当前位置:文档之家› 固定污染源废气低浓度颗粒物的测定重量法

固定污染源废气低浓度颗粒物的测定重量法

固定污染源废气低浓度颗粒物的测定重量法
固定污染源废气低浓度颗粒物的测定重量法

固定污染源废气低浓度颗粒物的测定重量法

(征求意见稿)

编制说明

编制组

2015年9月

一、项目背景 (3)

1.任务来源 (3)

2.工作过程 (3)

二、修订本标准的必要性分析 (3)

1.固定污染源颗粒物污染的危害 (4)

2.相关环保标准和环保工作的需要 (4)

3.现行环境监测分析方法标准的实施情况和存在问题 (4)

4.低浓度颗粒物测定技术的最新进展 (5)

三、国内外相关分析方法研究 (5)

1.主要国家、地区及国际组织相关分析方法研究 (5)

2.国内相关分析方法研究 (7)

四、标准制修订的基本原则和技术路线 (7)

1.标准制修订的基本原则 (7)

2.标准制修订的技术路线 (8)

五、方法研究报告 (10)

1.适用范围 (10)

2.规范性引用文件 (11)

3.术语和定义 (11)

4.方法原理 (11)

5.仪器和设备 (12)

6.采样位置和采样点 (13)

7.采样 (13)

8.结果与表述 (14)

9.质量控制措施 (14)

六、方法验证 (16)

1.实验内容 (16)

2.质量控制措施 (16)

3.验证实验室基本情况 (18)

4.验证实验结论 (18)

参考文献: (19)

一、项目背景

1.任务来源

2015年6月,河北省环境保护厅向河北省环境监测中心站下达了起草《固定污染源低浓度颗粒物的测定重量法》方法标准的任务。

标准的制定由河北省环境监测中心站牵头,石家庄环境监测中心、秦皇岛市环境保护监测站、兴隆县环境监测站、河北省大名市环境监测站、唐山永正环境监测有限公司协作;青岛明华电子仪器有限公司、青岛崂山应用技术研究所、青岛容广电子科技有限公司提供支持。

2.工作过程

按照河北省环境保护厅的要求,召集各参加单位,成立了标准编制小组,制定了详细的标准编制计划与任务分工,具体工作计划如下:

(1)对国内外有关“低浓度颗粒物的测定重量法”的标准内容、包括测定原理、采样装置、采样程序、质量控制、结果计算及方法性能进行调研,对国内外固定污染源低浓度颗粒物采样设备的工作原理、测试方法、可行性及应用情况进行调研,对国内外相关分析方法进行研究比较,对国内固定污染源排放的相关法律、法规和政策进行分析研究,收集国内外关于低浓度颗粒物测定的文献资料,分类归纳。

(2)依据调研的内容,参考相关标准,确定标准的适用范围,并制定相应的技术路线;

(3)对确定的技术指标和验证方案进行测试、比对,验证其可行性,形成测试报告和验证报告;

(4)完成编制说明和标准文本。

目前,我们查阅了国内外“低浓度颗粒物的测定重量法”的相关标准、固定污染源颗粒物采样设备标准及检定规程、各类固定污染源颗粒物测定标准及烟尘烟气排放标准中颗粒物规定限值,结合我省各环境监测站和排废企业对低浓度颗粒物检测方法的应用研究及需求情况的广泛调研,进行了分类、归纳和总结,在此基础上完成了标准草案。

二、修订本标准的必要性分析

1.固定污染源颗粒物污染的危害

颗粒物或尘,是指燃料和其他物质在燃烧、合成、分解以及各种物质在机械处理中所产生的悬浮于排放气体中的固体和液体颗粒状物质。各项研究表明,长期接触空气中的污染颗粒会增加患肺癌的风险,颗粒或其他空气污染物短期内浓度上升,会增加患心脏病的风险。欧洲流行病学家发现,肺癌与局部地区的空气污染颗粒有明显的关联,即使污染水平短暂升高----类似城市发出雾霾警告的同时,也会使心力衰竭住院或死亡的风险上升2%-3%。鲁晟等人[1]对燃煤电厂烟气中颗粒物粒径分布特征的研究表明,燃煤电厂经除尘后排放的烟气以PM10和PM2.5为主。而粒径小于2.5 μm以下的部分,可直接达到人类肺部进入肺泡,并可能进入血液通往全身,颗粒物富集大量有毒重金属和有害有机物,并且粘附细菌和病毒。颗粒物不仅影响人类身体健康,对植物也会造成危害。早在1974年,中国医学科学院科学研究所就对国内电厂的烟尘排放进行了研究,发现火电厂烟尘对农作物也会产生危害,傅嘉媛等[2]按照某电厂扩建工程预测的降尘量,采用模拟试验的方法,研究烟尘对大白菜的生物学性状、生理功能、产量和品质均有不同伤害程度。

2.相关环保标准和环保工作的需要

固定污染源颗粒物监测是我省节能减排重点控制的污染物指标,火电厂执行《火电厂大气污染物排放标准》(GB13223-2011)、锅炉执行《锅炉大气污染物排放标准》(GB13271-2014)、水泥厂执行《水泥工业大气污染物排放标准》(DB13/2167-2015)及各种固定污染源排放标准中都对颗粒物的标准限值作了明确的规定。在《河北省燃煤发电机组超低排放升级改造实施方案(征求意见稿)》及《燃煤电厂大气污染物排放标准》(B13/2209-2015)中明确规定“2015年底前完成全省燃煤发电机组除尘、脱硫、脱硝设施建设或改造,改造后达到火电企业排放限值要求,即在基准氧含量6%条件下,烟尘排放浓度分别不高于10mg/m3”。新标准的执行要求配套改进颗粒物的检测方法。

3.现行环境监测分析方法标准的实施情况和存在问题

随着环境管理日趋严格及环境污染治理技术不断进步,尤其是全国大气污染源自动监测工作已全面展开,针对脱硫后管道内颗粒物浓度低、温度低、湿度高

的“二低一高”状况,现有的采样及分析标准方法无法准确对监测仪器标定和校核。再者近年来河北省企业除尘设备的除尘效率逐渐提高,绝大多数300WM机组以上的电厂采用了静电除尘器、布袋除尘器和脱硫除尘技术,颗粒物排放质量浓度已降低至30mg/m3以下,有的甚至低于10mg/m3。

