载应力应变图

5.卸载时的应力与应变持征

应力超过屈服极限以后将拉伸载荷卸去,卸载过程中应力应变曲线BD 近似平行于原来的弹性阶段AO ,如图1.4(a)。

?ton E =

因此简单拉伸时的卸载规律为

卸卸E εσ=

在应力点B 处把载荷卸除,所得卸应变卸ε即图1.4(a)中DC 部分。这部分可恢复的变形属弹性变形,用e ε表示,而残留变形OD 属塑性变形,用p ε表示。这说明应力点B 的总变形ε等于能恢复的掸性变形加残余的塑性变形。即

=εe ε+p ε

因此超过弹性极限以后,每一应力点的总应变为弹性应变与塑性应变两部分所组成。

6.卸载后再加载的特征

超过弹性极限的应力点B 卸载后再加载。由实验观察,有一段弹性变形,接着一段小的塑性变形,当应力接近于'B 点处较急地拐弯(见图1.4(a))。B 'B 相效甚微(允许的误差之内),可看作重合(见图1.4(b)),则B 点即为第二次加载的新屈服应力。实验说明第二次加载过程中弹性系数仍保持不变,使弹性极限及屈服极限有升高的现象,并且其升高的程度与塑性变形的历史有关,决定于以前的塑性变形程度。这种弹性极限与屈服极限提高的性质称为“强化”或“加工硬化”。εσ-曲线的切线斜率越大则硬化效应也越显著。如再继续加载,则应力应变图仍沿原曲线BF 进行。

7.卸载后反向加载特征

如卸载后进行反问加载(即拉伸变为压缩),首先出现压缩的弹性变形,随后产生塑性变形,但这时新的屈服极限有所降低,即压缩应力应变曲线比通常的压缩试验曲线弯得早了,见图1.5。压缩屈服极限为's σ,卸载后反向加载的

屈服极限为"

s σ,且

's σ"s σ<

这种使压缩屈服极限降低的现象稠;为鲍辛

格(r Bauschinge

)效应。要考虑这种因素对理性 问题的处理会带来很大的困难,因此多数塑性理

论都不考虑。但这种效效使材料具有各向异性的

性质,对于有往复加载的情况应予以考虑。

图1.5 Bauschinger 效应

(二)静水压力(各向均压或均拉的应力状态)试验

1.关于体积变化

实验指出:在静水压力作用下,固体金属的体积变化基本是弹性的,去掉压力后体积变形可以恢复,不呈现残余的体积变形。并且在塑性变形过程中,总的体积变化(密度改变)是微小的。勃里奇曼(Bridgman )曾作各向均压试验,当压力到达15000大气压,提出各向均压力p 和单位体积变化之间关系为; )11(11

p k p k -=θ, 式中k 为体积压缩模量,1k 为派生模量,这些模量对不同的金属数值不同。当p 约为金属的屈服极限时,勃里奇曼的公式与弹性规律 k P /=θ偏差约1%,完全可以忽略1k 的影响,按弹性规律考虑。在10000大气压力下用弹簧钢作试验,体积仅缩小2.2%,镍仅缩小1.8%。但也有—些松散结构的碱性金属,如锶在4105.1?大气压力下,体积改变约为1/3,这时体积变化显然不能忽视。因此对一般金属材料在塑性变形很大时,忽略体积变化认为体积不可压缩是合理的。

2.静水压力对屈服极限的影响

试验证明静水压不影响屈服。考克 (Cook )曾作如下试验。在一容器中放置一弹簧,加压力p 到屈服,根据屈服时的载荷p 可以换算出弹簧材料的屈服极限。然后,在容器中加液压,重复上述试验,再求出弹簧材料的屈服极限,发现弹簧的屈服极限值不随容器中液压的升高而改变。如果,卸去载荷p 且不断提高液压,则材料并不屈服。由此试验说明静水压力不影响初始屈服应力的数值。另外,勃里奇曼也测定了各种钢试件在铀向拉伸与静水压力同时作用下的应力应变曲线,作到均值应力稍大于拉伸应力为止,也证实了静水压力对初始屈服极限的影响很小,可以忽略不汁。但此结论只能用于致密材料,对于像铸造金属、矿物等材料则静水压力影响就比较大,不能忽略。注意所述试验资料是由各向均压的情况下得到,实际上各向均拉的试验很难做到,出于考虑到拉伸与压缩的屈服性质相同而推广到各向均拉的情况,因此“静水压力”包含各向均拉的含意是带有假设性的。

值得指山:变形速度、时间、温度等因素对应力应变曲线都有影响.但这些影响在一定条件下才比较明显。对于金属材料在普通的变形速度及常温条件下影响不大。上述试验也即是在普通变形速度及室温下进行的。

1.4 材料拉伸曲线的简化与经验公式

一、应力应变曲线的简化

材料在屈服之后,应力应变曲线呈非线性,即使建立了理想化的模型问题仍很复杂,因此在解决具体问题时,常常对应力应变曲线进行简化。

有的材料有明显的屈服流动阶段,当流动阶段比较长,或者硬化程度比较小可以忽略硬化的影响o这时都可以采用理想弹塑性材料模型如图1.6(a)。应力到达屈

σ。服极限以前,应力应变呈线性关系,应力到达屈服极限以后,应力保持为常数

s

当所研究问题:变形比较大,相应的弹性应变部分可以忽略,可采理想刚塑性模σ,如图l.6(b)所示。此外,对于硬化材料,也有将塑性硬化部型,则应力恒为

s

分用直线代替,称为线性便化弹塑性材料,如图1.6(c)。岩变形比较大,弹性应变部分比较小可以略去,成为线性硬化刚塑性材料模型,如图1.6(d)。对于实际问题采用哪一个模型就要看所使用的材料及实际问题所属的领域而定。

二、应力应变曲线经验公式

在塑性理沦中为了便于求解,可以应用应力应变曲线的经验公式。但这些公式是按对数应受定义的。假如用于解决弹塑性问题,女,果塑性应变与弹性应变属同量级时,用工程应变更方便。

(a) (b)

(c) (d)

图1.6 拉伸应力应变简化曲线

(a)理想弹塑性材料 (b)理想刚塑性材料 (c)线性硬化弹塑性材料 (d)线性硬化刚塑性材料

(一)鲁得维克(Ludwik)公式

鲁得维克公式为

n s ∑+=γσσ (1.4-1) 式中 γ、n 是常数。

当n =1时,为冷作硬化材料,半硬化铝能很好吻合,如图1.6(d)。公式(1.4-1)表示应力达到屈服点s σ之前材料为刚性(不变形),随后应变硬化率为常数。

当o <n <1时,曲线如图l.7(a)所示,表示弹性应变被忽略的幂硬化情况。 当常数项s σ为零肘,表达式变成n ∑=γσ,为如图1.7(b)所示的幂次曲线,是目前应用较广的幂硬化材料,并与多数工程材料的实际性能相接近,因此便于工程实际应用。但在0=∑时杨氏模量为不定值,因而对应变较小的区域近似性差些,对应变大的问题,如用于铝等强化材料近似性较好。

(a) (b)

