当前位置:文档之家› 土壤胶体和土壤交换性能

土壤胶体和土壤交换性能

土壤胶体和土壤交换性能
土壤胶体和土壤交换性能

第五章土壤的化学性质

主要学习目标:要求学生了解土壤胶体的晶格构造,掌握土壤胶体的性质。本章是今后学习肥料学的基础。因为土壤胶体的行为影响着土壤的发生发展、土壤的理化性质及土壤保肥供肥能力。

第一节土壤胶体

一、概念

土壤胶体是指颗粒直径小于0.001mm或0.002mm的土壤微粒。

目前土壤胶体粒径的大小范围,并不是绝对的。这是因为胶体性质的出现,是随着粒径的减小逐渐加强的。没有截然划分的界限。

二、土壤中的胶体主要分为三类

1、土壤无机胶体:主要是矿物在化学风化过程中产生的次生矿物,包括氧化硅类、三氧化物类和层状铝硅酸盐等。有时将无机胶体称为粘土矿物。

粘土矿物的来源有以下几个途径:(1)由白云母、黑云母演变而来;(2)在一定条件下有矿物的分解产物合成形成;(3)由一种粘土矿物演变成另一种粘土矿物。

2、土壤中有机胶体主要是腐殖质,它是有机质在土壤微生物等的作用下形成的。

3、有机无机复合体是土壤腐殖质和粘土矿物通过混合和吸附结合在一起,结合过程比较复杂。

三、硅酸盐粘粒的晶格构造

1、粘土矿物的基本单位:有2个即硅氧片和铝氧片

(1)硅氧片:由硅氧四面体连接而成。

硅、氧两元素能组成一个单位的原因:一是硅具有正原子价,而氧具负原子价,二者可相互吸引。二是与原子大小有关,四个氧原子堆积成四面体时,其间所形成的空隙与硅原子的大小基本相似。但四面体的键价并不平衡(SiO44-),因此许多四面体可共用氧原子形成一层。此时键价仍不平衡,可与铝水八面体结合形成各类粘土矿物。

(2)铝氧片,又称铝氧八面体。

由六个氧原子围绕一个铝原子构成。六个氧原子所构成的八面体空隙与铝原子的大小相近似。许多铝八面体相互连接,形成铝氧片。铝氧片有两个层面的电价不平衡,可与氢原子连接形成水铝矿,或与硅氧片通过不同方式的连接结合成为铝硅酸盐。粘土矿物分为二层矿物和三层矿物;

四、粘土矿物负电荷的来源(本章的重点是土壤的电化学特性)

1、同晶取代:晶格构造中的中央离子被其他阳离子取代后会产生负电荷(被电荷比它低的取代)。

2、晶格断裂产生电荷。

3、胶体表面分子解离产生电荷。随pH变化改变而产生的电荷称可变电荷

五、几种主要土壤胶体

1、高岭石(kaolinite)是二层型(1:1)粘土矿物,是强烈化学风化条件下的产物(南方)(教材p178 8-3构造图)晶格较稳定,硅酸盐层之间由氢键连接,作用力很强,间隙小,水分子或其他离子很难进入层间。因此只有外表面,没有内表面,无胀缩性(陶器不会太大),比表面积较小,为30m2/g。高岭石带有的电荷一部分是晶格破裂产生的,另外晶格表面的—OH在土壤酸度变化时带有可变电荷,但高岭石的带电量较少;

2、伊利石属三层型(2:1)粘土矿物,主要分布在干旱半干旱地区。硅酸盐层间由钾离子连接,晶格距离比较稳定。晶格的边缘具有胀缩性,比表面积外表面小,内表面比大,表面积为100m2/g,;伊利石带有的电荷是由同晶代换产生的,其中有一部分负电荷被钾离

子中和,伊利石的带电量比高岭石多。

3、蒙脱石属三层型(2:1)粘土矿物,主要分布在干旱和半干旱地区的土壤中。硅酸盐层之间由钙离子和镁离子连接,硅酸盐层之间全部胀缩性,内表面积非常大,比表面积为800 m2/g,带有的电荷是由同晶代换产生的,带电量比伊利石多。

4、含水氧化物包括非晶质的硅酸和含水氧化铁或氧化铝。非晶质的硅酸是各种铝硅酸盐经过化学风化过程的最后产物,其所带电荷是由H+解离产生的。含水氧化铁或氧化铝的种类有褐铁矿、赤铁矿、针铁矿、水铝石和三水铝石。它们均属两性胶体,所带电荷随pH值变化有很大不同,在溶液偏酸时,解离出—OH—,成为(OH)2+带正电,在溶液偏碱时,解离出H+,成为(OH)2O—带负电。

5、腐殖质胶体高分子有机化合物,呈球形,具三维空间的网状结构。负电荷主要是由羧基和酚羟基解离的氢离子引起,与pH相关,腐殖质胶体中的NH2可接受氢离子而带正电荷。

六、土壤胶体的性质

土壤胶体是物理化学性质最活泼的部分。土壤的保肥性、供肥性、酸碱反应、缓冲性能,以及土壤的结构、土壤的物理机械性质等,都与土壤胶体有密切关系。

1、巨大的比表面积和表面能

颗粒小,有巨大的比表面积。表面巨大的表面能能吸附大量的水分子、养分和其他分子态物质。有些微生物也被吸附在表面。

2、带电性和离子吸收代换性能

一般胶体带负电,可吸附大量的阳离子。而且大部分的离子,具有代换能力。这对养分的供应与保存以及土壤的酸碱、缓冲性有很大的意义。

3、分散性和凝聚性

土壤胶体,在一定条件下,可以分散在介质中,呈溶胶状态。有时又可以相互凝聚,呈凝胶状态。这种凝聚一般是在阳离子的作用下产生的。不同阳离子的凝聚能力:Fe3+>Al3+>>Ca2+>Mg2+>>K+>NH4+>Na+ , 凝聚作用对土壤结构的形成极为重要。

4、物理机械性质

土壤胶体具有粘结性、粘着性和可塑性等一系列的性质。

第二节土壤阳离子交换

一、土壤阳离子交换过程:

1、概念:土壤胶体吸附阳离子,在一定条件下,与土壤溶液中的阳离子发生交换,这就是土壤阳离子的交换过程。

能够参与交换过程的阳离子,就成为交换性阳离子。

2、特点:

第一,是可逆反应。任何一方的反应都不能进行到底,只有不断排除生成物,并反复浸提(交换性阳离子测定),才能把胶体表面上的钙离子和钾离子全部交换出来;

第二,阳离子交换作用按等摩尔进行,即20克钙离子可以和39.1克钾离子交换;

第三,交换受温度影响较小,而与交换点位置直接相关:外表面上的交换可瞬时发生,一小时内达到平衡;内表面上的交换需要很长时间才能达到平衡,因为离子在到达交换点前需要在晶层间隙中运动,受离子扩散规律制约,所以往往需要很长时间才能达到平衡。二、土壤阳离子交换量(Cation Exchange Capacity)CEC

定义:在pH值为7时,每千克土壤中所含有的全部交换性阳离子的厘摩尔数

单位:cmol/kg 。与旧单位me/100g土等量换算

土壤交换量的大小,基本上代表了土壤的保持养分数量,也就是平常所说的保肥力高低;

交换量大,也就是保存养分的能力大,反之则弱。所以,土壤交换量可以作为评价土壤保肥力的指标。

一般地:小于10 cmol/kg,保肥力弱;10~20 cmol/kg,中等;大于20 cmol/kg,强。

三、影响土壤阳离子交换量的因素

1、土壤质地土壤质地愈粘,土壤的交换量也就愈大,一般:

土壤质地砂土轻壤土中、重壤土粘土

交换量cmol/kg 1~2 7~8 15~18 25~30

2、腐殖质含量

腐殖质易带负电荷,腐殖质胶体具有极大的比表面积,交换量为200—500cmol/kg,比无机胶体的交换量大得多。因此,腐殖质含量越高,阳离子交换量越大。

3、无机胶体种类

高岭石(6 cmol/kg)、伊利石(30 cmol/kg土)、蒙脱石(100 cmol/kg)

4、土壤的酸碱性

土壤腐殖质所带电荷为可变电荷,其-COOH,-OH的解离强度,是由pH的变化决定的,含腐殖质多的土壤,交换量受pH影响显著,当pH值从2.5上升到8.0时,交换量从65 cmol/kg 上升到345 cmol/kg 。另外高岭石、铁铝的含水氧化物所带电荷也受酸碱环境的影响。

四、土壤盐基饱和度

1、盐基饱和度:土壤胶体上的交换性盐基离子占交换性阳离子总量的百分比。

土壤交换性阳离子可分为二类:致酸离子(H+、Al3+)和盐基离子(K+、Na+、Ca2+、Mg2+等),盐基离子为植物所需的速效养分。

2、盐基饱和度的意义:真正反映土壤有效速效养分含量的大小。若阳离子总量大,而盐基饱和度偏小,需要采取措施对土壤加以改良,如施肥或用石灰中和。

4、单一离子的饱和度%=交换性该离子总量/阳离子总量*100

五、影响交换性阳离子有效性的因素:

1、交换性阳离子的饱和度:饱和度大,该离子的有效性大;