国内现阶段颗粒物监测方法采用《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996),严格意义而言,该方法仅适用于颗粒物质量浓度高于50mg/m3情况下的监测,测定低于50mg/m3的颗粒物时误差较大,该方法规定颗粒物捕集介质为滤筒,滤筒为柔性外表,在烟道内颗粒物浓度低、温度低、湿度高的“二低一高”的环境下,加之采样过程比较复杂,容易造成系统误差,在低浓度颗粒物采样和分析中,无法准确定量,对测定结果产生较大影响。

随着大气固定污染源颗粒物允许排放限值越来越低,《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)颗粒物手工采样重量法逐渐暴露出不能准确测量和不适应测定低浓度颗粒物的缺陷。因此,研究废气固定污染源所排放的低浓度颗粒物采样及分析技术非常重要。

4.低浓度颗粒物测定技术的最新进展

自2011年火电厂大气污染排放标准修订以后,将烟尘的排放限值规定为20mg/m3或30mg/m3,原有的《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)的测定方法对低浓度颗粒物测量的局限性越来越明显。国内开始采用滤膜代替滤筒的称重方法实现对低浓度颗粒物的测量:使用滤膜采用整体称重法克服了取样过程造成的玻纤损失和样品分散在采样管组件带来的较大误差问题。国外方法规定了采集颗粒物到滤膜上的质量最小比值,使用了针对低浓度颗粒物的清洗及称量方法,可较大程度上降低采样和分析过程中的误差。同时采用大体积采样方法、电荷探针法等提高测试精确度。

三、国内外相关分析方法研究

1.主要国家、地区及国际组织相关分析方法研究

低浓度颗粒物的采样及分析技术在国外发达国家已开展了研究,检测方法主要是手工称重法,目前国内还没有关于低浓度颗粒物检测的国家标准,国外关于低浓度颗粒物的检测标准主要为方法标准:

(1)Stationary source emissions-Determination of mass concentration of

particulate matter(dust) at low concentrations-Manual gravimetric method. (ISO12141-2002)[1](以下简称ISO12141,下同)。

译文:固定污染源排放低浓度颗粒物的质量浓度测量手工重量分析方法

(2)Stationary source emissions-Manual determination of mass concentration of particulate matter(ISO9096-2003)。

译文:固定污染源排放-颗粒物质量浓度的手工测定

(3)Test method for determination of mass concentration of particulate matter from stationary sources at low concentrations(Manual gravimetric method)(ANSI/ASTM D 6331-98 (Re-approvered 2005))。

译文:在低浓度时测定固定污染源排放的颗粒物浓度的试验方法(手工重量分析法)

(4)Determination of low level particulate matter emissions from Stationary Sources(USEPA method 5I )。

译文:固定污染源排放中低浓度颗粒物测定

(5)Determination of low range mass concentration of dust-Part1: Manual gravimetric method[2](BS EN 13284-1:2002)

译文:低浓度颗粒物的测定第一部分:手工称重法

(6)Methods of measuring dust concentration in flue gas(JIS Z 8808-1995 ) 。

译文:废气中尘浓度的测量方法

ANSI、ISO以及BS EN都发布了大体积采样技术在低浓度颗粒物测定中的应用。取样嘴特性按照标准要求,为获得较高的等速动态取样速率,允许取样嘴的直径范围1.25-3.43cm。

ANSI方法规定了采集颗粒物到滤膜上质量最小比值,并应用空白滤膜和专业的称量技术,方法提出,在进行低浓度颗粒物测定时,整个测试过程尽可能只使用1个滤膜累积采样,从而提高测量准确度;

ISO和BS EN方法使用了针对低浓度颗粒物的清洗及专业的称量方法,这个过程可以大大降低采样和分析过程中的误差;方法规定测量标准条件下烟气颗粒物质量浓度低于50mg/m3的情况。为使测试结果有效,取样时收集的颗粒物质量必须大于滤膜总体空白值的5倍,在这种情况下,通常使用大体积采样技术或

延长采样时间。

USEPA方法适用于测量颗粒物浓度小于50mg/m3,该方法采用47mm的玻璃纤维滤膜收集颗粒物[3],将滤膜固定在过滤器上,过滤器的重量不超过35g,通过对过滤器整体称重方式测得结果,该方法采用双路同时采样,使用两路采样结果的相对标准偏差,确保采样数据的高准确度。因此保证该方法准确度的关键环节是双采样装置、针对低浓度颗粒物的清洗和专业的称量过程。

在ISO12141、BS EN及ANSI方法中规定,测定低浓度颗粒物时,必须回收、称重滤膜上游采集设备上堆积的颗粒物[4-6],滤膜增加的质量与从采样设备上收集的堆积颗粒物质量之和才是烟气样品中所含颗粒物质量。

2.国内相关分析方法研究

我国检测固定污染源颗粒物的方法标准有《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996),《工业炉窑烟尘测试方法》(GB9079-1988)、《锅炉烟尘测试方法》(GB5468-1991)、《烟尘采样器技术条件》(HJ/T48-1999)国内大部分标准方法均将GB/T16157-1996作为测量固定源废气颗粒物浓度的依据。

另外,山东省在2014年8月推出了地方标准《山东省固定污染源废气低浓度颗粒物的测定重量法》(DB37/T2537-2014 )。规定了颗粒物浓度在低于50mg/m3时的采样方法,方法检出限为1 mg/m3,采用滤膜过滤,分为整体称量和分体称量两种方式,其中整体称量时了采样头的重量为20g左右。

本标准在研究相关标准的基础上,采用滤膜法整体称量,通过改变采样头的的结构,减轻了采样头的重量,部分采样头控制在10g以下,提高了监测精度;通过试验新的过滤材料,解决了滤膜在湿度大的情况下的破损问题,增大了采气量。按照40L/min的速率恒流抽取洁净的环境空气45min,连续测量7次,以3.143倍标准偏差计算方法检出限,6家实验室检定的检出限规定的本标准检出限为:

0.5 mg/m3。

四、标准制修订的基本原则和技术路线

1.标准制修订的基本原则

本次标准修订,本着科学性、先进性和可操作性为原则,在原《固定污染源

排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)基础上,按照国家《大气污染防治行动计划》和河北省《河北省燃煤发电机组超低排放升级改造实施方案(征求意见稿)》的有关要求,同时参考美国、欧盟、日本以及国内山东省的相关标准,在我国现有标准、规定和各监测站的技术经验的基础上,结合我省实际情况和当前世界的科学技术水平,修订本标准。

2.标准制修订的技术路线

有关低浓度颗粒物的测定重量法的技术要求是对国内有关固定污染源颗粒物测定及采样方法标准、固定污染源烟尘采样器的行业标准、国外低浓度颗粒物的测定方法标准、征求仪器厂商代表意见等的调研、分析的基础上制定,其相应的技术要求的检测方法是对已经广泛应用的测定方法和具有应用前景的方法进行试验验证的基础上制订。

为切实加强本标准的实施,规范我省固定污染源低浓度颗粒物测定方法的规范,促进低浓度颗粒物测定水平的提高和数据的有效性,更好地为环境管理、环境决策服务。各级环境监测站及其他环境监测机构工作人员及相关企业应按照本标准执行。

组成标准编制组

国外低浓度颗粒物测定

的标准及资料调研 国内低浓度颗粒物采样的标准情况调研 国内低浓度颗粒物采样器的应用情况

形成开题报告并讨论

低浓度颗粒物的测定技术要求与方法性能

的确定 低浓度颗粒物的测定质控方案

修订内容及参数,评价验证

环保厅下达任务

编制标准方法文本和编制说明

(征求意见稿、征求意见并汇总处理、送审稿、

技术审查及完成报批稿)

标准适用

范围及术

语编制 确定制定标准的方法和要求

五、方法研究报告

1.适用范围

US EPA方法5I:1999《固定排放源排放低浓度颗粒物的测定》第2.3条,检出限为0.5 mg/m3(恒重的限值),最低检出限1 mg/m3(不同于零,在规定的置信水平可以确定的分析物的最小浓度或量),实际定量限3 mg/m3(即我国标准定义的测定下限)。

ISO 12141:2002《固定污染源排放-低浓度颗粒物(尘)的质量浓度的测定-手工重量法》第3.11条,由方法全程序空白值确定检出限;第11.6条全程序空白值不超过日均限值(10 mg/m3)的10%(1mg/m3)。

UK EA EN13284-1《固定源排放-低范围质量浓度尘的测定-部分1:手工重量法》的执行文件第10.6条,排放源排放限值为5 mg/m3时,全程序空白值不超过日均限值的20%(1mg/m3)。

本方法没有规定测定下限是基于:《环境空气PM10和PM2.5的测定重量法》(HJ618-2011)未给出测定下限。尽管《环境监测分析方法标准制修订技术导则》(HJ168-2010)规定测定下限为4倍检出限,但并不适用颗粒物。

本方法规定检出限为0.5 mg/m3。主要是基于方法全程序空白的实际测定结果。本标准按照40L/min的速率恒流抽取洁净的环境空气45min,以本文规定程序连续测量7次,以3.143倍标准偏差计算方法检出限,6家实验室检定的检出限分别为0.45 mg/m3、0.28mg/m3、0.31 mg/m3、0.34 mg/m3、0.39 mg/m3和0.37 mg/m3。依据6家实验室数据,本标准规定的检出限为:0.5mg/m3。

ISO12141和USEPA 5I中对于测量范围的要求均为低于50mg/m3,我国GB16157中对于测量范围没有明确,但在实际工作中,低于50mg/m3的情况下使用GB16157往往造成结果的偏差。我国在《固定污染源监测技术规范》(HJ/T397-2007)中要求在低浓度颗粒物范围内使用ISO12141进行采样,但未明确低浓度颗粒物的浓度范围。

资料表明,在50-200 mg/m3浓度范围内,本方法和GB16157具有良好的一致性,结果偏差小于10%。考虑到实际工作中污染源浓度有一定的未知性,为便于实际工作人员进行方法选择,本标准规定在有环保措施的固定污染源废气中或者不需要治理措施的固定污染源废气中均适用。

2.规范性引用文件

本标准正文引用了4个标准,其中标准文件包括《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)、《固定污染源废气监测技术规范》(HJ/T 397-2007)、《烟尘采样器技术条件》(HJ/T 48-1999)和《电子天平》(JJG 1036-2008)。颗粒物监测断面的布设,采样点位的选取,烟气参数的测定,结果的计算等引用了GB/T 16157-1996和HJ/T 397-2007标准的规定。样品的采集过程及质控措施引用了HJ/T 397-2007标准的规定。烟尘采样器和相关仪器的技术和性能要求引用了HJ/T 48-1999标准的规定。样品称量过程中天平的校准引用了JJG 1036-2008标准的规定。

3.术语和定义

本标准共规定了4条术语,其中“颗粒物”、“等速采样”、“标准状态下的干排气”定义与GB16157中的相应内容等同,“全程空白”定义引自ISO12141。

4.方法原理

美国EPA方法5I以及ISO12141标准中,列举了整体称重和分体称重两种方式。分体称重需要清洗回收采样嘴及前弯管内壁沉积的颗粒物,并做丙酮空白。在称重时,由于称重回收时的丙酮需要使用烧杯,称量容易受到环境温度气压变化的影响,因此ISO12141规定了利用和称量器件相同的质控器件进行温度压力校正的步骤。

在实际验证中,我们发现分体称重存在以下问题:工作量大,分体称量比整体称量增大一倍以上工作量,对于监测任务繁重的各级监测站来说操作性不强;收集采样嘴和前弯管中的颗粒物重量相对于称量容器(如烧杯过小,造成称量容易出现负值;采样装置在拆卸过程中容易造成滤膜纤维损失,影响称重。因此在实际验证中,分析称重同整体称重比较,结果往往偏低,因此本标准目前仅选择了整体称重的测量步骤。