图1.7 鲁得维克硬化曲线

(a)忽略弹性应变的硬化曲线 (b)常数项为零的幂次硬化曲线

(二)斯韦特(Swift )公式

斯韦特公式为

n B A )(∑+=σ (1.4-2) 式中 A 、B 、n 是常数,由材料性质所决定。

由(1.4-2)式可见,当0=σ时,B -=∑,如图1.8所示。(1.4-2)式表示材料内简单拉伸到应变B 以后应变硬化的真应力一自然应变之间的关系。而∑是测得B 以后的应变。在实际应用中,以图l.8所示σ>0时的曲线来描述应力应变硬化曲线。此式适用于大应变的情况,例如拉伸失稳问题的研究。当B 为零时即为前述幂次曲线。

图1.8 斯韦特硬化曲线 图1.9 线性组合应力应变曲线

(三)普拉格(ager Pr )公式

普拉格公式为 )tanh(s

s E σσσ∑= 该方程所给出图形没有尖锐的屈服点,它们从弹性区到塑性区给出一个逐渐的过渡。曲线开始时有斜率E ,弯过来以后渐渐地趋近于应力s σ,且变形在弹性量织时应力就很快到达s σ。

(四)线性组合的折线公式

线性组合的折线公式用两个或更多的线性应力应变表达式来趋近真实的应力应变曲线。如图1.9所示折线OBC ,其公式为

∑=E σ s σσ< ∑='E σ s σσ≥ 式中 E 、'E 分别为材料的弹性模量和硬化模量。

1.5 弹塑性力学的发展及研究方法

(一)弹性力学的发展

近代弹性力学,可认为始于柯西(Cauchy ,A . L .)在1882年引进应变与应力的概念,建立了平衡微分方程、边界条件、应变与位移关系。它的发展进程对促进数学和自然科学基本理论的建立和发展,特别是对促进造船、航空、建筑、水利、机械制造等工业技术的发展起了相当重要的作用。柯西的工作是近代弹性力学以及近代连续介质力学的一个起点。之后,世界各国的一大批学者相继做出了重要贡献,使得弹性力学迅速发展起来,并根据实际的需要形成了一些专门分支学科,如热弹性力学,弹性动力学,弹性系统的稳定理论,断裂力学,损伤力学,等等。

弹性力学为社会发展、人类的文明进步起了至关重要的作用。交通业、造船、铁路建筑、机械制造、航空航天事业、水利工程、房屋建筑、军事工程等的发展,都离不了力学工作者的贡献。从18世纪开始.涌现出了一大批力学家,像柯西、欧拉(Euler L.)、圣维南(Saint-Venant)、纳维(Navier)、克希霍夫(Kirchoff,G.R.)、拉格朗日 (Lagran8e,J. L.)、乐甫(Love,A.E.H.)、铁木辛柯(Timoshenkn,S.P.)及我国的钱学森、钱伟长、徐芝纶、胡海昌等。他们都对弹性力学的发展做出了贡献,他们的优秀著作培养了一代又一代的工程师和科学家。

弹性力学虽是一门古老的学科,但现代科学技术的发展给弹性力学提出了越来越多的理论问题和工程应用问题,弹性力学在许多重要领域展现出它的重要性。本书将介绍其基本原理和实用的解题方法。

(二)塑性力学的发展

塑性力学是一门由生产中发展的科学,其研究可以说是1864年屈雷斯加(Tresca)公布了关于冲压和挤压的初步试验报告提出最大剪应力屈服准则开始的。1870年圣维南应用屈雷斯加屈服准则计算理想塑性图柱体受扭转或弯曲时的弹塑性应力,并建立了二维流动中平面应变方程式。同一年列维 (Levy)又推广了圣维南的概念列出三维情况下的方程式。

此后,塑性力学的发展是缓慢的,然而20世纪上半叶是塑性力学发展最旺盛的时期,在这一时期,静力学问题得到了完善的发展,理想塑性的平面问题和轴对称问题都可得到完全解。到1909午哈尔 (Haar)和卡门(T. Von Karman)从某些变分原理出发建立塑性理论方程式。总的来说在20世纪初人们已在实验研究工作中提出了各种屈服准则。不过对大多数金属而言,最令人满意的是密赛斯(Mises)在1913年发表的准则,同时密赛斯还独立地提出类似于列维的方程。但是自从密赛斯的屈服准则及应力应变关系发表以后,引起强烈的反应,使塑性力学得到重大的进展。直到1926年罗德 (Lode)证实了列维—密赛斯应力应变关系在一阶近似下是准确的。1924年汉基(Henky)又采用密赛斯屈服准则提出另一理论,对于解决塑性微小变形问题很方便。以后,1920年路易斯(Reuss)依照普朗特(Pandtl)观点,考虑了弹性应变分量,把普朗特所得二阶方程式推广到三阶表达式,使列维—密赛斯理论完善化。同时,普朗特和汉基对平面塑性力学问题求解方法及滑移线场理论的贡献是有重要意义的。1937年那达依 (Nadai)考虑了材料的加工硬化,建立了大变形情况下的应力应变关系。1943年依留申(Илъюшин)的“微小弹塑性变形理论”相继问世,由于计算更方便得到欢迎。1949年巴道夫、布第扬斯基 (Batdorf,Badiansky)又从晶粒滑移的物理概念出发提出滑移理论。在这

时期塑性增量理论已日臻完善,1950年前后,曾应用塑性势理论,讨论了与满足杜拉克(Drucker)假定的屈服条件(即屈服准则)相联系的一般应力应变关系。原来以密赛斯屈服条件作为塑性势函数,1953年由考依特(Koiter)和普拉格 (Prager)提出与屈雷斯加屈服条件相关联的流动法则,这给极限分析带来极大的方便。可以讲20世纪50年代,塑性力学的研究在许多国家得到重视,开展大量的理论和实验的研究工作。另外,在上世纪60年代前后对于结构承载能力的研究有很大发展。特别是杜勒格、普拉格等对三维应力状态提出的极值原理,从而引出的上限及下限定理,使得由一维问题的研究推广到一般连续体的极限分析。总之,上世纪发展﹞强化理论,极限分析理论,本构理论,安定性理论,多种类型的变分原理,极值原理以及位移限界定理等等。从此塑性力学得到多方面的大发展,基本上完善了塑性力学学科的理论框架。

我国学者在塑性力学的发展中曾做出了不少重要贡献,且至今仍进行着新的研究课题。北京大学,清华大学,中国科技大学,中国科学院力学研究所,上海交通大学,大连理工大学、华中科技大学以及太原理工大学等单位的学者们在研究结构塑性分析,弹塑性动力屈曲,结构动力响应分析,弹塑性断裂力学.弹塑性损伤力学,塑性本构理论,塑性成形力学,复合应力波传播理论等方面以及冲击屈曲理论和弹塑性结构动力系统的稳定性,分叉,非规则运动,混沌运动等方面部有重要研究成果。

面临科学技术的飞速发展的21世纪新时代,塑性力学亟待扩大理论体系,与相邻学科协调发展有众多亟待研究解决的问题,例如塑性有限变形理论,特别是在强动载荷作用下的有限变形的基本塑性行为,本构理论,非规则运动的控制理论以及塑性力学和材料科学与工程实际有密切的关系,从而引发了塑性变形与材料内部结构的关系,所谓应变场的尺度效应,应变梯度塑性理论的研究等等。这些问题都离不开创造新的实验手段和新的实验技术,发现新现象,建立新模型、新理论。