2、陪伴离子的种类:对于某一特定的离子来说,其它与其共存的离子都是陪伴离子。与胶体结合强度大的离子,本身有效性低,但对其它离子的有效性有利。各离子抑制能力由强到弱的顺序为:钠离子>钾离子>镁离子>钙离子>氢离子>铝离子;

3、无机胶体的种类:在饱和度相同的前提下,各种离子在无机胶体上的有效性:高岭石大于蒙脱石大于伊利石;

4、离子半径大小与晶格孔穴大小的关系。离子大小与孔径相近,离子易进入孔穴中,且稳定性较大,从而降低了有效性。如:孔穴半径为1.4埃,钾离子的半径为1.33埃,铵离子的半径为1.42埃,则有效性较低。

第三节土壤阴离子吸附

一、土壤吸收阴离子的原因

1、两性胶体带正电荷

酸性Al(OH)3 +HCl= Al(OH)2++Cl--+H2O

碱性Al(OH)3 +NaOH= Al(OH)2O--+Na++H2O

2、土壤腐殖质中的—NH2在酸性条件下吸收H+成为—NH3+而带正电。

3、粘粒矿物表面上的—OH原子团可与土壤溶液中的阴离子代换。

二、土壤中各种阴离子代换吸收能力

不同阴离子代换吸收顺序如下:

草酸根离子>柠檬酸离子>磷酸根离子>硫酸根离子>氯离子>硝酸根离子

磷酸根离子和某些有机酸根离子易被土壤吸收。实际上,磷酸根常被某些阳离子如钙、镁、铁、铝所固定,而失去有效性。而土壤氯离子和硝酸根离子代换吸收能力最弱,甚至不能吸收。

根据阴离子吸收的特点,在施肥时,应采取相应措施,磷肥施用时应防止固定,硝酸态氮肥应防止流失

第四节离子吸收代换作用在土壤肥力上的意义

一、具有较好的保持和供应养分的能力

离子态的养分,在土壤胶体的离子代换作用下,保持在土壤中,这就是土壤的保肥性。被土壤胶体吸收的离子与土壤溶液间的离子能进行可逆性交换,植物可随时从土壤中得到养分,这就是土壤的供肥性。土壤具有一定数量的胶体,较高的离子代换吸收量,土壤也就具备了较好的养分保持与供应能力,使土壤保肥性和供肥性矛盾得到统一。

二、使土壤具备较佳的缓冲性

对土壤来说,局部的酸碱污染是经常发生的,土壤胶体的缓冲作用很重要。另一方面,在施用无机肥料时,局部的养分浓度过高,会导致烧根现象,较高的离子代换量可使此种危害减轻或消除。在一定范围内,此作用能协调植物对土壤营养的吸收,使土壤能较稳、均、足、适地供应植物生长所需的养分,使植物既不疯长,又不脱肥。

三、使土壤的物理状况得到调节

土壤胶粒之间的凝聚作用,是土壤具有结构的根本原因,当土壤胶体表面吸收大量钠离子时,因钠离子的水膜厚,带电量少,胶体扩散层厚度大,促使胶粒分散。而当土壤胶体特别是有机胶体吸附钙后,因钙离子带电量高,水膜薄,胶粒易于凝聚,形成土壤结构体。在碱性土壤上施石膏,可改良土壤的不良性状。

第五节:土壤阳离子吸收与代换性的改良

包括两个方面:

一、提高阳离子代换量

1、增加矿质胶体在北方地区质地粗的土壤中,增加阳离子代换量高的粘土。

南方地区土壤以高岭石为主,代换量低,应增加富含蒙脱石、蛭石的土壤。

蛭石是云母类矿物脱钾后形成的,在北方土壤中含量高,化学成分变化大,与蒙脱石的区别是层间连接比较紧,颗粒粗,负电荷是由铝代替硅产生的。

2、增加有机胶体

有机胶体的代换量(200—500mmol/kg)是矿质胶体的若干倍。对任何土壤来说,增加腐殖质,对提高阳离子代换量都是有效的。每增加1%的腐殖质,可提高1——2mmol/kg的交换量。

3、适当提高土壤pH。

碱性条件有利于氢离子解离,阳离子代换量也提高。对酸性土壤来说,完全可行。

第六节土壤酸碱性和缓冲性

主要教学目标:主要掌握土壤溶液的酸反应。它是土壤学最基本的内容,在生产和科研中应用十分广泛。从内容来看与第六章结合非常紧密。

主要内容

土壤酸碱性

土壤酸碱性调节

土壤缓冲性

1.土壤酸碱性

1.1土壤酸度类型及来源

1.1.1、活性酸

土壤中的水分不是纯净的,含有各种可溶的有机、无机成分,有离子态、分子态,还有胶体态的,因此土壤中的水实际上是一种极为稀薄的溶液。盐碱土中土壤溶液的浓度比较高。由土壤溶液中游离的H+引起的,常用pH值表示,即溶液中氢离子浓度的负对数。土壤酸碱性主要根据活性酸划分:pH在6.6~7.4之间为中性。我国土壤pH一般在4—9之间,在地理分布上由南向北pH逐渐减小,大致以长江为界。长江以南的土壤为酸性和强酸性,长江以北的土壤多为中性或碱性,少数为强碱性。

1.1.2、潜性酸

土壤胶体上吸附的氢离子或铝离子,进入溶液后才会显示出酸性,称之为潜性酸,常用1000克烘干土中氢离子的厘摩尔数表示

潜性酸可分为两类:

(1)代换性酸:用过量中性盐(氯化钾、氯化钠等)溶液,与土壤胶体发生交换作用,土壤胶体表面的氢离子或铝离子被侵提剂的阳离子所交换,使溶液的酸性增加。测定溶液中氢离子的浓度即得交换性酸的数量。

(2)水解性酸:用过量强碱弱酸盐(CH3COONa)浸提土壤,胶体上的氢离子或铝离子释放到溶液中所表现出来的酸性。CH3COONa水解产生NaOH,pH值可达8.5,Na+可以把绝大部分的代换性的氢离子和铝离子代换下来,从而形成醋酸,滴定溶液中醋酸的总量即得水解性酸度。

交换性酸是水解性酸的一部分,水解能置换出更多的氢离子。

要改变土壤的酸性程度,就必须中和溶液中和胶体上的全部交换性氢离子和铝离子。在酸性土壤改良时,可根据水解性酸来计算所要施用的石灰的量。

1.2、土壤酸的来源

(1)土壤中H+的来源。由CO2引起(土壤空气、有机质分解、植物根系和微生物呼吸);土壤有机体的分解产生有机酸,硫化细菌和硝化细菌还可产生硫酸和硝酸;生理酸性肥料(硫酸铵、硫酸钾等)。

(2)气候对土壤酸化的影响。在多雨潮湿地带,盐基离子被淋失,溶液中的氢离子进入胶体取代盐基离子,导致氢离子积累在土壤胶体上。东北地区的酸性土是在寒冷多雨的气候条件下产生的。北和西北地区的降雨量少,淋溶作用弱,导致盐基积累,土壤大部分为石灰性、碱性或中性土壤。

(3)铝离子的来源。粘土矿物铝氧层中的铝,在较强的酸性条件下释放出来,进入到土壤胶体表面成为代换性的铝离子,其数量比氢离子数量大得多,土壤表现为潜性酸。长江以南的酸性土壤主要是由于铝离子引起的。

1.3、土壤碱度

1.3.1、OH离子的来源

土壤弱酸强碱盐的水解,碳酸及重碳酸的钾、钠、钙、镁等盐类。如Na2CO3、NaHCO3、CaCO3等;其次是土壤胶体上的Na+的代换水解作用。

1.3.2、碱度的表示方法

土壤碱性的高低用pH值表示,越大碱性越强,碱性过强,对植物或微生物(少数耐碱或喜碱的除外)的生长不利。

用Na+的饱和度表示。

2.土壤酸碱性调节

2.1、土壤酸碱性对植物的影响

2.1.1、各种植物对土壤酸碱性的要求是不同的,有些植物对pH值要求不严格,即可在很宽的范围内正常生长,而大多数植物在pH>9.0或<2.5的情况下都难以生长。

喜酸植物:杜鹃属、越桔属、茶花属、杉木、松树、橡胶树、帚石兰

喜钙植物:紫花苜蓿、草木犀、南天竺、柏属、椴树、榆树等

喜盐碱植物:柽柳、沙枣、枸杞等

2.1.2、植物病虫害与土壤酸碱性直接相关:1)、地下害虫往往要求一定范围的pH环境条件如竹蝗喜酸而金龟子喜碱;2)、有些病害只在一定的pH值范围内发作,悴倒病往往在碱性和中性土壤上发生。

2.1.3、土壤活性铝:土壤中的活性铝是土壤胶体上吸附的交换性铝和土壤溶液中的铝离子,它是一个重要的生态因子,对自然植被的分布、生长和演替有重大影响;在强酸性土壤中含铝多,生活在这类土壤上的植物往往耐铝甚至喜铝(帚石兰、茶树);但对于一些植物来说,铝是有毒性的,如三叶草、紫花苜蓿,土壤中富铝时生长受抑制;研究表明铝中毒是人工林地力衰退的一个重要原因。

2.2、土壤酸碱性对养分有效性的影响

2.2.1、在正常范围内,植物对土壤酸碱性敏感的原因,是由于土壤pH值影响土壤溶液中各种离子的浓度,影响各种元素对植物的有效性;