基于重量法原理的采样分为烟道内过滤和烟道外过滤,EPA方法以及ISO12141标准等采用烟道外过滤采样方法,德国标准VDI 2066规定应尽可能使用烟道内过滤的采样方法。选择加热烟道内采样支撑滤膜的滤膜托架相对于在烟

道外加热滤膜托架,在设计上要复杂些,但从采样操作上相对容易。本方法采用烟道内过滤。

本方法用玻璃纤维滤膜、聚四氟乙烯滤膜、石英滤膜等代替滤筒作为采集固定污染源废气中颗粒物的载体,将颗粒物采样枪由采样孔插入烟道,使采样嘴置于测点上,正对气流,遵循等速采样的原理,抽取一定量含颗粒物的气体,根据载体的增重及同时抽取的气体标况体积计算得到所测颗粒物的浓度。

5.仪器和设备

(1)低浓度颗粒物采样装备

低浓度颗粒物采样器有采样头、采样管、流量测量及控制部件、含湿量测量装置、采样泵等速跟踪采样的控制系统组成。当排气中含有的二氧化硫等腐蚀性气体会对仪器产生影响时,在采样管出口还应设置腐蚀性气体的净化装置。

所用仪器均应选择经环境保护部环境监测仪器质量监督检验中心性检测合格的仪器设备。排气参数中温度、水分含量、流速(含压力)的测定应符合GB 16157中第5、6部分和HJ/T 48第4条的规定。

采样头:能保证等速采样的采样头均适用于本方法。两种不同采样头见图1。

采样管:采样管是采样头的支撑部件,将低浓度采样管组件、抽气泵和流量计量装置等连接起来,应有足够的强度和长度,所用材料应耐腐蚀、耐热,应有刻度标志,以便在合适的点位上采样。根据我国部分低浓度排放烟气湿度较大的特点,可选择具备加热功能采样头固定装置的采样管。

滤膜:由于我国环境空气颗粒物监测使用46.7/47mm滤膜且目前国内仪器公司均使用46.7/47mm滤膜,故本标准使用46.7/47mm。滤膜的材质应不与样气中的物质发生反应,在较高采样温度下应保持稳定。对于直径为0.3μm的标准粒子,滤膜的补集效率应大于99.5%。滤膜的预处理需要在105℃-110℃之间或高于烟温20℃,滤膜的材质基本要求耐高温120℃,可选择玻璃纤维滤膜或聚四氟乙烯滤膜,不同的污染源废气应考虑不同材质的滤膜得耐温性。

(2)分析称量设备

烘箱:指定温度下温度波动应控制在±5℃内。

分析天平:感量为0.01mg,量程应与被称重的部件重量相符。技术性能应符合JJG1036的规定。对于天平的选择,本标准测试的固定污染源废气多在10mg/m3以下,本标准的检出限为0.5 mg/m3,0.01mg的天平理论最小增重(最

小分辨率的100倍)为1mg,在本标准规定的最大采气量下(2m3),本标准要求的天平最小分辨率为0.01mg。

恒温恒湿室:同《环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范》,温度控制(15-30)℃任意一点,控温精度±1℃。相对湿度应控制在(50±5)%RH范围内。

弯头前过滤

弯头后过滤

1-采样管;2-信号线;3-烟尘测试仪;4-导压管;5-抽气管;6-干燥器;7-冷凝器

图1 采样装置结构示例图

6.采样位置和采样点

采样位置和采样点的要求基于《固定污染源排气中颗粒物的测定与气态污染物采样方法》(GB/T16157-1996)中的第四部分4.2要求,颗粒物混合均匀处。由于GB16157标准编制时间为1996年,当时烟道或烟囱尺寸较小,而目前我国实际烟囱或烟道尺寸较大,“采样点位应优先选择在垂直管段,应避开烟道弯头和断面急剧变化的位置,在距弯头、阀门、变径下游方向不小于6倍直径和下游方向不小于3倍直径,对矩形直径D=2AB/(A+B),A、B为边长。”已不再适用。

本标准按照HJ/T397-2007要求5.1.3要求,采样断面与弯头至少是直径的1.5倍,并适当增加测点的数量和采样频次。同时,根据目前烟道的实际情况,应考虑烟道内支架、变径、钢梁等对气流的影响。

7.采样

(1)监测工况

采样之前应向排污企业了解生产工艺、工况等可能会影响采样程序的因素,采样过程中应保持工况稳定。同时了解监测断面的烟温、流速,为后续监测做好准备。

除相关标准另有规定,对污染源的日常监督性监测,采样期间的工况应与平时的正常运行工况相同。

(2)操作步骤。按(HJ/T 397-2007)要求。

(3)样品分析。低浓度过滤装置的称重非常重要,决定该采样方法是否准确。

ISO12141、USEPA 5I均要求使用干燥器冷却干燥后称重,但在实际操作中,由于环境湿度影响,从干燥器中拿出后称量很容易导致结果漂移,因此本标准参照我国《环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范》,使用恒温恒湿间天平进行冷却称量。样品的称量必须在恒温恒湿条件下平衡24小时后进行,平衡条件为:温度取15℃-30℃中任何一点,相对湿度控制在45%-55%范围内。采样前后样品的恒重条件应一致。

ISO12141规定三次称量偏差应在0.5mg以内,但ISO12141可使用万分之一天平。本标准因使用十万分之一天平,在恒温恒湿室内称量,故规定0.2mg以内。取3个读数的平均值作为称量结果。

样品前处理温度应高于所测样品温度,一般情况下,样品的处理按照《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)要求放入105℃烘箱中烘烤1h。冷却后,放入恒温恒湿室平衡至少24h后称量。记录平衡温度与湿度。