塑性力学的发展与工程应用有着直接密切的关系。为了充分发挥材料的潜力,最早发展了塑性极限设计,在建筑结构工程、船舶、桥梁工程中得到了广泛应用;同时,在材料的拉拔、压延等成形、铸造工业方面,也发挥了塑性力学的重要作用。塑性力学有着广阔的应用前景。在短时强载荷作用下的弹塑性体,能量的吸收主要由其塑性变形吸收。有限变形条件下的塑性动力学将在塑性成形动力学、穿甲力学等领域有着重要应用。

当材料的本征长度为微米量级,应变梯度的影响必然表现在微机电系统以及信息材料、微元件的力学行为。诸如微细元件的断裂、损伤、强度及稳定性等等

问题。以应变梯度理论为核心的微结构塑性力学将会迅速得到发展,应用于高新技术的众多领域。

(三) 弹塑性力学问题的研究方法

弹塑性力学问题的研究方法可分为三种类型:

(1)数学方法

就是用数学分析的工具对弹塑性力学边值问题进行求解,从而得出物体的应力场和位移场等。在材料力学中求解超静定问题时,从静力平衡、变形几何关系和应力应变物理关系三个方面来建立求解超静定问题的基本方程,用“应力法”或“位移法”来求解各种具体超静定问题。上述方法对于分析弹塑性力学问题同样是适用的。因为弹塑性力学的基本内容,同样可归结为建立基本方程,根据基本方程求解各类具体问题。

建立弹塑性力学的基本方程所采用的方法同材料力学相比更—般化了。它不是对某个构件或结构建立方程,而是对从物体中截取的单元体建立方程,由此建立的是偏微分方程,它适用于各种构件或结构的弹性体。

一般来说,在外力作用下,弹塑性体内部各点的应力、应变和位移是不同的,都是位置坐标的函数。这些函数关系只用平衡条件是不能求得的,所以,任何弹塑性力学问题均为超静定问题,必须从静力平衡、变形几何关系和应力应变物理关系三个方面来考虑。即对单元体用静力学条件,得到—组平衡微分方程;然后考虑变形条件,得到—组几何方程,最后再利用材料的物理关系,称之为本构方程得到表示应力与应变关系的物理方程。此外,在弹塑性体的表面上,还必须考虑体内的应力与外载荷之间的平衡,从而得到边界条件。根据边界条件求解上述方程.便得各种具体问题的解答。这就是说,可根据足够数目的微分方程和定解条件,来求解未知的应力、应变和位移。因此,在用弹塑性力学的方这种方法要解含未知量的偏微分方程,对很多问题的精确求解难度很大,故常采用近似解法。例如,基于能量原理的变分方法,其中主要是里茨(Ritz,w.)法,伽辽金(Galerkin,B.G.)法等。对于弹性力学问题,还有所谓的逆解法和半逆解法。

另一种数学方法是数值方法。特别是广泛应用电子计算机以后,数值方法对大量的弹性力学问题十分有效。在数值方法中,常见的有差分法、有限元法及边界元法等。目前已广泛应用于弹塑性力学的各类问题的计算中。尤其是塑性力学方程是非线性的,因而在应用近似计算方法方面引起人们的注意。近年来由于计算技术的发展,应用增量理论进行近似计算的讨论己比较多。目前有限元法在弹塑性理论已广泛应用,可以顶计用有限元法和其他数值计算万法进行弹塑性应力

分析将有广阔的前途。

(2)实验方法

就是利用机电方法、光学方法、声学方法等来测定结构部件在外力作用下应力和应变的分布规律,如光弹性法、云纹法等。

(3)实验与数学相结合的方法

这种方法常用于形状非常复杂的弹塑性结构。例如对结构的特殊部位的应力状志难以确定,可以用光弹性方法测定,作为已知量,置入数值计算中,待别是当边界条件难以确定时,则需两种方法结合起来,以求得可靠的解答。

本书主要介绍数学方法。

2014华中科技大学工程力学试卷

华中科技大学 《工程力学实验》(A 卷,闭卷,90分钟) 2013-2014年第2学期(机械平台) 班级___________________ 学号____________________姓名____________________ 一.(本题共30分) 简答题(含选择和问答题) 1. 选择题(6分): 试件材料相同,直径相同,长度不同测得的断后伸长率δ、截面收缩率ψ是( )。 A .不同的 B. 相同的 C. δ不同,ψ相同 D .δ相同,ψ不同 2. 选择题(6分): 铸铁压缩实验中,铸铁的破坏是由( )引起的。 A 正应力 B 与轴线垂直的切应力 C 与轴线成45°的切应力 D 以上皆是 3. 选择题(6分): 铸铁圆棒在外力作用下,发生图示的破坏形式,其破坏前的受力状态如图( )。 4. 选择题(6分): 如图示,沿梁横截面高度粘贴五枚电阻应片,编号如图,测得其中三枚应变 片的应变读数分别为80εμ、 38εμ和-2εμ,试判断所对应的应变片编号为( )。 A .1、2、3; B .5、4、2; C .5、4、3; D .1、2、4。

5. 在电测实验中,应变片的灵敏系数为片K =2.16时,若将应变仪的灵敏系数设置为仪K =2.30,在加载后,应变仪读数ds ε=400 με (单臂测量情况下),则测点的实际应变ε为多少?(6分) 6. 分析低碳钢拉伸曲线与扭转曲线的相似处和异同点?(6分) 二.在低碳钢拉伸实验中,采用初始直径d 0=10mm 的标准圆截面试样,峰值载荷F b =35.01kN ,其断裂时的载荷F d =29.05kN, 断面收缩率为64.1%。请据此计算该试样的抗拉强度和断裂时破坏面的真实正应力。(15分)

华中科技大学结构力学试卷及答案

华中科技大学土木工程与力学学院 《结构力学》试卷 2003-2004学年度第一学期 姓名______________专业________________班级____________成绩______ 1、用位移法计算图示结构,EI 为常数。 (只需做到建立好位移法方程即可)。(15分) 2、用力矩分配法作图示对称结构的M 图。已知:40/q kN m =,各杆EI 相同。(15分) 3、已知图示结构B 点转角64 11B EI θ= ,各杆的EI 为常数,作M 图,8P kN =,12/q kN m =。 (13分)

q 4、图示结构,用矩阵位移法计算时(先处理法,计轴向变形),请标注编码,并给出各单元的定位向量。(10分) 5、请求出图示结构等效结点荷载列阵。(15分) q 6、请求出图示结构C 点的转角。(12分)

A B EI C φφ 7、求两端固定梁的极限荷载u P F ,已知梁截面的极限弯矩87.1, 4.37u M kN m L m =?=。(12分) A B 8、请确定位移法计算该题时的未知量数,并画出基本体系。(8分) 华中科技大学土木工程与力学学院 《结构力学》试卷 2004-2005学年度第一学期 姓名______________专业________________班级____________成绩______ 1、用位移法计算图示结构,并绘弯矩图。(25分) q q a a 2、请用力矩分配法作图示结构的弯矩图,并求D 点竖向位移。(25分) 3、指出图示结构位移法的未知量个数(最少),并在图上标出。(每题5分,共10分) 1)