2.2.2、土壤酸碱性与土壤中植物营养元素的有效性关系:

(1)氮在6~8时有效性较高,是由于在小于6时,固氮菌活动降低,而大于8时,硝化作用受到抑制;

(2)、磷在6.5~7.5时有效性较高,由于在小于6.5时,易形成磷酸铁、磷酸铝,有效性降低,在高于7.5时,则易形成磷酸二氢钙;

(3)、酸性土壤的淋溶作用强烈,钾、钙、镁容易流失,导致这些元素缺乏。在pH高于8.5时,土壤钠离子增加,钙、镁离子被取代形成碳酸盐沉淀,因此钙、镁的有效性在pH6—8时最好;

(4)铁、锰、铜、锌、钴五种微量元素在酸性土壤中因可溶而有效性高;钼酸盐不溶于酸而溶于碱,在酸性土壤中易缺乏;硼酸盐在pH5—7.5时有效性较好。

2.3、土壤酸碱性的调节

2.3.1、调节酸性土壤,最常用的方法是施加石灰,我国多施加氧化钙或氢氧化钙,而国外常用碳酸钙粉末。石灰使用量可参考潜性酸度计算,并根据石灰种类、性状、土壤质地、有机质含量、植物种类及气候因子综合考虑。

过量使用石灰,会使有机质过度分解,导致土壤板结。

2.3.2、调节碱性土壤,常使用石膏(CaSO4)或硫酸亚铁或硫磺等

使用石膏是通过离子代换作用把土壤中有害的钠离子代换出来,在结合灌水使之淋洗出去。

3.土壤的缓冲性

3.1、定义:

在自然条件下,土壤pH值不因土壤酸碱环境条件的改变而发生剧烈的变化,而是保持在一定的范围内,土壤这种特殊的抵抗能力,称为缓冲性。

3.2、意义:使土壤酸度保持在一定的范围内,避免因施肥、根的呼吸、微生物活动、有机质分解和湿度的变化而pH值强烈变化,为高等植物和微生物提供一个有利的环境条件。3.3、原因:

3.3.1、土壤胶体的代换性能

土壤胶体上吸收的盐基离子多,则土壤对酸的缓冲能力强;当吸附的阳离子主要为氢离子时,对碱的缓冲能力强。

3.3.2、土壤中有多种弱酸及其盐类

弱酸种类如:碳酸、重碳酸、硅酸和各种有机酸。

3.3.3、两性有机物质

氨基酸是两性化合物,氨基可中和酸,羧基可中和碱。

3.3.4、两性无机物质

3.4酸性土壤中的铝离子

3.5影响土壤缓冲性的因素:

3.5.1、粘粒矿物类型:含蒙脱石和伊利石多的土壤,起缓冲性能也要大一些;

3.5.2、粘粒的含量:粘粒含量增加,缓冲性增强;

3.5.3、有机质含量:有机质多少与土壤缓冲性大小成正相关。

一般来说,土壤缓冲性强弱的顺序是腐殖质土大于粘土大于砂土,故增加土壤有机质和粘粒,就可增加土壤的缓冲性。

本章重点:主要是几种主要土壤胶体的特性以及阳离子的交换过程。本章重点:主要是土壤的酸度。要掌握各种类型酸的实质,它是我们学习其它相关学科(如土壤理化分析、肥料学等)的基础。

本章难点:主要是土壤胶体的带电性及土壤胶体为什么会带电。土壤胶体带电的事实早已被电渗与电泳等现象所证实,不同土壤胶体产生电荷的机制不同。另外土壤胶体具有双电层

构造。本章难点:是土壤为什么具有的缓冲性。主要原因就是与土壤胶体及其胶体上吸收的离子的作用。这部分内容与土壤阳离子交换的内容相关。土壤缓冲作用的大小,可以用缓冲量表示。缓冲量是土壤溶液改变一个单位pH值时所需酸碱的摩尔数。

复习思考题

一、名词解释

1、土壤胶体;

2、同晶代换;

3、土壤阳离子交换过程;

4、土壤阳离子交换量;

5、土壤盐基饱和度

6、土壤活性酸度;

7、土壤潜性酸;

8、土壤缓冲性

二、简答题

1、土壤胶体包括哪些类型?

2、1:1型矿物和2:1型矿物的硅酸盐层有什么区别?

3、简述高岭石、蒙脱石和伊利石的性质。

4、简述腐殖质胶体的性质。

5、影响阳离子交换量大小的因素有哪些?

5、哪些土壤胶体可带正电荷?

6、简述酸性土、碱性土的改良。

7、土壤为什么具有缓冲性?

土壤交换性钙和镁的测定

土壤交换性钙和镁的测定 乙酸铵交换——原子吸收分光光度法 1 方法提要 以乙酸铵为土壤交换剂,浸出液中的交换性钙、镁,可直接用原子吸收分光光度法测定。测定时所用的钙、镁标准溶液中要同时加入同量的乙酸铵溶液,以消除基本效应。此外,在土壤浸出液中,还要加入释放剂锶(Sr),以消除铝、磷和硅对钙测定的干扰。 2 应用范围 适用于酸性、中性土壤交换性钙镁的测定。 3 主要仪器和设备 3.1 天平(感量:0.01g) 3.2 原子吸收分光光度计(配置钙和镁空心阴极灯); 3.3 离心机; 3.4 离心管,100mL。 4 试剂和溶液 4.1乙酸铵溶液[c(CH3COONH4) = 1mol·L-1,pH7.0]:称取乙酸铵(CH3COONH4)77.08g 溶于约950mL水中,用(1:1)氨水和稀乙酸调节至pH7.0,加水稀释到1L; 4.2 氯化锶溶液[ρ(SrCl2?6H2O) = 30g·L-1]:称取氯化锶(SrCl2?6H2O)30g溶于水,定容至1L; 4.3 盐酸溶液(1:1):一份盐酸与等体积的水混合均匀; 4.4钙标准贮备液[ρ(Ca) = 1000μg·mL-1]:称取经110℃烘4h的碳酸钙(CaCO3,优级纯)2.4972g于250mL高型烧杯中,加少许水,盖上表面皿,小心从杯嘴处加入(1:1)盐酸溶液100mL 溶解,待反应完全后,用水洗净表面皿,小心煮沸赶去二氧化碳,将溶液无损移入1L容量瓶中,用水定容; 4.5钙标准溶液[ρ(Ca) =100μg·mL-1]:吸取10.00mL钙标准贮备溶液于100mL容量瓶中,定容; 4.6镁标准贮备液[ρ(Mg) =500μg·mL-1]:称取金属镁(光谱纯)0.5000g于250mL高型烧杯中,盖上表面皿,小心从杯嘴处加入(1:1)盐酸溶液100mL 溶解,用水洗净表面皿,将溶液无损移入1L容量瓶中,定容;

土壤胶体.

第一章绪论 土壤 土壤是在地球表面生物、气候、母质、地形、时间等因素综合作用所形成能够生长植物的、处于永恒变化中的疏松矿物质与有机质的混合物。 陆地表层—位置; 疏松—物理状态; 能够产生植物收获—土壤的本质。 土壤肥力 土壤在植物生长发育整个过程中,同时而又不断地满足和协调植物对水分,空气,养料和热量等要求的能力。 四大肥力因子:水、肥、气、热 有效肥力 在生产中反应出经济效果的那部分肥力。 潜在肥力 还没有在生产中反映出经济效果的那部分肥力。 土壤生产力 土壤在其土壤肥力、环境条件和人为因素的综合作用下所能产生的经济效益 土壤肥力与土壤生产力的联系与区别:土壤生产力由土壤本身的肥力属性(基础,内因)和发挥肥力作用的外界条件(外因)所决定的。从这个意义上来看,肥力只是生产力的基础,而不是生产力的全部。肥力因素基本相同的土壤,如果处在不同的环境条件下,其表现出来的生产力彼此可能相差很大。 土壤三相物质组成 固相——矿物质和有机质 液相——土壤液体 气相——土壤气体 第二章矿物质 风化作用,原生矿物,次生矿物

风化作用:岩石在地表受到种种外力作用,逐渐破碎成为疏松物质,这一过程叫做风化作用。所产生的疏松物质就是土壤母质。 原生矿物—直接来源于母岩的矿物,其中岩浆岩是其主要来源;在风化过程中没有改变化学组成的原始成岩矿物,如石英、长石、云母等。 次生矿物—在风化过程中新形成的矿物。如高岭石,蒙脱石、氧化铝等。 土壤中的原生矿物类型和特性: 1、长石类矿物:正长石,又称钾长石,是土壤中钾元素的重要来源。 2、云母类:白云母,又称钾云母,是土壤中钾元素的来源之一。黑云母也是钾元素的来源,更易分解,风化。 3、角闪石与辉石类矿物:含盐基丰富,化学稳定性低,容易被彻底分解。 4、石英矿物:不易风化,是土壤中砂粒的主要来源。 5、氧化铁类矿物:赤铁矿(Fe2O3),常使土壤染成红色;磁铁矿(Fe3O4),具磁性。黄铁矿(FeS2),分解后形成硫酸盐。 6、磷酸盐类矿物:磷灰石是制造磷肥的主要原料,是植物磷元素的主要来源。 7、方解石(CaCO3):方解石是土壤中碳酸钙的主要来源。 8、褐铁矿(Fe2O3·3H2O):由赤铁矿水化形成的一种含水氧化铁,是土壤黄色和棕色染色剂。 母质 1、成土母质:矿物岩石经各种风化作用后形成的疏松多孔体 2、土壤母质与岩石和土壤相比,有很大区别。 母质有别于岩石,其颗粒小,单位体积或单位质量的表面积增大,颗粒间多孔隙,疏松,有一定的透水性、通气性及吸附性能。母质所具有的这些肥力因素还远远不能满足植物的需要。 3、母质类型 岩石矿物风化形成的母质,有的就地堆积,但大多数是在重力、水流、风力、冰川等外力的作用下搬运到其他地方,形成各种沉积物,有的甚至经过多次搬运沉积。 按风化物搬运动力与沉积特点的不同,可将成土母质分为以下8种类型:残积物 粒级:石砾,砂粒,粉粒,粘粒 粒级(粒组):根据土粒大小和性质,将其分成若干组,称土壤粒级或粒组。