采样前后采样头重量之差,即为采样的颗粒物的增重,用样品的增重除以采气标况体积,得到废气的实测颗粒物浓度。

8.结果与表述

依据HJ/T 397-2007内容,规定了颗粒物排放浓度、废气排放量颗粒物排放速率三个公式,计算颗粒物的排放结果。

9.质量控制措施

本方法质量控制措施参考HJ/T 397-2007。

(1)采样前准备

仪器:属于国家强制检定目录内的工作计量器具,必须按期送计量部门检定,

检定合格,取得检定证书后方可用于监测工作。采样前应进行采样设备流量校准及泄漏检查,仪器校准检查参照GB/T16157-1996中第12节。

滤膜:在制作采样装置时,应避免滤膜破损造成的质量损失。滤膜须在光源下认真检查,是否有孔、折裂、不均匀或其他缺陷,并用小刷子刷去滤膜表面的颗粒物、碎片等杂物,采样装置制作完成后,部件整体应密封良好。

采样枪:严格检查皮托管和采样嘴,变性或损坏不能使用。

(2)采样过程

工况:监测期间应有专人负责监督工况,污染源生产设备、治理设施应处于正常的运行工况。

采样过程:在进行排气参数测定和采样时,打开采样孔后应仔细清除采样孔短接管内的积灰,再插入测量仪器或采样探头,并严密堵住采样孔周围缝隙以防止漏气。

排气温度测定时,应将温度计的测定端插入管道中心位置,待温度指示值稳定后读数,不允许将温度计抽出管道外读数。

排气水分含量测定时,采样管前端应装有颗粒物过滤器,采样管应有加热保温措施。应对系统的气密性进行检查。对于直径较大的烟道,应将采样管尽量深地插入烟道,减少采样管外露部分,以防水汽在采样管中冷凝,造成测定结果偏低。

颗粒物的采样必须按照等速采样的原则进行,减少采样误差。

采样系统在现场连接安装好以后,应对采样系统进行气密性检查。

颗粒物采样器内的硅胶应及时检查,变色时及时更换。

采样断面处,应有足够稳定并可测量的烟气流速、烟气温度和烟道压力,烟气流速应大于5m/s,排气应无湍流扰动。

采样嘴应先背向气流方向插入管道,采样时采样嘴必须对准气流方向,偏差不得超过10度。采样结束,应先将采样嘴背向气流,迅速抽出管道,防止管道负压将尘粒倒吸。

采样后,低浓度采样装置采样嘴应套上专用的堵套,放入样品运输箱时应考虑避免运输过程中采样嘴朝下,以防止在样品运输过程中造成的损失。

(3)样品处理

同一称量部件在采样前后称量使用同一天平;

每次称量应使用标准砝码校准天平,标准砝码质量应与需称量部件相当;

记录天平室的大气压、室温和湿度,记录其变化,确保称量精度不受环境影响,当称量有明显质量增加时,可将相应称量部件再平衡24h后称量;

整体称重的部件应包括滤膜、滤膜夹和上游部件。滤膜上游沉积的颗粒物直接被纳入称重过程。称重之前,这些部件的外表面应清洁。检查被称重部件是否与天平的量程范围相符。

同一系列中任何低于全程空白的结果都是无效的。

六、方法验证

河北省环境监测中心站在接受任务后,组织石家庄环境监测中心、秦皇岛市环境保护监测站、兴隆县环境监测站、河北省大名市环境监测站、唐山永正环境监测有限公司以及本站人员按照制监测方案、准备仪器设备、开展现场测试,于2015年08月中旬完成所有测试任务。

1.实验内容

本次验证所测试内容均按照HJ168-2010的有关规定进行,分为以下几个部分,具体如下:

称量误差:各验证实验室均选取一个采样头,单独称量20次,以3倍标准偏差计算称量误差。

方法检出限:各验证实验室均选取洁净室内空气为零气,恒流(40L/mim)采集7次(45min/次),以3倍标准偏差计算检出限。

精密度:选取低浓度(<50 mg/m3)火电厂进行样品和全程空白采集,各验证实验室各获取6个测量系列和1个全程序空白

2.质量控制措施

(1)采样前准备

属于国家强制检定目录内的工作计量器具,必须按期送计量部门检定,检定合格,取得检定证书后方可用于监测工作。

采样前应进行采样设备流量校准及泄漏检查,仪器校准检查参见GB/T16157-1996中第12节。

在制作采样装置时,应避免滤膜破损造成的质量损失。滤膜须在光源下认真检查,是否有孔、折裂、不均匀或其他缺陷,并用小刷子刷去滤膜表面的颗粒物、碎片等杂物,采样装置制作完成后,部件整体应密封良好。

严格检查皮托管和采样嘴,发现变形或损坏者不能使用。

(2)采样过程

监测期间应有专人负责监督工况,污染源生产设备、治理设施应处于正常的运行工况。

在进行排气参数测定和采样时,打开采样孔后应仔细清除采样孔短接管内的积灰,再插入测量仪器或采样探头,并严密堵住采样孔周围缝隙以防止漏气。

排气温度测定时,应将温度计的测定端插入管道中心位置,待温度指示值稳定后读数,不允许将温度计抽出管道外读数。

排气水分含量测定时,采样管前端应装有颗粒物过滤器,采样管应有加热保温措施。应对系统的气密性进行检查。对于直径较大的烟道,应将采样管尽量深地插入烟道,减少采样管外露部分,以防水汽在采样管中冷凝,造成测定结果偏低。

颗粒物的采样必须按照等速采样的原则进行,减少采样误差。采样系统在现场连接安装好以后,应对采样系统进行气密性检查,发现问题及时解决。颗粒物采样器内的硅胶应及时检查,变色时及时更换。

采样断面处,应有足够稳定并可测量的烟气流速、烟气温度和烟道压力,烟气流速应大于5m/s,排气应无湍流扰动。

采样嘴应先背向气流方向插入管道,采样时采样嘴必须对准气流方向,偏差不得超过10度。采样结束,应先将采样嘴背向气流,迅速抽出管道,防止管道负压将尘粒倒吸。

采样后,低浓度采样装置采样嘴应套上专用的堵套,放入样品运输箱时应考虑避免运输过程中采样嘴朝下,以防止在样品运输过程中造成的损失。

同一系列中任何低于全程空白的结果都是无效的。

(3)样品处理

同一称量部件在采样前后称量使用同一天平;