华科 流体力学-参考试题及解答2

参考试题2 注:水密度31000kg /m ρ=,空气绝热指数 1.4γ=,空气气体常数287 J/(kg K)R =?,重力加速度29.8m/s g =。 一.(14分)如图所示,矩形闸门宽120cm ,长90 cm ,顶端悬挂于点A ,闸门在自身重量的作用下保持关闭。假设闸门总重9800N ,重心位于点G 。试确定刚可以使闸门开启的水深h 。 解:建立如图所示的坐标系xoy ,图中 l h h = ? =sin .601155 y l e h y y J y A y be y be y e y c D c cx c c c c c =- =-=+=+?=+2 1155045112112 32.. 45.0155.10675.01212-==-∴h y e y y c c D 45.0155.10675 .045.0)(2-+=-+=∴h y y e AD c D 2.19.0)60sin 2 (???- ?==e h g A gh P c ρρ而 闸门刚开启时,有:G P AD ?=?03. 即:980398092600912045006751155045...(.sin )..(....)?=?-?????+-h h 化简得:h h 2 127 03440-+=.. 解上面这个方程得:h m 1088 =.(), h m 2039=.()(不合题意,舍去) 故,刚使闸门打开的水深h 为0.88m 。

二.(14分)如图所示,两股速度同为V 的圆截面水射流汇合后成伞状体散开。假设两股射流的直径分别为1d 和2d ,并且不计重力影响,试求散开角θ与1d 和2d 之间的关系;又如果127.0d d =,试计算散开角θ。 解:如图6所示,在1-1(或2-2)断面及3-3断面列伯努利方程,可得: V V V V ==321)( 选取1-1、2-2及3-3断面间的液体所占据的空间做为控制体,有: () 2221214 d d V Q Q Q +? =+=π 在x 方向列动量方程,有: ()0cos 2211=--=∑V Q V Q QV F x ρρθρ ()212211cos Q Q V V Q V Q QV -=-=θ即 2 2 2 12 2 2121cos d d d d Q Q Q +-=-=∴ θ 3423.049.049.0cos 7.02 1 212 12112=+-==d d d d d d θ时当 7098.69≈=∴ θ 三.(12分)用图示水泵把低池中的水泵入高池,两池水面高度差30m H =,吸水管长112m L =,压水管长2100m L =,两管直径250mm d =,沿程损失系数0.02λ=,吸水管局部损失系数 5.0ζ=,不计压水 管局部损失。假设流量3 0.1 m /s Q =,水泵效率 0.7η=,水泵进口截面真空压强为6.5m 水柱,试求水泵的最大安装高度s h 和水泵功率N 。

弹塑性力学基本理论及应用 刘土光 华中科技大学研究生院教材基金资助 第二章应力状态

第二章 应力状态理论 2.1 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作用的物体用一平面A 分成A 和B 两部分(图2.1)。如将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上的内力矢量为F ?,则内力的平均集度为F ?/S ?,如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σo ,即 σ=??→?S F S 0lim 这个极限矢量σ就是物体在过c 面上点P 处 的应力。由于S ?为标量,故,σ的方向与F ?的 极限方向一致。内力矢量F ?可分解为所在平面 的外法线方向和切线方向两个分量n F ?和s F ?。 同样,应力σ可分解为所在平面的外法线方向 和切线方向两个分量。沿应力所在平面 的外法线方向n 的应力分量称为正应力,记为n σ,沿切线方向的应力分量称为切应力,记为 n τ。此处脚注n 标明其所在面的外法线方向,由此, S ?面上的正应力和切应力分别为 在上面的讨论中,过点P 的平面C 是任选的。显然,过点P 可以做无穷多个这样的平面C ,也就是说,过点P 有无穷多个连续变化的n 方向。不同面上的应力是不同的。这样,就产生了如何描绘一点处的应力状态的问题。为了研究点P 处的应力状态,在点P 处沿坐标轴x ,y ,z 方向取一个微小的平行六面体(图2.2),其六个面的外法线方向分别与三个坐标轴的正负方向重合,其边长分别为x ?,Δy ,Δz 。假定应力在各面上均匀分布,于是各面上的应力便可用作用在各面中心点的一个应力矢量来表示,每个面上的应力矢量又可分解关一个正应力和两个切应力分量,如图2.2所示。以后,对正应力只用一个字母的下标标记,对切应力则用两个字母标记*其中第一个字母表示应力所在面的外法线方向;第二个字母表示应力分量的指向。正应力的正负号规定为:拉应力为正,压应力为负。切应力的正负早规定分为两种情况:当其所在面的外法线与坐标轴的正方向一致时,则以沿坐标轴正方向的切应力为正.反之为负;当所在面的外法线与坐标袖的负方向一致时,则以沿坐标轴负方向的切应力为正,反之为负。图2.2中的各应力分量均为正。应力及其分量的单位为Pa 。 图2.1 应力矢量

结构力学大作业(华科)

一、任务 1.求解多层多跨框架结构在竖向荷载作用下的弯矩以及水平荷载作用下的弯矩和 各层的侧移。 2.计算方法: (1)用近似法计算:水平荷载作用用反弯点法计算,竖向荷载作用采用分层法和二次力矩分配法计算。 (2)用电算(结构力学求解器)进行复算。 3. 就最大相对误差处,说明近似法产生误差的来源。 4. 将手算结果写成计算书形式。 二、结构形式及各种资料 1. 计算简图:如图1所示。 2. 基本计算参数 底层柱bXh(mm) 其它层bXh(mm) 边梁bXh(mm) 中间梁bXh(mm) 500X500 450X450 250X450 250X450 材料弹性模量: 72 3.210/ h E kN m =? 竖向荷载: 2 1 =23/ g kN m,2 2 =20/ g kN m 水平荷载: =32 p F kN 1,2 =18 P F kN 3. 荷载分组: (1)计算水平荷载(见图2);(2)计算竖向恒载(见图3); L1L2H1 H2 H2 H2 H2 F F F F F 图1 计算简图图2 水平荷载作用

g2 g1 g1 g1 g1 q2 q1 图3 竖向荷载作用 三、计算内容 ?水平荷载 1、反弯点法 (1)求柱的剪力 由所给数据可得各层梁柱的线刚度(单位:kN·m)如下表: i底柱i其它柱i左梁i右梁 34792363331270825417 第五层柱;F Q14 = F Q25 = F Q36 = 18/3kN = 6kN 第四层柱;F Q47 = F Q58 = F Q69 = 50/3kN 第三层柱;F Q710 = F Q811 = F Q912 = 82/3kN 第二层柱;F Q1013 = F Q1114 = F Q1215 = 114/3kN 第一层柱;F Q1316 = F Q1417 = F Q1518 = 146/3kN (2)求柱的弯矩 第五层柱;M 14 = M 41 = M 25 = M 52 = M 36 = M 63 = 6×3/2 = 9kN·m 第四层柱;M 47 = M 74 = M 58 = M 85 = M 69 = M 96 = 50/3×3/2 = 25kN·m 第三层柱;M 710 = M 107 = M 811 = M 118 = M 912 = M 129 = 82/3×3/2 = 41kN·m 第二层柱;M 1013 = M 1310 = M 1114 = M 1411 = M 1215 = M 1512 = 114/3×3/2 = 57kN·m 第一层柱;M 1316 = M 1417 = M 1518 = 146/3×4.8/3 = 77.87kN·m M 1613 = M 1714 = M 1815 = 146/3×2×4.8/3 = 155.74kN·m (3)求梁的弯矩 分别取结点1、2为隔离体 1 M12 ∑M1=0 M12=M14=9kN·m M14