土壤阳离子交换综述

土壤中阳离子交换量测定综述 摘要; 土壤阳离子交换量是随着土壤在风化过程中形成,一些矿物和有机质被分解成极细小的颗粒。化学变化使得这些颗粒进一步缩小,肉眼便看不见。这些最细小的颗粒叫做“胶体”。每一胶体带净负电荷。电荷是在其形成过程中产生的。它能够吸引保持带正电的颗粒,就像磁铁不同的两极相互吸引一样。阳离子是带正电荷的养分离子,如钙(Ca)、镁(Mg)、钾(K)、钠(Na)、氢(H)和铵(NH4)。粘粒是土壤带负电荷的组份。这些带负电的颗粒(粘粒)吸引、保持并释放带正电的养分颗粒(阳离子)。有机质颗粒也带有负电荷,吸引带正电荷的阳离子。砂粒不起作用。阳离子交换量(CEC)是指土壤保持和交换阳离子的能力,也有人将它称之为土壤的保肥能力 关键词阳离子交换量:氯化钡 化钡一硫酸强迫交换法 正文. 2.1原理 氯化钡一硫酸强迫交换法f简称氯化钡法。下同1其原理是:土壤中存在的各种阳离子可被氯化钡(BaCl2)水溶液中的阳离子(Ba2+ ))等价交换。土壤B aCl2溶液处理。使之和Ba2+ 饱和,洗去剩余的B aC乜溶液后,再用强电解质硫酸溶液把交换到土壤中的Ba2+交换下来。由于生成了硫酸钡沉淀,而且氢离子的交换吸附能力很强,使交换反应基本趋于完全。这样通过测定交换反应前后硫酸含量的变化,可以讣算出消耗硫酸的量,从而计算出阳离子交换量。 1.2.2操作步骤 A、称取过2mm筛孔土样2g至100 ml离心管,向管中加入30 ml BaC l2(0.5m olL-1)溶液,用带橡皮头玻璃棒搅拌3~5min后,以3000r/m讪转速离心至下层土壤紧实为止。弃其上清液,再加30mlBaC L溶液,重复上述操作。 B、在离心管内加50 ml蒸馏水,用橡皮头玻璃棒搅拌3~5min后,离心沉降,弃其上清液。重复数次。直至无氯离子f用硝酸银溶液检验1。 C、移取25. 00 ml 0.1 moIL-1。1(浓度需标定1的硫酸溶液至离心管中,搅拌分散土壤,用振荡机振荡15min后。将离心管内溶液全部过滤入250m1锥形瓶中,用蒸馏水冲洗离心管及滤纸数次,直至无硫酸根离子f用氯化钡溶液检验在锥形瓶中,加1~2滴酚酞指示剂,再用0. 1molL-1 f浓度需标定)标准氢氧化钠溶液滴定,溶液转为红色并数分钟不褪色为终点。 D、在锥形瓶中, 加1~ 2滴酚酞指示剂, 再用0.11molL- 1 (浓度需标定) 标准氢氧化钠溶液滴定, 溶液转为红色并数分钟不褪色为终点 E、CEC值计算: [C (H2 SO4 ) x 50-NxB(NaOH)] x 100/ (Wo×K2) 式中:CEC -土壤阳离子交换量。cmokg-1; C-标准硫酸溶液浓度,moIL-1: B-滴定消耗标准氢氧化钠溶液体积,ml Wo-称取昀土样重,g N-标准氢氧化钠溶液的浓度,m 01L。1 K2 -水分换算系数。 2试剂及设备

阳离子交换量

土壤的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。其交换过程是土壤固相阳离子与溶液中阳离子起等量交换作用。 阳离子交换量的大小,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。 测量土壤阳离子交换量的方法有若干种,这里只介绍一种不仅适用于中性、酸性土壤,并且适用于石灰性土壤阳离子交换量测定的EDTA—铵盐快速法。 方法原理采用0.005mol/LEDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的pH条件下(酸性土壤pH7.0,石灰性土壤pH8.5),这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。同时由于醋酸缓冲剂的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。对于酸性土壤的交换液,同时可以用作为交换性盐基组成的待测液用。主要仪器架盘天平(500g)、定氮装置、开氏瓶(150ml)、电动离心机(转速3000—4000转/分);离心管(100ml);带橡头玻璃棒、电子天平(1/100)。 试剂(1)0.005mol/LEDTA与1mol/L醋酸铵混合液:称取化学纯醋酸铵77.09克及EDTA1.461克,加水溶解后一起冼入1000ml容量瓶中,再加蒸溜水至900ml左右,以1:1氢氧化铵和稀醋酸调至pH至7.0或pH8.5,然后再定容到刻度,即用同样方法分别配成两种不同酸度的混合液,备用。其中pH7.0的混合液用于中性和酸性土壤的提取,pH8.5的混合液仅适用于石灰性土壤的提取用。 (2)95%酒精。工业用,应无铵离子反应。 (3)2%硼酸溶液:称取20g硼酸,用热蒸馏水(60℃)溶解,冷却后稀释至1000ml,最后用稀盐酸或稀氢氧化钠调节pH至4.5(定氮混合指示剂显酒红色)。 (4)定氮混合指示剂:分别称取0.1克甲基红和0.5克溴甲酚绿指示剂,放于玛瑙研钵中,并用100ml95%酒精研磨溶解。此液应用稀盐酸或氢氧化钠调节pH至4.5。 (5)纳氏试剂(定性检查用):称氢氧化钠134克溶于460ml蒸馏水中;称取碘化钾20克溶于50ml蒸馏水中,加碘化汞使溶液至饱和状态(大约32克左右)。然后将以上两种溶液混合即可。 (6)0.05mol/L盐酸标准溶液:取浓盐酸4.17ml,用水稀释至1000ml,用硼酸标准溶液标定。 (7)氧化镁(固体):在高温电炉中经500—600℃灼烧半小时,使氧化镁中可能存在的碳酸镁转化为氧化镁,提高其利用率,同时防止蒸馏时大量气泡发生。 (8)液态或固态石蜡 操作步骤称取通过60目筛的风干土样1.××克(精确到0.01g),有机质含量少的土样可称2—5克,将其小心放入100ml离心管中。沿管壁加入少量EDTA—醋酸铵混合液,用带橡皮头玻璃棒充分搅拌,使样品与交换剂混合,直到整个样品呈均匀的泥浆状态。再加交换剂使总体积达80ml左右,再搅拌1—2分钟,然后洗净带橡皮头的玻璃棒。 将离心管在粗天平上成对平衡,对称放入离心机中离心3—5分钟,转速3000转/分左右,弃去离心管中的清液。然后将载土的离心管管口向下用自来水冲洗外部,用不含铵离子的95%酒精如前搅拌样品,洗去过剩的铵盐,洗至无铵离子反应为止。 最后用自来水冲洗管外壁后,在管内放入少量自来水,用带橡皮头玻璃棒搅成糊状,并洗入150ml开氏瓶中,洗入体积控制在80—100ml 左右,其中加2ml液状石蜡(或取2克固体石蜡)、1克左右氧化镁。然后在定氮仪进行蒸馏,同时进行空白试验。 结果计算 阳离子交换量(cmol/kg土)=M×(V-V0)/样品重 式中:V—滴定待测液所消耗盐酸毫升数。 V0—滴定空白所消耗盐酸毫升数。 M—盐酸的摩尔浓度 样品重—烘干土样质量。

土壤交换性酸测定方法

土壤交换性酸(氢、铝)的测定 ———氯化钾交换——中和滴定法方法原理: 在酸性土壤中,土壤永久电荷引起的酸度(交换性H+和Al3+)用1mol/LKCL淋洗时被K+交换而进入溶液,当用氢氧化钠标准溶液直接滴定淋洗时,同时滴定了交换性H+和Al3+水解产生的H+,所得结果为全量,即交换性酸总量。另取一份浸出液,加入足量的氟化钠溶液,是Al3+络合成[AlF6]3-,从而防止了Al3+的水解,再用标准氢氧化钠溶液滴定,所得结果为交换性H+。两者之差为交换性Al3+。 仪器:250ml容量瓶、25ml碱式滴定管或微量滴定管 试剂: 氯化钾溶液(1mol/L):74.55g KCL(化学纯)溶于水中,定容至1L,溶液pH应在5.5~6之间(用稀氢氧化钾或稀盐酸调节) 酚酞指示剂:1g酚酞溶于100ml 95%乙醇中。 氟化钠溶液:3.5g氟化钠(化学纯)溶于80ml无CO2水中,以酚酞作指示剂,用稀NaOH或稀HCl调节至为红色(pH 8.3),最后稀释到100ml,贮于塑料瓶中。 NaOH标准溶液(0.02mol/L):0.8gNaOH(分析纯)溶于1000ml无CO2水中,用邻苯二甲酸氢钾标定其浓度。 操作步骤: 1. 称取10.00g风干土样(2mm),放在铺好滤纸的布氏漏斗中,用氯化钾溶液少量多次地淋洗土壤样品,滤液承接在250ml容量瓶中,近刻度时,用氯化钾溶液定容。