每次称量应使用标准砝码校准天平,标准砝码质量应与需称量部件相当;

记录天平室的大气压、室温和湿度,记录其变化,确保称量精度不受环境影响,当称量有明显质量增加时,可将相应称量部件再平衡24h后称量;

整体称重的部件应包括滤膜、滤膜夹和上游部件。滤膜上游沉积的颗粒物直接被纳入称重过程。称重之前,这些部件的外表面应清洁。检查被称重部件是否与天平的量程范围相符。

3.验证实验室基本情况

本次验证试验,省级站1个:河北省环境监测中心站;市级站两个:石家庄环境监测中心,秦皇岛市环境保护监测站;县级监测站两个:河北省大名市环境监测站、兴隆县环境监测站;第三方检测机构一个:唐山永正环境监测有限公司。监测机构基本代表了河北省的环境监测力量。监测人员都具备一年以上实际工作经验。

参与人员情况具体情况监表1。

表1 参加验证的人员情况

验证实验室实验室号姓名职称

河北省环境监测中心站 1 罗国民助理工程师平继松助理工程师

石家庄环境监测中心 2

张强工程师

康磊工程师秦皇岛市环境保护监测站 3

姜成工程师

陈佳文工程师唐山永正环境监测有限公司 4

曹宏兴工程师

陈勇工程师河北省大名市环境监测站 5

白常明工程师

程艳蕾工程师

兴隆县环境监测站 6 王刚工程师刘帅工程师

4.验证实验结论

(1)称量误差

6家验证实验室各选取一个采样头,单独称量20次,以3倍标准偏差计算

称量误差,标准偏差范围为 1.17×10-5g~1.95×10-5g,称量误差范围为3.52×10-5g~5.85×10-5g。

(2)方法检出限

6家验证实验室均选取洁净室内空气为零气,恒流(40L/mim)采集7次(45min/次),以3倍标准偏差计算检出限。各实验室的检出限0.28mg/Nm3-0.39mg/Nm3之间,实验室内相对标准偏差0.09%-0.13%之间;实验室间相对标准偏差为0.07%。

(3)实际样品测定

6家验证实验室对大唐国际发电股份有限公司陡河发电厂8#机组和秦皇岛发电有限责任公司2#机组排放颗粒物浓度进行了测定。陡河发电厂8#机组烟颗粒物浓度在1.13mg/Nm3-3.13mg/Nm3之间,秦皇岛发电有限责任公司2#机组颗粒物浓度在0.46mg/Nm3-1.48mg/Nm3之间。各数据均大于本组的全程空白值,认为数据有效。1、3、5三个实验室的相对标准偏差在0.11-0.50之间,实验室间的相对标准偏差为0.22;2、4、6三个实验室间的相对标准偏差在0.28-0.50之间,实验室间的相对标准偏差为0.54。

参考文献:

[1].鲁晟、姚德飞. 燃煤电厂烟气中颗粒物粒径分布特征研究[J]. 环境污染与防治, 2010, 32 (8) .

[2].傅嘉媛; 郑泽群. 大气污染物烟尘对农作物环境的影响研究[D]。福州:福州大学,2000.

[3].ISO 12141 Stationary source emissions–Determination of mass concentration of particulate matter (dust) at

low concentrations –Manual gravimetric method,First edition 2002.

[4].UK Environment Agency Technical Guidance Note M1–Sampling requirements for stack emission

monitoring. Available from https://www.doczj.com/doc/dd3547877.html,

[5].Method 5I Determination of Low Level Particulate Matter Emissions From Stationary Sources. Available

from the US EPA website.

[6].UK Environment Agency BS EN 13284-1:2002–Determination of low range mass concentration of dust –

Part 1:Manual gravimetric method.

[7].Method Implementation Document for EN 13284-1,BS EN 13284–1:2002 Stationary source emissions –

Determination of low range mass concentration of dust–Part 1: Manual gravimetric method Environment Agency Version 2.4 December 2011.

[8].US EPA method 5 Determination of particulate matter from stationary sources. Available from the US EPA

website.

[9].

HJ 75-2017固定污染源烟气排放连续监测技术规范与HJT 75-2007标准差异

最新版固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范HJ 75-2017与HJ/T 75-2007标准差异汇总: 1、标准号差异?HJ 75-2017规定较HJ/T 75-2007规定,正式作为行业标准,而不就是推荐性行业标准,效力更强。直接对运维工作具有约束力。 ?2、概念术语(系统响应时间与仪表响应时间) ?HJ 75-2017规定了概念术语:系统响应时间与仪表响应时间;增加了验收技术要求:示值误差与系统响应时间。 9、3、3、1条气态污染物与氧气CEMS验收,这两项就是前提条件。HJ/T 75-2007规定中无此项。3??、新增氮氧化物监测单元要求 HJ 75-2017规定:第4条氮氧化物监测单元要求,二氮可直接测量,亦可转化为一氮后一并测量,不允许只测量一氮。在现场与运维,就需要在产品选型时做好产品设计与转换要求。HJ/T 75-2007规定中无要求。? 4、新增监测站房要求?HJ 75-2017规定:第6条监测站房要求-监测站房建设规范化。对于现场人员来说,就需要注意后期签订运维合同、验收项目,涉及该项,注意核实就是否符合技术规范。如不符合,书面提醒业主单位该事项。HJ/T 75-2007规定中无此项。 5、采样监控平台面积与安全防护变化?HJ 75-2017规定:第7条7、1、1、7采样监控平台面积与安全防护a项。新增加采样监控平台面积与安全防护。技术验收应核实此项。HJ/T 75-2007规定中无此项。 6、安装要求变化 HJ 75-2017规定:第7条安装要求7、1、1、1 b项安装位置细化;采样平台