塑性理论的基本假设

塑性理论的基本假设 在金属成形中应用塑性理论的目的是要探索金属成形的塑性变形机理。这样,调研可提供以下的分析和判断:(a)金属的流动性(速度、应变和应变率),(b)温度和热传导,(c)材料强度的局部变化或流动应力和(d)应力,成形中的负载、压力和能量。这样变形机理就可提供决断:金属如何流动,借助塑性成形可如何去获得所希望的几何形状以及用成形方法生产出的零件具有什么样的机械性能。 为了建立金属变形的可控制的数字模型(曲线图形),作出以下几个简化的但是合理的假设: 1)忽略弹性变形。然而当必要时,弹性复原(例如,弯曲回弹情况)和加工中的弹性弯曲(例如,成形加工精度非常接近公差)定要考虑; 2)作为一种连续体来考虑材料变形(如结晶,而晶间疏松和位错是不加考虑的); 3)单向拉伸或压缩试验与多向变形条件下的流动应力相互有关; 4)各向异性和Bauschinger效应忽略不计; 5)体积保持恒定; 6)用简化法来表示摩擦,如用Coulomb's定律法或用恒剪切应力法。这将在后面进行讨论。 在压缩应力状态下的金属特性更加复杂。这可以从一金属圆柱体试样在两个模板之间被压缩时怎样发生变化的分析中可以看得出来。当工件达到金属的屈服应力的应力状态时,塑性变形就开始发生。当试样高度降低时,试样随着横截面的增加而向外扩展。这种塑性变形在克服工件和模板的两端之间的摩擦力中发生。该金属变形状态是受到其复杂应力体系所支配。 这应力体系可从单一的、单向的到三维的即三向发生变化。有一个由模板施加的应力和有两个由摩擦反力引起的应力。如果模板与工件间无摩擦,工件就在单向压应力下发生屈服,正像其受到拉伸载荷作用时的情形一样。而且压缩的屈服应力跟拉伸屈服应力极端一致。由于摩擦力的存在而改变了这一状况,故需要更高的应力才能引起屈服。为了找到拉伸屈服应力与三向应力状态下产生屈服时的应力值之间的数量关系,已经做了很多尝试。对于所有的金属在三向载荷作用下的各种情况下,包括各种塑性屈服试验情况中均未发现单一的(应力、应变)关系。已经存在的若干个建议使用的塑性屈服理论,其中每一种理论只能在一定的范围内有效。在考虑使用这些理论之前,研究三向应力体系并创立既利用数量关系又利用图解技术的解题方法,那是必要的。 对于三维应力状态,最方便而有效的方法就是利用莫尔圆,当研究塑性屈服的各种复杂情况时,你可以很容易地运算和进行处理。 The stress system has altered from single, uniaxial to three-dimensional or triaxial. There is one applied stress from the platens and two are induced by the friction reaction. If there was no friction between the platens and the workpiece, then yielding would occur under a uniaxial compressive stress exactly as in the case of tensile loading. The yield stress in compression would then coincide exactly with the yield stress in tension. The presence of friction, however, alters the situation and a higher stress is required to cause yielding. Many attempts have been made to find

华中科技大学研究生课程考核及成绩管理办法doc

校研【2009】34号 华中科技大学研究生课程考核及成绩 管理办法 为进一步规范研究生课程考核与成绩管理,提高培养质量,特制定本办法。 一、考核方式 1、课程考核方式分为考试和考查两种。考试一般通过笔试、课程论文、小型设计等形式对研究生课程学习给出评价,其成绩用百分制表示。考查一般是通过对研究生平时学习情况(包括实验、作业、课堂讨论、读书报告、小论文等)、专业实践、文献阅读等的考核,判断该课程的学习是否合格,可用百分制,也可用合格或不合格来表示。 2、学位课程采用考试方式;非学位课程可以采用考试方式,也可以采用考查方式;研究环节采用考查方式。 二、考核安排与要求 1、课程考核一般安排在课程教学结束后进行。公共课考试安排由研究生院培养处在研究生院网页上公布;其他课程考核安排由开课院(系、所)确定,但须提前一周将考核安排(含电子版)报研究生院培养处备案。

2、研究生公共课程考核必须按照研究生院安排的时间、地点进行,否则一律无效。 3、考核内容由课程组根据教学大纲的要求拟定,由院(系、所)主管负责人审定并签字认可。考核内容要求打印在《研究生考试试题》上。 4、考试试卷保密管理参照《华中科技大学课程考试试卷保密管理办法》(校教[2005]8号)执行。试卷应在《关于指定我校试卷印制单位的通知》(校办发[2005]8号)中指定的印制单位印刷。 5、课程考核一律使用“研究生课程考核答题纸”。考生在答题纸上必须清楚地注明学号、姓名和院(系、所)名称。对不完整填写答题纸的答卷,任课教师可以不予评分。 6、主、监考人员和考生必须严格执行和遵守《华中科技大学研究生考场规则》(附件1)。 7、研究生院必要时可要求某些课程考核采取考生考场签到制度。 三、成绩评定 1、阅卷教师必须认真负责地评阅考核试卷,严格按试题评分标准进行评分,不得漏评、漏记、错评、错记和送分、加分。 2、考核方式确定为考试的课程成绩由考试成绩和平时成绩组成。考试成绩和平时成绩所占比例为7:3左右。平时成绩必须有书面记录。 3、研究生公共课任课教师须在考试后二周内完成阅卷,并在HUB系统上提交电子成绩数据后,将“研究生课程成绩登记表”(以下简称成绩登记表,由HUB系统自动生成)报送研究生院培养处教学管理办公室;成绩报送完毕后一周内试卷交课程负责人所在院(系、所)保管。研究生非公共课任课教师须在一周内完成阅卷,并将成绩登记表、试卷报送课程负责人所在院(系、所)。 4、任课教师填写的成绩登记表属永久性保存件,由研究生院、各院(系、所)集中保管。成绩登记表必须注明考试日期并由任课教师签名,否则院(系、所)可以拒收。 5、研究生院在收到任课教师报送的公共课课程成绩登记表后3个工作日内完成成绩录入,并分院(系、所)下发成绩单。各院(系、所)收到任课教师提交的非公共课课程成绩登记表后1周内完成成绩录入。 四、试卷管理

华科工程力学考试试卷

一、如图所示结构,杆AC 、CD 、DE 铰链连接。已知AB=BC=1m ,DK=KE ,F =1732kN ,W =1000kN ,各杆重量略去不计,试求A 、E 两处的约束力。(12 分) 一、如图所示结构,杆AB 、CD 、AC 铰链连接,B 端插入地内,P =1000N ,作用于D 点,AE=BE=CE=DE=1m ,各杆重量略去不计, 求AC 杆内力?B 点的反力?(12分) D

二、 如图,阶梯钢杆的上下两端在T 1=5℃时被固定,杆的上下两段的面积分别为A 1=5cm 2, A 2=10cm 2,当温度升至T 2=25℃时,求各杆的温度应力。(线膨 胀系数C 0 610512/.-?=α,钢杆材料弹性模量E=200GPa ,不计杆自重,) (12 分)