2. 吸取100ml滤液于250ml锥形瓶中,低温煮沸5min,赶出CO2,以酚酞作指示剂,趁热用NaOH标准溶液滴定至微红色,记下NaOH用量(V1)。 3. 另取一份100ml滤液于250ml锥形瓶中,低温煮沸5min,赶出CO2,趁热加入过量NaF溶液1ml,冷却后以酚酞作指示剂,用NaOH标准溶液滴定至微红色,记下NaOH用量(V2)。 并作空白试验,且记下NaOH用量(V0和V0’)。 计算结果: 交换性氢:cmol·kg-1(H+)=( V2-V0’)×c×ts×10-1×1000/m 交换性铝:cmol·kg-1(1/3Al3+)=[(V1-V0)-(V2-V0’)]×c×ts×10-1×1000/m 式中: V1——交换性酸总量滴定氢氧化钠标准溶液体积,ml; V0——交换性酸总量空白滴定氢氧化钠标准溶液体积,ml; V2——交换性氢滴定氢氧化钠标准溶液体积,ml; V0’——交换性氢空白滴定氢氧化钠标准溶液体积,ml; C——氢氧化钠标准溶液浓度,mol·L-1 ts——分取倍数; 10-1——由mmol换成cmol的系数; m——土样质量,g; 1000——换算成每千克含量。 注意事项: 250ml淋洗液已可把交换性H+和Al3+基本洗出,若淋洗液体积过大或淋洗时间过长,有可能把部分水解酸洗出。

土壤有机质的七大作用

1、是土壤养分的主要来源 有机质中含有作物生长所需的各种养分,可以直接或简接地为作物生长提供氮、磷、钾、钙、镁、硫和各种微量元素。特别是土壤中的氮,有95%以上氮素是以有机状态存在于土壤中的。因为土壤矿物质一般不含氮素,除施入的氮肥外,土壤氮素的主要来源就是有机质分解后提供的。土壤有机质分解所产生的二氧化碳,可以供给绿色植物进行光合作用的需要。此外,有机质也是土壤中磷、硫、钙、镁以及微量元素的重要来源。 2、促进作物的生长发育 有机质中的胡敏酸,可以增强植物呼吸,提高细胞膜的渗透性,增强对营养物质的吸收,同时有机质中的维生素和一些激素能促进植物的生长发育。 3、促进改善土壤性质,结构 有机质中的腐殖质是土壤团聚体的主要胶结剂,土壤有机胶体是形成水稳性团粒结构不可缺少的胶结物质,所以有助于黏性土形成良好的结构,从而改变了土壤孔隙状况和水、气比例,创造适宜的土壤松紧度。土壤有机质的黏性远远小于黏粒的黏性,只是黏粒的几分之一。一方面,它能降低黏性土壤的黏性,减少耕作阻力,提高耕作质量;另一方面它可以提高砂土的团聚性,改善其过分松散的状态。 4、提高土壤的保肥能力和缓冲性能 土壤有机质中的有机胶体,带有大量负电荷,具有强大的吸附能力,能吸附大量的阳离子和水分,其阳离子交换量和吸水率比黏粒要大几倍、甚至几十倍,所以它能提高土壤保肥蓄水的能力,同时也能提高土壤对酸碱的缓冲性。 5、促进土壤微生物的活动 土壤有机质供应土壤微生物所需的能量和养分,有利于微生物活动。 6、提高土壤温度 有机质颜色较暗,一般是棕色到黑褐色,吸热能力强,可以提高地温。可改善土壤热状况。 7、提高土壤养分性

实验四 土壤的阳离子交换量

实验五土壤的阳离子交换量 一.实验目的 通过测定表层和深层土的阳离子交换量,了解不同土阳离子交换量的差别。 二.实验原理 本实验采用的是快速法来测定阳离子交换量。土壤中存在的各种阳离子可被某些中性盐(BaCl2)水溶液中的阳离子(Ba2+)等价交换。由于在反应中存在交换平衡,交换反应实际上不能进行完全。当增大溶液中交换剂的浓度、增加交换次数时,可使交换反应趋于完全。交换离子的本性,土壤的物理状态等对交换反应的进行程度也有影响。 再用强电解质(硫酸溶液)把交换到土壤中的Ba2+交换下来,这由于生成了硫酸钡沉淀,而且氢离子的交换吸附能力很强,使交换反应基本趋于完全。这样通过测定交换反应前后硫酸含量的变化,可以计算出消耗硫酸的量,进而计算出阳离子交换量。 三.仪器试剂 1.离心机、离心管 2.锥形瓶:100 mL 3.量筒:50 mL 4.移液管:10 mL 、25 mL 5.碱式滴定管:25 mL 6.试管 7.0.1N 氢氧化钠标准溶液 8. 1N氯化钡溶液 9. 酚酞指示剂1% 10. 0.2 N硫酸溶液 11.土壤样品,风干后磨碎过200目筛 四.实验步骤 1.取 4个洗净烘干且重量相近的50mL离心管,贴好标签。在天平上分别称出其重量(W 克)(准确至0.005 g,以下同)。在其中2个各加入1 g左右表层风干土壤样品,其余2个加入1 g深层风干土壤样品,并做好相应标记。 2.向各管中加入20 mL氯化钡溶液,用玻棒搅拌4 min后,以3000r/min转速离心10min 至上层溶液澄清,下层土样紧实为止。倒尽上清液,然后再加20 mL氯化钡溶液,重复上述操作一次,离心完后保留管内土层。 3. 在各离心管内加20 mL蒸馏水,用玻棒搅拌1 min后,再离心一次,倒尽上层清液。称出离心管连同土样的重量(G克). 4.移取25.00 mL 0.2 mol/L硫酸溶液至各离心管中,搅拌10 min后,放置20 min,离心沉降,将上清液分别倒入4个锥形瓶中。再从中分别移取10.00 mL上清液至另外4个100 mL 锥形瓶中。同时,分别移取10.00 mL 0.2 mol/L硫酸溶液至第五,六个锥形瓶中。在这6个锥形瓶中各加入10 mL蒸馏水和1滴指示剂。用标准氢氧化钠溶液滴定,溶液转为红色并

土壤阳离子交换性能的分析

土壤阳离子交换性能的分析 1.1概述 土壤中阳离子交换作用,早在19世纪50年代已为土壤科学家所认识。当土壤用一种盐溶液(例如醋酸铵)淋洗时,土壤具有吸附溶液中阳离子的能力,同时释放出等量的其它阳离子如Ca2+、Mg2+、K+、Na+等。它们称为交换性阳离子。在交换中还可能有少量的金属微量元素和铁、铝。Fe3+ (Fe2+)一般不作为交换性阳离子。因为它们的盐类容易水解生成难溶性的氢氧化物或氧化物。 土壤吸附阳离子的能力用吸附的阳离子总量表示,称为阳离子交换量[cation exchange capacity,简作(Q)],其数值以厘摩尔每千克(cmol·kg-1)表示。土壤交换性能的分析包括土壤阳离子交换量的测定、交换性阳离子组成分析和盐基饱和度、石灰、石膏需要量的计算。 土壤交换性能是土壤胶体的属性。土壤胶体有无机胶体和有机胶体。土壤有机胶体腐殖质的阳离子交换量为200~400cmol·kg-1。无机胶体包括各种类型的粘土矿物,其中2:1型的粘土矿物如蒙脱石的交换量为60~100cmol·kg-1,1:1型的粘土矿物如高岭石的交换量为10~15cmol·kg-1。因此,不同土壤由于粘土矿物和腐殖质的性质和数量不同,阳离子交换量差异很大。例如东北的黑钙土的交换量为30~50cmol·kg-1,而华南的土壤阳离子交换量均小于10cmol·kg-1,这是因为黑钙土的腐殖质含量高,粘土矿物以2:1型为主;而红壤的腐殖质含量低,粘土矿物又以1:1型为主。 阳离子交换量的测定受多种因素影响。例如交换剂的性质、盐溶液的浓度和pH等,必须严格掌握操作技术才能获得可靠的结果。作为指示阳离子常用的有NH4+、Na+、Ba2+,亦有选用H+作为指示阳离子。各种离子的置换能力为Al3+> Ba2+>