斜梯(高于2米)与升降梯设置高度(高于20米)细化。技术验收应核实此项。HJ/T 75-2007规定离地高度高于5米,设置Z字梯旋梯升降梯。 ?7、新增了参比方法采样孔预留要求 HJ 75-2017规定:第7条安装要求7、1、1、1 d项参比方法采样孔预留,技术验收应核实此项。HJ/T75-2007规定中无此项。 8、烟气分布均匀程度判定规则 HJ 75-2017规定:7、1、2、3烟气分布均匀程度判定。前四后二由之前得颗粒物增加为颗粒物与流速;新增了新建排放源采样平台与排气装置同步设计、建设,及烟气分布均匀程度判定。现场仪表在CEMS采样与分析探头安装,监测断面位置就是否合理做好判定。HJ/T75-2007规定中无此项。 9、旁路增加烟温与流量 HJ 75-2017规定:7、1、2、6旁路增加烟温与流量,HJ/T75-2007规定中仅需增加流量。 10、新增安装施工要求 HJ75-2017规定:新增了7、2 安装施工要求,7、2、1-7、2、10实际施工要求细化。CEMS安装施工要求细化,对工程施工及验收提高要求与考核指标细化。HJ/T 75-2007规定中无此项。 ?11、CEMS技术指标调试检测变化 HJ 75-2017规定:第8条CEMS技术指标调试检测附录A。主要变化有四

大气固定污染源氟化物的测定离子选择电极法方法确认

大气固定污染源氟化物的测定离子选择电极法 HJ/T67-2001方法确认 1.目的 通过离子选择电极法测定吸收液中氟离子的浓度,分析方法检出限、回收率及精密度,判断本实验室的检测方法是否合格 2.适用范围 本标准适用于大气固定污染源有组织排放中氟化物的测定。不能测定碳氟化物,如氟利昂。 3. 职责 3.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验 结果的意外因素,掌握检出限、方法回收率与精密度的计算方法。 3.2 复核人员负责检查原始记录、检出限、方法回收率及精密度的计算方法。 3.3技术负责人负责审核检测结果及检出限、方法回收率、精密度分析结果 4.分析方法 4.1 测量方法简述 4.1.2 样品的采集和保存 污染源中尘氟和气态氟共存时,采样烟尘采样方法进行等速采样,在采样管的出口串联三个装有75ml吸收液的大型冲击式吸收瓶,分别捕集尘氟和气态氟。 若污染源中只存在气态氟时,可采用烟气采样方法,在采集管出口串联两个装有50ml吸收液的多孔玻板吸收瓶,以0.5~2.0L/min的流速采集5~20min。 采样管与吸收瓶之间的连接管,选用聚四氟乙烯管,并应尽量短。 注:连接管液可使用聚乙烯塑料管和橡胶管。 采样点数目,采样点位设置及操作步骤,按GB/T 16157-1996《固定污染源排气中颗粒物的测定和气态污染物采样方法》有关规定进行。采样频次和时间,按GB 16297-1996 《大气污染物综合排放标准》有关规定进行。 采样结束后,将滤筒取出,编号后放入干燥洁净的器皿中,并按照采样要求,做好记录。吸收瓶中的样品全部转移至聚乙烯瓶中,并用少量水洗涤三次吸收瓶,洗涤液并入聚乙烯瓶中。编号做好记录。采样管与连接管先用50ml吸收液洗涤,再用400ml 水冲洗,全部并入聚乙烯瓶中,编号做好记录。样品常温下可保存一周。 4.1.3 分析步骤 取6个50ml聚乙烯烧杯,按表1配制标准系列,也可根据实际样品浓度配制,

固定源污染源废气监测技术规范试题

空气和废气监测技术规范试题考试时间:姓名:分数: 一、填空题(每空2分,共30分) 1、总悬浮颗粒物(TSP)是指能悬浮在空气中,空气动力学当量直径()的颗粒物。可吸入颗粒物(PM10)是指悬浮在空气中,空气动力学当量直径()的颗粒物。 2、采集环境空气中的二氧化硫样品时,小时均值采样时,U型吸收管内装10ml 吸收液,以()L/min的流量采样;24h连续采样时,多孔玻板吸收管内装50ml吸收液,以()L/min流量采样。 3、我国规定气体的标准状态是指温度为(),压力为()时的状态。 4、环境空气中二氧化硫、氮氧化物平均浓度要求每日至少有()h的采样时间。 5、环境空气中颗粒物的日平均浓度要求每日至少有()h的采样时间。 6、测定锅炉烟尘时,测点位应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化的部位。测点位臵应在距弯头、接头、阀门和其他变径管段的下游方向大于()倍直径处,特殊情况下,最小()倍直径处。 7、固定污染源排气中颗粒物()的原理是:将烟尘采样管由采样孔插入烟道中,采样嘴正对气流,使采样嘴的吸气速度与测点处气流速度相等,并抽取一定量的含尘气体,根据采样管上捕集到的颗粒物量和同时所取的气体量,计算排气中颗粒物浓度。 8、按等速采样原则测定锅炉烟尘浓度时,每个断面采样次数不得少于()次,每个测点连续采样时间不得少于()min,每台锅炉测定时所采集样品累计的总采气量应不少于()m3,取3次采样的()作为管道的烟尘浓度值。

二、选择题(每题3分,共30分) 1、应使用经计量检定单位检定合格的大气采样器,使用前必须经过流量校准,流量误差应()。 A.大于5% B.不大于5% C.10% D.小于10% 2、当选用气泡吸收管或冲击式吸收管采集环境空气样品时,应选择吸收率为()%以上的吸收管。 A.85 B.90 C.95 D.99 3、环境空气中二氧化硫、氮氧化物的日平均浓度要求每日至少有()h采样时间。 A.10 B.12 C.14 D.18 4、在环境空气监测点采样周围()空间,环境空气流动不受任何影响。如果采样管的一边靠近建筑物,至少要在采样口周围要有()弧形范围的自由空间。 A.90°,180° B. 180°,90° C. 270°,180° D. 180°,270° 5、在环境空气质量监测点()m范围内不能有明显的污染源,不能靠近炉、窑和锅炉烟囱。 A.10 B.20 C.30 D.40 E.50 6、除分析有机物的滤膜外,一般情况下,滤膜采集样品后,如果不能立即称重,应在( )保存。 A.常温条件下 B.冷冻条件下 C.20℃ D.4℃条件下冷藏 7、在进行二氧化硫24h连续采样时,吸收瓶在加热槽内最佳温度为( ) ℃。 A 23-29 B 16-24 C 20-25 D 20-30 8、环境空气质量功能区划中的二类功能区是指( ) A.自然保护区、风景名胜区