二、如图,杆二端固定,横截面面积为A =10cm 2,在截面C 、D 处分别作用F 和2F 的力,F =100kN ,弹性模量E=200GPa 。不计杆自重,求各段应力。(12分) 解: 受力分析如图, 建立平衡方程, A B AC CD DB A A AD CD B BD A B A AC A CD B BD 23(2)0 (3)0.4 ()0.50.37 :116.7kN 6 183.3kN (4)AC : 116.7MPa()()CD : 6.7MPa() BD :183.3MPa(F F F F F F F F EA EA F EA F F F F A F F A F A δδδδδδσσσ+=+=++=?-?==-?======-====变形协调条件, 力与变形的物理关系, 联立求解得各段的应力为,段拉段拉段)压 2 F B F D 2B F A

弹塑性力学基本理论及应用__第八章_能量原理及其应用

第八章 能量原理及其应用 弹塑性力学问题实质上是边值问题,即求解满足一定边界条件的偏微分方程组。然而只有对一些特殊的结构在特定加载条件下才能找到精确解,而对于一般的力学问题,如空间问题,泛定方程为含有15个未知量的6个偏微分方程,在给定边界条件时.求解是极其困难的,而且往往足小对能的。因此,为了解决具体的工程结构力学问题,目前都广泛应用数值方法,如有限元法、无限元法、边界元法、无网格化法及样条元法等等。这些解法的依据都是能量原理。本章将讨论利用能量原理和极值原理求解弹塑性力学问题的近似解法。 本章共讨论五个能量原理。首先是虚位移原理,由虚位移原理推导出最小势能原理,其次介绍虚应力原理,和由虚应力原理推导出最小余能原理。另外,还简单介绍最大耗散能原理。本章还讲述了根据上述的能量原理建立的有关弹性力学问题的数值解法。 8.1 基本概念 1.1 物体变形的热力学过程 由第四章知,物体在外界因素影响下的变形过程,严格来说都是一个热力学过程。因此研究物体的状态,不仅要知道物体的变形状态,而且还要知道物体中每一点的温度。如果物体在变形过程中,各点的温度与其周围介质的温度保持平衡,则称这一过程为等温过程;若在变形过程中,物体的温度没有改变,即既没有热量损失也没有热量增加,则称这一过程为绝热过程。物体的瞬态高频振动,高速变形过程都可视为绝热过程。 令物体在变形过程中的动能为E ,应变能为U ,则在微小的t δ时间间隔内,物体从一种状态过渡到另一种状态时,根据热力学第一定律,总能量的变化为 Q W U E δδδδ+=+ (a) 其中,W δ为作用于物体上的体力和面力所完成的功;Q δ是物体由其周围介质所吸收(或向外发散)的热量,并以等量的功度量。假定弹性变形过程是绝热的,则对于静力平衡问题有 00==Q ,E δδ (b) 将式(b)代入式(a),则有 W U δδ= (8.1-1)

华中科技大学2017联合培养研究生项目报名须知

华中科技大学2017联合培养研究生项目报名须知 一.申请资格 1.我校2016年入学的博士生(包括硕博连读生); 2.已修课程成绩符合要求; 3.达到香港城市大学规定的最低英文水平要求:取得(i)托福考试(TOEFL)至少550分之成绩(即托福计算机考试至少213分或托福网考至少79分),或(ii)雅思国际英语语言测试(IELTS)总级别至少6.5,或(iii)College English Test Band6(CET-6)至少490分,或(iv)通过华中大英语论文写作(学科编号:411.800)。 二.学科领域 两校已有博士学位授予权的学科领域。 三.学习地点与安排 联合博士培养项目的修读年限一般为四年。原则上学生第一学年在华中大修读并完成公共必修课和学科基础课程,第二至第四学年按以下学习模式,修读部分专业课及完成学位论文。 学年学习地点 第一学年华中大 于城大注册入读联培计划 第二学年城大(香港本部) 第三学年城大深圳研究院 第四学年华中大 四.申请程序 请符合申请资格的同学仔细阅读及以英文填写「招生申请表」,并将申请表及巳用信封封存的「推荐报告」(Referee’s Report)连同以下复印件于2017年2月27日前交至华中大导师。其后,华中大导师与城大导师联系及填妥相关附件内容中的表格和提供相关证明材料后,交至相关华中大各所属学院研究生管理部门进行审核,再送至华中大研究生院进行审批。华中大研究团队负责人将通过华中大研究生院审批的申请材料收集后,将所有材料提供给城大研究生院。城大研究生院将申请发至相关院系以供院系进行审批,如申请获城大相关院系推荐,城大研究生院会审核该招生申请表及资料。审核后,两校共同确定2017年录取学生名单。 q本科及硕士(如适用)学位证和成绩单(请提供正式认证的英文译本)和最近期之成绩单;

塑性力学原理+

1. 什么是塑性? 塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。 由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 率相关性: 塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力——应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力( P/A )与工程应 变(Δl/l 0),也可能是真实应力(P/A)与真实应变( L n (l/l ) )。 大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。而屈服应力本身可能是下列某个参数的函数。 ? 温度 ? 应变率 ? 以前的应变历史 ? 侧限压力 ? 其它参数 2. 塑性原理方面的几个概念 任何塑性理论都包括如下几个主要方面: 屈服条件:它规定在不同组合的外加应力作用下,塑性形变从什么时候开始发生;

华中科技大学工程力学实验题

(2010年4月23-25南京基础力学实验研讨会交流专用) 题目1-6:含内压薄壁圆筒受弯、扭组合载荷时内力素的测定 如图所示薄壁圆筒用不锈钢1C r 18N i 9T i 制造,材料弹性模量202G P a E =,泊松比 0.28μ=,圆筒外径D =40mm ,内径d =36.40mm 。采用5个60N 砝码逐级加载。 1. 计算每个载荷增量下图中I-I 截面内力的理论值: 答案: 3 60100.31860600.2515600.2615.6I I II II T F l N m F F N M M F l N m M M F l N m =?=??=?====?=?=?==?=?=?理Q 理理理 2. 为了测量图中I-I 截面弯矩,可采用什么形式的测量电桥?用图形表示测量电桥,并推导出测量仪器应变读数与所求弯矩之间的关系。 答案:由m 和n 两点的应变片组成半桥测量,电桥图略。 () 3 4 162 1M du M z E M M W D εσπα= = = - () ()()3 4 3 4 9 6 1(N m )64 0.0410.91 20210 10 64 0.1994(με) M du M du M du ED M παεπεε--∴?= ??-??= ??=? 3. 为了测量图中I-I 截面扭矩,可采用什么形式的测量电桥?用图形表示测量电桥,并推 导出测量应变仪器读数与所求扭矩之间的关系。 答案:由e 、f 和g 、h 点组成全桥测量电路。对于e 、f 和g 、h 点,是纯剪切应 支架 放气栓 注油接头 k 270 260 250 240 300 F m be cn d fah g(a) 水平线 水平线h g amb ec ndf 5 4o 4o5 ⅠⅠ-Ⅱ-ⅡⅡⅡ ⅠⅠ图1-1 薄壁圆筒实验装置 (b) g h am bec nd f (c) 图1 薄璧圆筒弯扭实验装置