土壤交换性钙和镁的测定

FHZDZTR0033 土壤 交换性钙和镁的测定 容量法 F-HZ-DZ-TR-0033 土壤—交换性钙和镁的测定—容量法 1 范围 本方法适用于酸性和中性土壤交换性钙和镁的测定。石灰性土壤是盐基饱和的土壤,目前无合适的测定方法。 2 原理 酸性和中性土壤中的交换性钙和镁,采用乙酸铵溶液交换,交换浸出液蒸干后,用盐酸溶解残渣,EDTA 容量法测定浸出液中的钙、镁量,即得土壤中交换性钙和镁的量。 3 试剂 3.1 缓冲溶液:称取67.5g 氯化铵,溶于无二氧化碳水中,加入新开瓶的氢氧化铵(ρ0.90g/mL )570 mL ,用无二氧化碳水稀释至1000mL ,贮于塑料瓶中,并防止吸入空气中的二氧化碳,缓冲溶液pH10。 3.2 酸性铬蓝K-萘酚绿B 混合指示剂:称取0.5g 酸性铬蓝K 和1.0g 萘酚绿B ,与100g 于105℃烘过的氯化钠相互研细磨匀,贮于棕色瓶中。 3.3 EDTA 标准溶液:0.0100mol/L ,称取已在80℃烘干2h 的乙二胺四乙酸二钠3.7225g (EDTA ,Na 2H 2C 10H 12O 2N 2·2H 2O ) ,精确至0.0001g ,溶于1000mL 水中。 3.4 氢氧化钠溶液:2mol/L ,称取8.0g 氢氧化钠,溶于100mL 无二氧化碳水中。 3.5 盐酸溶液,1+3。 3.6 氢氧化铵,1+1。 4 仪器 4.1 烧杯,200mL 。 5 操作步骤 5.1 吸取两份25.00mL 乙酸铵处理土样的浸出液(F-HZ-DZ-TR-0029乙酸交换法测定阳离子交换量5.1~5.2),分别置于200mL 烧杯中,低温蒸干。向蒸干的烧杯中加入3滴~5滴盐酸溶液(1+3)溶解残渣,并加入少量水擦洗烧杯内壁,再加水使溶液总体积控制在40mL 左右。 5.2 钙、镁合量的测定:取一份溶液,用氢氧化铵(1+1)中和至中性(pH 试剂检查),加入3.5mL 缓冲溶液,再加约0.1g 酸性铬蓝K-萘酚绿B 混合指示剂,用EDTA 标准溶液滴定至纯蓝色为终点。同时做空白试验。 5.3 钙量的测定:取另一份溶液,用氢氧化钠溶液(2mol/L )调节至pH12,加入0.1g 酸性铬蓝K-萘酚绿B 混合指示剂,用EDTA 标准溶液滴定至纯蓝色为终点。同时做空白试验。 注:如乙酸铵浸出液中有漂浮的枯枝落叶等粗有机质,应先过滤后进行测定。否则这些有机质中的钙、镁经蒸干后加 盐酸溶解时,也被溶解进入溶液中,影响交换性钙和镁的测定结果。 6 结果计算 土壤交换性钙按(1)式计算,交换性镁按(2)式计算: E (1/2Ca 2+)=100010 2)(42××××××?K m t C V V ……(1) E (1/2Mg 2+)=100010 2)]()[(4231××××××???K m t C V V V V ……(2) 式中: E (1/2Ca 2+)——交换性钙量,c mol/kg ; E (1/2Mg 2+)——交换性镁量,c mol/kg ;

实验九 土壤的阳离子交换量

实验题目:土壤的阳离子交换量 实验原理: 土壤是环境中污染物迁移转化的重要场所,土壤的吸附和离子交换能力又和土壤的组成、结构等有关,因此对土壤性能的测定,有助于了解土壤对污染物质的净化及对污染负荷的允许程度。 土壤中主要存在三种基本成分,一是无机物,二是有机物,三是微生物。在无机物中,粘土矿物是其主要部分。粘土矿物的晶格结构中存在许多层状的硅铝酸盐,其结构单元是硅氧四面体和铝氧八面体。四面体硅层中的Si4-常被Al3+离子部分取代;八面体铝氧层中的Al3+可部分地被Fe2+、Mg2+等离子取代,取代的结果便在晶格中产生负电荷。这些电荷分布在硅铝酸盐的层面上,并以静电引力吸附层间存在的阳离子,以保持电中性。这些阳离子主要是Ca、Mg、Al、Na、K、H等,它们往往被吸附于矿物胶体表面上,决定着粘土矿物的阳离子交换行为。 土壤中存在的这些阳离子可被某些中性盐水溶液中的阳离子交换。当溶液中交换剂浓度大、交换次数增加时,交换反应可趋于完全。同时,交换离子的本性,土壤的物理状态等对交换完全也有影响。若用过量的强电解质,如硫酸溶液,把交换到土壤中去的钡离子交换下来,这时由于生成了硫酸钡沉淀,且由于氧离子的交换吸附能力很强,交换基本完全。这样,通过测定交换反应前后硫酸含量变化,可算出消耗的酸量,进而算出阳离子交换量。这种交换量是土壤的阳离子交换总量,通常用每1000克干土中的厘摩尔数表示。 实验目的: 1.测定污灌区表层和深层土的阳离子交换总量。 2.了解污灌对阳离子交换量的影响。 仪器与试剂: 电动离心机离心管锥形瓶量筒移液管滴定管试管 1N氯化钡溶液酚酞指示剂1%(W/V)硫酸溶液0.2N 土壤实验过程: 1.0.1N氢氧化钠标准溶液的标定:称2克分析纯氢氧化钠,溶解

土壤酸性土交换性酸的测定 和阳离子交换性能的测定

土壤酸性土交换性酸的测定 和阳离子交换性能的测定 简述实验目的与意义 土壤交换性盐基成分是指交换性Ca2+、Mg2+、K+、Na+等,NH4+、Zn2+、Cu2+等也常以交换态存在,但因其数量极少,通常<0.03cmol(+)/kg,因而没有计入交换性盐基。 测定交换性盐基成分的意义和必要性是因土而异的。 酸性土壤中,交换性Ca2+的含量是影响植物根际营养的重要元素,同时这些交换性盐基成分实际上也是作物所必需的营养元素,因而,在培养土壤肥力上具有重要意义。 一般测定交换性盐基成分都以1mol/LNH4Ac作为交换剂;中性和酸性土用pH7NH4Ac:石灰性土或碱性土用pH9的NH4Ac-NH4OH;盐土则用乙醇洗去游离盐分后再用pH9的NH4Ac-NH4OH醋酸铵交换。 本次实验测定酸性土交换性阳离子盐基成分,以pH7,1mol/LNH4Ac作为交换剂进行测定。 土壤交换性酸是指土壤酸性表现的强弱程度。土壤交换性酸又称为“土壤潜在(性)酸”,它由胶体所吸附的H+和Al3+构成。Al3+因水解作用产生H+,因此,又称为“水解(性)酸”。 Al3++3H2O→Al(OH)3+3H+ 土壤交换性H+、Al3+含量多少,在一定程度上体现了土壤矿物胶体化学风化程度的深浅和土壤淋溶作用的强弱。而交换性H+和Al3+在土壤中的转化关系经实验证明土壤pH值≤5.5时,才会有水解性酸存在,也就是说,只有相当量的交换性H+存在时,才有交换性Al3+的出现。但对于强酸性土壤来说,交换性Al3+是占主导地位的。 一、酸性土交换性阳离子盐基成分的测定

1.实验原理 (1)土壤样品的交换处理 用pH7、1mol/LNH4Ac作为交换剂处理土壤,土壤的交换性阳离子与交换剂中指示性阳离子(NH4+)实现交换平衡,交换反应式如下: 土粒[Ca2+、Mg2+、K+、Na+]+nNH4Ac→土粒[6 NH4+]+(n-6)NH4Ac+(Ca2+、Mg2+、K+、Na+) 若不断将交换出来的溶液分离开来,并加入新的交换剂。交换反应将不断向右移动,一直到交换完全。 (2)交换性Ca2+、Mg2+的测定——原子吸收分光光度法 Ca、Mg均是原子吸收光谱分析较好的元素,特别是Mg的测定,灵敏度和准确度极高,且基本无干扰,交换液经适当稀释后可直接上机测定(Ca2+测定范围为0.1~10μg/mL,Mg2+的测定范围为0.01~3μg/mL);但Ca2+、Mg2+的测定均可能有化学干扰(P043-、S042-)存在,可采用加释放剂(LaCl3)或保护剂的方法消除干扰。 (3)交换性K+、Na+的测定——火焰光度法 交换液中的K+、Na+经雾化喷入火焰时转变为基态自由原子,再受高温激发产生特征谱线。K原子谱线的波长是766.4nm(红色光);Na原子谱线的波长是589.0nm(黄色光)。分别使用相应波长的干涉型滤光片作为单色器,由光电转换器将过滤光片的光强转变为电流,则K+、Na+发射的光强可以通过检流计反应为光电流强度而测定。此外,也可以在原子吸收分光光度计上用火焰发射法或吸收法进行测定。 2.实验仪器及试剂 100ml烧杯、台称、离心管、玻棒、离心机、50ml容量瓶、漏斗、AP1401火焰光度计、Z-5000原子吸收分光光度计、移液管 pH7,1mol/LNH4Ac、铬黑T指示剂、5%LaCl3 土样信息表