塑性力学基本理论

弹性力学 对于均匀、各向同性材料,可以证明只有两个独立弹性常数,3各常数之间存在关系:2(1) E G μ= +。 广义胡克定律的体积式:体积应变:x y z θεεε=++;体积应力: x y z σσσΘ=++,则:12E ν θ-= Θ。 各向同性体的体积改变定律:3(12) m E K σθθν= =-.其中体积模量: 3(12) E K ν= - 弹性力学解的唯一性定理:弹性体在给定体力、面力和约束条件的情况下而 处于平衡时,体内各点的应力分量、应变分量的解是唯一的。 塑性力学 从物理上看,塑性变形过程属于不可逆过程,并且必然伴随机械能的耗散。研究塑性力学问题主要采用宏观的方法,即联系介质力学的方法,它不去探究材料塑性变形的内在机理,而是从材料的宏观塑性行为中抽象出力学模型,并建立相应的数学物理方程来予以描述,应力平衡方程和应变位移间的几何关系是与材料性质无关的,因此对弹性力学与塑性力学都一样,弹性力学与塑性力学的差别主要表现在应力与应变的物理关系的不同。屈服条件以及塑性的本构关系是塑性力学物理方程的具体内容,具有: (1)应力与应变关系(本构关系)呈非线性,其非线性性质与具体材料有关; (2)应力与应变之间没有一一对应的关系,它与加载历史有关; (3)变形体中存在弹性区和塑性区,分析问题时需要找出其分界限。在弹性区, 加载与卸载均服从广义胡克定律;在塑性区,加载过程要使用塑性阶段的应力应变关系,而卸载过程中,则使用广义胡克定律。 这些特点带来了研究、处理问题方法上的不同,塑性力学首先要解决的问题是在实验资料的基础上确立塑性本构关系,进而与平衡和几何关系一起去建立塑

工程力学专业本科培养计划-华中科技大学教务处

工程力学专业本科培养计划 Undergraduate Program for Specialty in Engineering Mechanics 一、培养目标 Ⅰ.Educational Objectives 面向未来,面向世界,培养适应社会需要具有比较扎实的数理和力学基础,有良好文化素质并掌握计算机应用基本理论、技术和方法的宽口径、创新能力强的高水平“复合型”人才。本专业注重对学生的基础力学理论、力学建模、分析、计算与实验的全面训练及与力学相关的工程系统软件的应用、研究与开发能力的培养。毕业生不但能从事与力学有关的科研、技术开发、工程设计、工程管理和教学工作,而且也能适应现代信息社会的需要,从事计算机应用、软件开发、信息处理和管理等方面的科技工作。 The program produces versatile students with sound knowledge of mathematics, physics, and mechanics and with principles and skills of computer application. Aiming at preparing students for high quality education, the program is aimed at establishing the fundamental knowledge and application skills of mechanical modeling, analysis, computation and experiment, and the abilities to the application, research and development of the engineering system softwares. 二、基本规格要求 Ⅱ.Skills Profile 毕业生应获得以下几方面的知识和能力: 1. 系统、扎实地掌握本专业的基础知识,主要为数学与力学基础知识、计算机应用基础知识、基本的测试理论与测试技术基础;熟练掌握一门外语,具有较强的听说读写的综合运用能力,以及查阅中外文科技文献的能力; 2. 具有熟练地运用计算机对工程问题进行分析计算的能力,有较强的使用软件和开发软件的能力; 3. 具有必要的工程基础知识与工程基本训练,具有制订实验方案、进行实验、分析和解释数

塑性力学

塑性力学研究报告 一、 研究内容 1.1经典塑性力学基本理论 经典塑性理论研究在二十世纪50年代已经成熟,主妥结果已总结在H 川的名著“塑性数学理论”L ’J 和PragCr&HodgC 的名著“理想塑性的固体理论”中。经典塑性理论的三条基本假设:(1)传统塑性势假设;(2)关联流动法则假设,假设屈服面与塑性势面相同;(3)不考虑应力主轴旋转假设。 1.2塑性力学的研究热点 最近几十年,岩土塑性力学的兴起促进了塑性力学的发展,近30年国际上出现了非关联流动法则与多重屈服面模型,在一定程度上修正了经典塑性力学理论上的不足,提高了计算的准确性。广义塑性力学正是由于经典塑性力学不适应岩土类摩擦材料的变形机制而产生。广义塑性力学成为了近几十年来塑性力学的研究热点。 1.2.1广义塑性力学基本理论 广义塑性理论包括:1、不记主轴旋转的广义塑性位势理论;2、主轴旋转的广义塑性位势理论3、广义塑性力学的屈服面理论;4、广义塑性力学中的硬化定律5、广义塑性力学中的应力应变关系。 1.2.1.1不记主轴旋转的广义塑性位势理论 保留传统塑性位势理论的第(2)假设,即消除(1)、(3)条假设,那么式可以写成: 31p k ij k k ij Q d d ελσ=?=∑? (1.2.1.1.1) 当不考虑应力主轴旋转时,杨光华在不借助任何假设条件下引用张量定律导出了式(1.2.1.1)。应力和应变都是二阶张量,按张量定律必有: 31p p k ij k k ij Q d d εεσ=?=∑? (1.2.1.1.2) 式中k σ与k ε分别为三个主应力和主应变。

根据梯度的定义有: 31p k i k k i Q d d ελσ=?=∑? (1.2.1.1.3) 式中k Q 是三个任意的线性无关的势函数,将(1.2.1.3)代入式(1.2.1.2)即 可得式(1.2.1.1)。 可以认为式(1.2.1.1)就是未考虑主应力旋转情况下的广义塑性位势理论或称为广义塑性流动法则。表明在一般情况下,塑性应变增量方向由三个塑性应变增量分量方向(即应力分量方向)来确定,而三个分量既与塑性势面有关,也与屈服面有关,因而与应力增量有关。 1.2.1.2主轴旋转的广义塑性位势理论 由土工试验可知,在主应力和主应变空间内,旋转应力增量r d σ引起6个应变方向的塑性应变,需引用6个塑性势函数。可以任意选择势函数,但必须保持势函数的线性无关。一般可把6个应力分量写成6个势函数, 6个应力分量的方向就是6个势面的方向。应力主轴旋转的广义塑性位势理论: 3 611p p p k kr ij ijc ijr k kr k k ij ij Q Q d d d d d εεελλσσ==??=+=+??∑∑ (1.2.1.2.1) 式中p ijc d ε为共轴应力增量c d σ引起的塑性应变增量; p ijr d ε为旋转应力增量 r d σ引起的塑性应变增量; kr d λ为与应力主轴旋转相关的6个塑性系数,可采用试验数据拟合的方法得到,但这方面的研究目前还不成熟。 1.2.1.3广义塑性力学的屈服面理论 塑性力学中,塑性势面主要是用来确定塑性应变增量的方向。在传统塑性力学中,塑性应变增量方向唯一地由一个塑性势面确定;在广义塑性力学中,它用来确定三个塑性应变增量的方向,而总塑性应变增量的方向,除与三个塑性势面有关外,还与三个屈服面有关。塑性势面与屈服面有如下关系: (l)塑性势面只要满足是三个线性无关的函数,可以任取;而屈服面则不可任取,它必须与塑性势面相对应,并有明确的物理意义。例如取1σ为势面,则对应的屈服面必为塑性主应变1p ε的等值面,此时应力空间中的1σ轴与应变空间中

华中科技大学流体力学电子档第1章 (打印A4)