土壤复习资料总结

老师列的复习题归纳如下: 1、什么是土壤和土壤肥力?如何正确理解土壤肥力的概念? 答: 土壤是指覆盖于地球表面,具有肥力特征的生长植物的疏松物质表层。 土壤肥力是土壤的基本属性和质的特征,是土壤从营养条件和环境条件方面,供应和协调植物生长的能力。 土壤肥力是在某种程度上能同时不断地供应与协调植物生长发育所需要的水分、养分、空气、热量的能力。 2、土壤的基本物质组成概况如何? 答:由矿物质、有机质、土壤生物(土壤固相)、土壤水分(液相)和土壤空气(气相)三相5种物质组成的多相多孔分散体系。 3、试述岩石、母质、土壤三者的区别与联系。 答:联系: 1)成土的母岩及其矿物成分、结构、构造和风化特点都与土壤的理化性质等有直接关系。 2)土壤是在岩石风化形成的母质上发育而来的,土壤的许多性质与成土岩石、矿物和母质 类型有关。 3)裸露的岩石经风化作用而形成的疏松的、粗细不同的矿物颗粒的地表堆积体,是形成 4)土壤的母体,称为母质。 区别:母质有别于岩石,其颗粒小单位体积或单位重量的表面积(即比表面积)较大,颗粒间多孔隙,疏松,有一定的透水性,通气性及吸附性能。 4、不同土壤质地的土壤如何进行改良和利用? 答:土壤质地改良方法: 1)掺沙掺粘,客土调剂 2)翻淤压沙或翻沙压淤 3)引洪漫淤或引洪漫沙 4)增施有机肥,改善土壤结构 5)种树种草,培肥改土 土壤质地的利用: 1)砂质土:通透性强;保蓄性弱;养分含量低;气多水少;温度高,土温变化快。砂质土 疏松,结持力小,易耕作,但耕作质量差。根据土类土壤的肥力特点,在作物种植上宜选种耐瘠、耐旱作物,生长期短、早熟作物,以及块根、块茎类作物和蔬菜。 2)黏质土:含砂粒少,黏粒多,毛管孔隙特别发达,大孔隙少,土壤透水通气性差,排水 不良,不耐涝。“发老不发小”,此类土壤宜施用腐熟的有机肥,化肥一次用量可比砂质土多,在苗期注意施用速效肥促早发。适宜种植粮食作物以及果、桑、茶等多年生的深根植物。 3)壤质土:由于含砂粒、黏粒比例较适宜,它的肥力特点兼有沙土类土壤和黏土类土壤的 优点。即通气透水性好;养分丰富;耕性表现良好。壤质土壤中水、肥、气、热以及植物扎根条件协调,适种范围较广,是农林业生产较为理想的质地类型。

土壤胶体和土壤交换性能

第六章土壤胶体和土壤交换性能 主要学习目标:要求学生了解土壤胶体的晶格构造,掌握土壤胶体的性质。本章是今后学习肥料学的基础。因为土壤胶体的行为影响着土壤的发生发展、土壤的理化性质及土壤保肥供肥能力。 第一节土壤胶体 一、概念 土壤胶体是指颗粒直径小于0.001mm或0.002mm的土壤微粒。 目前土壤胶体粒径的大小范围,并不是绝对的。这是因为胶体性质的出现,是随着粒径的减小逐渐加强的。没有截然划分的界限。 二、土壤中的胶体主要分为三类 1、土壤无机胶体:主要是矿物在化学风化过程中产生的次生矿物,包括氧化硅类、三氧化物类和层状铝硅酸盐等。有时将无机胶体称为粘土矿物。 粘土矿物的来源有以下几个途径:(1)由白云母、黑云母演变而来;(2)在一定条件下有矿物的分解产物合成形成;(3)由一种粘土矿物演变成另一种粘土矿物。 2、土壤中有机胶体主要是腐殖质,它是有机质在土壤微生物等的作用下形成的。 3、有机无机复合体是土壤腐殖质和粘土矿物通过混合和吸附结合在一起,结合过程比较复杂。 三、硅酸盐粘粒的晶格构造 1、粘土矿物的基本单位:有2个即硅氧片和铝氧片 (1)硅氧片:由硅氧四面体连接而成。 硅、氧两元素能组成一个单位的原因:一是硅具有正原子价,而氧具负原子价,二者可相互吸引。二是与原子大小有关,四个氧原子堆积成四面体时,其间所形成的空隙与硅原子的大小基本相似。但四面体的键价并不平衡(SiO44-),因此许多四面体可共用氧原子形成一层。此时键价仍不平衡,可与铝水八面体结合形成各类粘土矿物。 (2)铝氧片,又称铝氧八面体。 由六个氧原子围绕一个铝原子构成。六个氧原子所构成的八面体空隙与铝原子的大小相近似。许多铝八面体相互连接,形成铝氧片。铝氧片有两个层面的电价不平衡,可与氢原子连接形成水铝矿,或与硅氧片通过不同方式的连接结合成为铝硅酸盐。粘土矿物分为二层矿物和三层矿物; 四、粘土矿物负电荷的来源(本章的重点是土壤的电化学特性) 1、同晶取代:晶格构造中的中央离子被其他阳离子取代后会产生负电荷(被电荷比它低的取代)。 2、晶格断裂产生电荷。 3、胶体表面分子解离产生电荷。随pH变化改变而产生的电荷称可变电荷 五、几种主要土壤胶体 1、高岭石(kaolinite)是二层型(1:1)粘土矿物,是强烈化学风化条件下的产物(南方)(教材p178 8-3构造图)晶格较稳定,硅酸盐层之间由氢键连接,作用力很强,间隙小,水分子或其他离子很难进入层间。因此只有外表面,没有内表面,无胀缩性(陶器不会太大),比表面积较小,为30m2/g。高岭石带有的电荷一部分是晶格破裂产生的,另外晶格表面的—OH在土壤酸度变化时带有可变电荷,但高岭石的带电量较少; 2、伊利石属三层型(2:1)粘土矿物,主要分布在干旱半干旱地区。硅酸盐层间由钾

土壤交换性酸的测定

土壤交换性酸的测定(1mol·L- 1KCl交换—中和滴定法) 测定目的:土壤中的酸包括活性酸和潜性酸,活性酸通常通过电极法就可以测出,潜性酸的测定则需要经过阳离子的置换作用来测定。常用的方法有通过中性溶液(1mol·L- 1KCl)平衡交换和中性NH4OAc 法。本实验采用中性的KCl溶液测定,经过测定可以得出土壤中交换性铝(1/3Al3+)、交换性H+的含量以及交换性酸总量,了解土壤的酸度以及耐酸碱的缓冲能力。在农业生产中指导施肥和调节土壤pH具有重要的意义。 1、方法原理 在酸性土壤中,土壤胶体上可交换的H+及铝在用KCl淋洗时,为H+交换而进入溶液。 同时可溶解的有机胶体及有机胶体上可交换的氢亦随淋洗而进入溶液。当用标准NaOH溶液滴定浸出液时, H++ OH-→H2O RCOOH +OH-→ RCOO- + H2O Al(OH)n+3-n + nOH-→ Al(OH)3 从标准NaOH消耗量可以得到交换酸的含量。 若浸出液中另取一份溶液加入足够量的NaF时,氟离子与铝络合成[AlF6]3-,它对酚酞是中性的。制止了AlCl3水解之后,再用标准NaOH溶液滴定,所消耗碱的量即为交换性氢,两者之差即为交换性铝。 2、溶液配制 (1)1 mol·L-1氯化钾溶液:称取KCl 74.6g,用蒸馏水溶解并稀释至1000mL。(本次试验土样为20个,大概需要溶液的量为:20*2*250=10L,鉴于空白和可能产生一些浪费,配制12L溶液装于容器中,并贴好标签) (2)0.02 mol·L-1标准碱(NaOH):称取NaOH约0.8g,溶于1000mL无CO2蒸馏水中。用邻苯二甲酸氢钾标定浓度。(配制前要准备好去CO2蒸馏水,冷却后再定容滴定,滴定好后记录下浓度,贴上标签) (3)10g·L-1酚酞:称取酚酞1g,溶于100mL乙醇中。 (4)35g·L-1NaF溶液:称取NaF(化学纯)3.5g溶于80mL无CO2水中,以酚酞为指示剂,用稀NaOH或HCl 调节到微红色(pH8.3)稀释至100mL贮于塑料瓶中。(在调节pH过程中药注意调节颜色的变化,可先用NaOH调到红色刚刚褪去,再用HCl反调) 3、操作步骤 (1)滤液的制备:称取风干土样(10目)5.00g放在已铺好滤纸的漏斗内,漏斗下放置已经编号的250mL 容量瓶→将1mol·L-1KCl溶液倒入小烧杯,再沿边缓缓倒入漏斗,少量多次地淋洗土样(第一次尽量滤