工程流体力学 讲稿 华中科技大学 土木工程与力学学院力学系 陈应华 E-mail 第一章绪论

§流体与流体力学 1.流体的定义: 定义:凡不能象固体一样保持其一定形状,并容易流动的物质称为流体。 流体包括液体和气体。 液体的特点:①.液体有一定的容积。②.在容器中的液体可形成一定的自由表面。③.液体不容易压缩。 ④.没有一定的形状,容易流动。 气体的特点:①.气体没有一定的容积。②.在容器中的气体不存在自由表面。③.气体极易压缩。④.没有一定的形状,容易流动。 液体与气体的共同特点:没有一定的形状,容易流动。 容易流动:流体在任何微小的剪力或拉力的作用下,它们都会发生连续变形(即流动)。 2.流体力学的发展简史: 古典流体力学+ 实验水力学→(现代)流体力学 (现代)流体力学: 理论流体力学 工程流体力学(水力学) 空气动力学 计算流体力学 环境流体力学 多相流流体力学等等 3.流体力学的研究方法: 流体力学是研究流体平衡和机械运动的力学规律及其工程应用的一门力学学科。 流体力学的研究方法主要有:理论分析、实验研究和数值计算等。 §连续介质模型 流体质点:微观上充分大,宏观上充分小的流体分子团。 比如1cm3的标态水(1atm,20?C水温)中约含有×1022个水分子。10-12cm3的标态水中约含有×1010个水分子。

连续介质模型:认为流体是由无任何空隙的流体质点所组成的连续体。 流体的密度、温度等物理量连续分布。 连续介质模型是欧拉在1753年提出的假说。有了这个模型,我们就可以采用连续函数这一强有力的数学工具来分析流体的流动规律。 连续介质模型的适用范围:常温常压下的气体和液体。 § 流体的密度及粘性 一.流体的密度: 1.密度的定义: 流体具有维持它原有运动状态的特性,这种特性称为惯性。 表征惯性的物理量是质量。质量愈大,则惯性愈大。 流体的密度(ρ): V M ρV V ??=?→?'lim ΔV ′可理解为:微观上足够大,宏观上足够小的流体体积。 如果ΔV 太小,其内包含的分子数不够多,则ρ时而大时而小,ΔV 的极限值应为ΔV ′。 均质流体的密度():均质流体的密度是流体单位体积的质量。 V M ρ= ./3m kg 的单位:ρ 流体的比容( v ):密度的倒数称为比容。 ρ1=v ./3 kg m v 的单位: 均质流体的比容:单位质量的流体所占有的体积。 2.密度与压强和温度的关系: 流体的温度T ,压强p 的变化都会引起流体密度的变化。 ),(T p f =ρ即:

弹塑性力学基本内容

弹塑性力学基本内容 本课程是以物体的应力、应变理论以及在工程中的应用主要对象的一门基础性、实践性很强的应用学科。 教学目标为在强化物体的应力、应变理论基础的同时,关注物体的弹性力学模型的建立、分析和应用,并兼顾塑性理论的建立。在深度和广度上力求体现学科专业发展的前沿,有利于研究生掌握弹性理论专门知识,了解塑性理论的思想和方法,并着重在基础理论和实践应用两方面进行科研能力的培养。其基本要求为:使学生掌握弹性理论的建立、分析、应用,初步掌握塑性力学理论,使其具有从事弹性力学分析的知识和初步能力。 (1)弹塑性力学的研究对象和内容、弹塑性力学的分析方法和体系、弹塑性力学的基本假定 应力矢量、应力张量、Cauchy公式、平衡微分方程、力边界条件、应力分量的坐标变换、主应力、应力张量不变量、最大切应力、Mohr应力圆、偏应力张量及其不变量、八面体上的应力和等效应力、主应力空间与π平面 (2)位移分量和应变分量、两者的关系、物体内无限邻近两点位置的变化、转动分量、转轴时应变分量的变换、应变张量、主应变应变张量不变量、应变协调方程、应力和应变的关系、应力率和应变增量 (3)弹性力学的基本方程及其边值问题、位移解法(以位移表示的平衡微分方程)、应力解法(以应力表示的应变协调方程)、解的唯一性定理、局部性原理、逆解法和半逆解法、几个简单问题的求解 (4)平面应变问题、平面应力问题、应力解法(把平面问题归结为双调和方程的边值问题)、用多项式解平面问题、悬臂梁一端受集中力作用、简支梁受均匀分布荷载作用(5)平面问题的极坐标方程、轴对称应力问题和对应的位移、圆筒受均匀压力作用、曲梁的纯弯曲、具有小圆孔的平板的均匀拉伸 (6)薄板弯曲的基本概念及基本假设、弹性曲面的基本公式、薄板横截面上的内力、边界条件、圆形薄板弯曲问题 (7)塑性力学的基本概念、材料在简单拉压时的实验结果、应力-应变关系的简化模型、轴向拉伸时的塑性失稳、塑性本构关系的主要内容和研究方法 (8)应变张量和应力张量、屈服条件、几个常用的屈服条件、屈服条件的实验验证、加载条件 (9)塑性应变增量、加卸载判别准则、Drucker公设和Ilyushin公设、加载面外凸性和正交流动法则、塑性势理论、简单弹塑性问题

华中科技大学工程力学考研大纲

2010年《工程力学》考研大纲 《工程力学》考研内容共分两部分组成。 第一部分为所有考生必答题(共50分)《材料力学》《结构力学》各占25% 第二部分为选做题《材料力学》(100分)为岩土方向考生必答题 《结构力学》(100分)为结构、桥梁方向考生必答题 适用对象为:报考土木工程(一级学科)各专业(二级学科)的硕士研究生。 一、《材料力学》的考试内容及基本要求 材料力学的任务、变形固体的基本假设、截面法和内力、应力、变形、应变。 轴力与轴力图,直杆横截面及斜截面的应力,圣维南原理,应力集中的概念。 材料拉伸及压缩时的力学性能,应力-应变曲线。 拉压杆强度条件,安全因数及许用应力的确定。 拉压杆变形,胡克定律,弹性模量,泊松比。 拉压超静定问题,含温度及装配应力。 扭矩及扭矩图,切应力互等定理,剪切胡克定律,圆轴扭转的应力与变形、扭转强度及刚度条件。 静矩与形心,截面二次矩,平行移轴公式。 平面弯曲的内力,剪力、弯矩方程,剪力、弯矩图,利用微分关系画梁的剪力、弯矩图。

弯曲正应力,弯曲切应力,梁正应力、切应力强度条件。 挠曲线及其近似微分方程,积分法、叠加法求梁的位移,梁的刚度条件,简单超静定梁。 应力状态的概念,平面应力状态下的应力分析,三向应力状态的简介,三向应力状态下应变能、畸变能的概念,主应力和主方向,广义胡克定律。 二、《结构力学》的考试内容及基本要求 1)几何构造分析 会对各种体系进行几何构造分析。 2)静定结构的受力分析 掌握多跨静定梁、刚架、桁架、组合结构、三铰拱的内力计算方法,会画内力图,重点是弯矩图。 3)虚功原理与结构位移计算 掌握各种静定和超静定结构在荷载、支座位移、温度改变下的位移 计算,重点是图乘法计算位移。 4)静定结构的影响线 会用静力法和机动法制作多跨静定梁(在直接荷载和间接荷载作用 下)、桁架、结合结构的影响线。会用影响线确定移动荷载的最不利 位置及最大内力。 5)力法 会用力法计算超静定的梁、刚架、桁架、组合结构。对对称结构会 进行简化计算。 6)位移法

相关主题
文本预览
相关文档 最新文档