土壤.doc阳离子交换量

土壤、底泥、危废和固体废弃物阳离子量交换量和交换性盐 基的测定方法确认报告 1. 目的 通过标准酸溶液滴定来确定土壤、底泥、危废和固体废弃物阳离子量交换量和交换性盐基的检出限、精密度、准确度的分析,判断本实验室的检测方法是否合格。 2. 职责 2.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影 响试验结果的意外因素,掌握检出限、精密度、准确度的计算方法。 2.2 技术负责人负责审核检测结果和方法确认报告。 3.适用范围及方法标准依据 本标准规定了土壤阳离子交换量和交换盐基的测定原理、试剂、样品制备、分析步骤和结果表述。 本标准适用于中性土壤阳离子交换量和交换盐基的测定,也可用于胃酸性少含2:1型粘土矿物的土壤。 4. 方法原理 用1mol/L的乙酸铵溶液反复处理土壤,使土壤成为铵离子饱和土,过量的乙酸铵用95%乙醇洗去,然后加氧化镁,用定氮蒸馏的方法进行蒸馏。蒸馏出的氨用硼酸溶液吸收,以标准酸液滴定,根据铵离子的量计算土壤阳离子交换量。土壤交换性盐基是用土壤阳离子交换量测定时所得到的乙酸土壤浸提液,在选定工作条件的原子吸收分光光度计上直接测定;但所用钙、镁、钾、钠标准溶液应用乙酸铵溶液配制,以消除基体效应。用土壤浸出液测定钙、镁时,还应加入释放剂锶,以消除铝、磷和硅对钙、镁测定的干扰。 5. 仪器与试剂 5.1 仪器与设备: a)土壤筛: b)离心管: c)天平: d)电动离心机: e)原子吸收分光光度计: 5.2试剂 所有试剂除注明者外,均为分析纯,水均指去离子水。

5.2.1 1mol/L乙酸铵溶液:称取77.09g乙酸铵,用水溶解并稀释至近1L。必要时用1:1氨水或乙酸调节至PH7.0,然后定容至1L。 5.2.2 95%乙醇溶液 5.2.3 液体石蜡(化学纯) 5.2.4 氧化镁:将氧化镁放入镍蒸发皿内,在500~600℃马福炉中灼烧30min,冷却后贮藏在密闭的玻璃器皿中。 5.2.5 20g/L硼酸溶液:20g硼酸溶于1L无二氧化碳蒸馏水。 5.2.6 甲基红—溴甲酚绿混合指示剂:将0.066g甲基红和0.0990g溴甲酚绿置于玛瑙研钵中,加少量95%乙醇,研磨纸指示剂完全溶解为止,最后加95%乙醇至100ml。 5.2.7 0.5mol/L的盐酸标准溶液:吸取37%的浓盐酸20.9ml定容至500ml。 标定:按GB601中4.2得知盐酸标准溶液浓度为0.5mol/L时,称取0.95g高温下烘过的无水碳酸钠于50ml水中,用盐酸标准溶液标定,同时做空白试验; c= m×1000/(V1-V0)×M 式中: m—无水碳酸钠的质量的准确数值,g; V1—盐酸标准溶液消耗体积的数值,(ml); V0—空白试验盐酸标准溶液体积的数值(ml); M—无水碳酸钠的摩尔质量的数值—52.994; 5.2.8 0.025mol/L盐酸标准溶液:吸取250ml0.5mol/L的盐酸标准溶液(5.2.7),用水稀释定容至500ml。 5.2.8 pH缓冲溶液:67.5g氯化铵溶于无二氧化碳水中,加入新开瓶中浓氨水570ml,用水稀释至1L,贮存于塑料瓶中,并注意防止吸收空气中的二氧化碳。 5.2.9 K-B指示剂:0.5g酸性铬蓝K和1.0g萘酚率与100g一同研磨匀,越细越好,贮于棕色瓶中。 5.2.10 钠氏试剂:134g氢氧化钾溶于460ml水中,20g碘化钾溶于50ml水中加入约32g碘化汞,使溶液至饱和状态,然后将两溶液混合即成。 5.2.11 1000㎎/L钙标准贮备液:2.497g碳酸钙溶于1mol/L盐酸溶液中,煮沸赶去二氧化碳。用水吸入1L容量瓶中,定容,贮存于塑料瓶中备用。 5.2.12 钙镁标准混合工作液:分别吸取钙标准贮备液和镁标准贮备液0.25ml于50ml容量瓶中,用1mol/L乙酸铵溶液定容,此液含钙50㎎/L,含镁5㎎/L。 5.2.13 1000㎎/L钠标准贮备液:2.5421g氯化钠溶于水定容至1L。 5.2.14 1000㎎/L钾标准贮备液:1.9068g氯化钾溶于水定容至1L。 4.2.15 钾钠标准混合工作液:分别吸取钾标准贮备液和钠标准贮备液各2.5ml

土壤交换性酸的测定--中和滴定法

土壤交换性酸的测定 氯化钾交换——中和滴定法 1 方法提要: 用 1 mol·L-1氯化钾溶液淋洗土壤时,土壤永久负电荷引起的酸度(无机胶体吸附的H+和Al3+)被K+交换进入溶液,用氢氧化钠标准溶液直接滴定浸出液所得结果为交换性酸总量。另取一份浸出液,加入足量的氟化钠溶液,使Al3+形成络离子,防止其水解,再用氢氧化钠标准溶液滴定,所得结果为交换性H+,两者之差为交换性Al3+。 2 适用范围: 本方法适用于酸性土壤交换性酸的测定。 3 主要仪器设备: 半微量碱式滴定管:10mL。 4 试剂: 氯化钾溶液[c(KCl)=1 mol·L-1]:称取74.6g氯化钾溶于800mL水中,用稀氢氧化钾和稀盐酸调节溶液pH为~,稀释至1L; 氟化钠溶液[ρ(NaF)=35g·L-1]:称取氟化钠3.5g溶于80mL无C02水中,以酚酞为指示剂,用稀氢氧化钠溶液或稀盐酸溶液调节到微红色(),再稀释至100mL,存于聚乙烯瓶;氢氧化钠标准溶液[c(NaOH)= mol·L-1]:称取NaOH约0.8g,溶于1000mL无CO2水中,用邻苯二甲酸氢钾标定浓度; 酚酞指示剂(5g·L-1):称取0.5g酚酞溶于95%乙醇并以其稀释至100mL; 盐酸溶液(1:3):1份盐酸与3份水混合; 硫氰化钾水溶液 [ρ(KSCN)=10g·L-1]:称取1g硫氰化钾溶于100mL水中。 5 分析步骤 称取过2mm孔径筛的风干试样5.00g放在已铺好滤纸的漏斗内,用1 mol·L-1氯化钾溶液少量多次地淋洗,滤液承接在250mL容量瓶中,至近刻度,用1 mol·L-1氯化钾溶液定容。 吸取滤液100mL于250mL三角瓶中,煮沸5min,赶走CO2,加入酚酞批示剂5滴,趁热用 mol·L-1氢氧化钠标准溶液滴定至微红色。记下氢氧化钠用量(V1)。 另取一份100mL滤液于250mL三角瓶中,煮沸5min,趁热加入约1mL氟化钠溶液,冷却后加入酚酞指示剂5滴,用 mol·L-1氢氧化钠标准溶液滴定至微红色。记下氢氧化钠用

完整版土壤阳离子交换量.doc

土壤阳离子交换量(Bacl 2 实验原理 本实验采用的是快速法来测定阳离子交换量。土壤中存在的各种阳离子可被某些中性盐 (B aCl2 )水溶液中的阳离子( Ba2+)等价交换。由于在反应中存在交换平衡,交换反应实 际上不能进行完全。当增大溶液中交换剂的浓度、增加交换次数时,可使交换反应趋于完全。交 换离子的本性,土壤的物理状态等对交换反应的进行程度也有影响。 再用强电解质(硫酸溶液)把交换到土壤中的 Ba2+ 交换下来,这由于生成了硫酸钡沉淀,而 且氢离子的交换吸附能力很强,使交换反应基本趋于完全。这样通过测定交换反应前后硫酸含量 的变化,可以计算出消耗硫酸的量,进而计算出阳离子交换量。用不同方法测得 的阳离子交换量的数值差异较大,在报告及结果应用时应注明方法。 1.仪器 (1)离心机:北京产 CD5 –A 型离心机 (2)离心管: 100 mL (3)锥形瓶: 100 mL (4)量筒: 50 mL (5)移液管: 10 mL 、 25 mL (6)碱式滴定管: 25 mL 2.试剂 ( 1)氯化钡溶液:称取60 g 氯化钡( BaCl2 ·2H2O )溶于水中,转移至500 mL 容量瓶中,用水定容。 (2) 0.1%酚酞指示剂( W∕V):称取 0.1 g 酚酞溶于 100 mL 醇中。 (3)硫酸溶液( 0.1 mol/L ):移取 5.36 mL 浓硫酸至 1000 mL 容量瓶中,用水稀释至刻 度。 ( 4)标准氢氧化钠溶液(≈ 0.1 mol/L):称取 2 g氢氧化钠溶解于500 mL 煮沸后冷却的蒸馏水中。其浓度需要标定。 标定方法:各称取两份0.5000g 邻苯二甲酸氢钾(预先在烘箱中105 ℃烘干)于 250 mL 锥形瓶中,加100 mL 煮沸后冷却的蒸馏水溶解,再加 4 滴酚酞指示剂,用配制好的氢氧化 钠标准溶液滴定至淡红色。再用煮沸后冷却的蒸馏水做一个空白试验,并从滴定邻苯二甲酸氢钾 的氢氧化钠溶液的体积中扣除空白值。计算公式如下: 式中:W ——邻苯二甲酸氢钾的重量, V1 ——滴定邻苯二甲酸氢钾消耗的氢氧化钠体积,mL ; V0 ——滴定蒸馏水空白消耗的氢氧化钠体积,mL ; 204.23 ——邻苯二甲酸氢钾的摩尔质量,g/mol 。

相关主题
文本预览
相关文档 最新文档