固定污染源废气颗粒物

DB13 河北省地方标准 DB13/ -2016 固定污染源废气颗粒物的测定β射线法 Stationary Source Emissions-Determination of Mass Concentration of Particulate Matter –Beta-ray Absorption Method (征求意见稿) 2016- - 发布2016- -实施河北省质量技术监督局 发布 河北省环境保护厅

目次 1. 适用范围 (3) 2. 规范性引用文件 (3) 3. 术语和定义 (3) 3.1 颗粒物 (3) 3.2 标准状态下的干排气 (3) 3.3 等速测定 (3) 4. 方法原理 (3) 5. 干扰和消除 (4) 6. 仪器和设备 (4) 6.1. β射线法颗粒物测定仪 (4) 6.2. 要求 (4) 7. 参数的测定 (4) 7.1 排气温度的测定 (4) 7.2 排气中水分含量的测定 (4) 7.3 排气中O2的测定 (4) 7.4 排气中压力的测定 (4) 7.5 排气流速、流量的测定 (4) 8. 监测位置和监测点 (4) 8.1. 测定位置 (4) 8.2. 测定孔、测定点位置和数目 (5) 9. 样品测定 (5) 9.1. 测定位置和测定点 (5) 9.2. 仪器准备 (5) 9.3. 定点测定 (5) 9.4. 多点测定 (5) 9.5. 测定结束 (5) 10. 颗粒物浓度计算和表示 (5) 10.1.颗粒物浓度 (5) 10.2.标准状态下干废气排放量 (6) 10.3.颗粒物排放速率 (6) 10.4.颗粒物排放浓度 (7) 11. 质量保证和质量控制 (7) 12. 注意事项 (7)

四川省固定污染源大气挥发性有机物排放标准编制说明

四川省固定污染源大气挥发性有机物 排放标准编制说明 (征求意见稿) 《四川省固定污染源大气挥发性有机物排放标准》编制组 二O一六年九月

目录 1 项目背景 (3) 1.1 任务来源 (3) 1.2 工作过程 (3) 2 标准编制的必要性分析 (5) 2.1 国家及地方大气污染物排放标准体系 (5) 2.1.1国家大气污染物排放标准体系 (5) 2.1.2地方大气污染物排放标准体系 (7) 2.2国家及环保主管部门的相关要求 (9) 2.3社会经济发展带来的主要环境问题 (10) 3 标准编制的依据、原则和方法思路 (13) 3.1 编制依据 (13) 3.2 修订原则 (13) 3.3 编制方法和思路 (14) 4 重点行业VOCs排放特征和污染控制技术分析 (15) 4.1 VOCs产污环节、排放特征和防治技术 (15) 4.1.1木制家具制造行业 (15) 4.1.2印刷业 (17) 4.1.3石油炼制与石油化学行业 (18) 4.1.4农药制造业 (20) 4.1.5涂料、油墨及类似产品制造业 (21) 4.1.6医药制造业 (22) 4.1.7橡胶制品业 (23) 4.1.8汽车制造业 (24) 4.1.9表面涂装行业 (25) 4.1.10电子产品制造业 (26) 4.2 特征污染物分析 (28) 4.3净化关键技术 (29) 5 污染物控制项目筛选 (31) 5.1 筛选原则 (31) 5.2 筛选程序 (31) 5.3污染物控制项目初始名单 (32) 5.4 筛选评分系统的建立 (33) 5.5 筛选结果 (33) 6标准限值确定 (35) 6.1排放标准限值确定原则 (35)

固定源废气检测技术规范 考试试题及答案

固定源废气检测技术规范HJ/T 397-2007 姓名:分数: 一、填空题 1.颗粒物是指燃料和其它物质在燃烧、合成、分解以及各种物料在机械处理中所产生的悬浮于排放气体中的物质。 2. 3. 根据监测方案确定的监测内容,准备现场监测和实验室分析所需仪器设备。属于国家强制检定目录内的工作计量器具,必须按期送计量部门检定,检定合格,取得检定证书后方可用于监测工作。测试前还应进行,使其处于良好的工作状态。 4. 采样位置应优先选择在垂直管段,应避开烟道弯头和断面急剧变化的部位。采样断面的气流速 5. 必要时应设置采样平台,采样平台应有足够的工作面积使工作人员安全、方便地操作。平台面 10cm的脚部挡板,采样平台的承重应不小于200kg/m2,采样孔距平台面约为 6. 对正压下输送高温或有毒气体的烟道,应采用带有采样孔。 7. 在烟尘采样中,形状呈弯成90°的双层同心圆管皮托管,也称型皮托管。 8. 、、和静等四种。 9. 烟气测试中,采样时间视待测污染物浓度而定,每个样品采样时间一般不少于。 10. 测定烟气流量和采集烟尘样品时,若测试现场空间位置有限、很难满足测试要求,应选择比较适宜的管段采样,但采样断面与弯头等的距离至少是烟道直径的倍,并应适当增加测点的数量。 11. 空白滤筒称量前应检查外表有、或,有则应更换滤筒,如果滤筒有挂毛或碎屑,应清理干净。 12. 采样位置应尽可能选择气流平稳的管段,采样断面最大流速与最小流速之比不宜大于倍,以防仪器的响应跟不上流速的变化,影响等速采样的精度。 13. 排气压力测定时,事先须将仪器调整水平,检查微压计液柱内有无气泡,液面调至零点;对皮托管、微压计和系统进行检查。 14. 在采集硫酸雾、铬酸雾等样品时,由于雾滴极易沾附在采样嘴和弯管内壁,且很难脱离,采样前应将采样嘴和弯管内壁清洗干净,采样后用少量冲洗采样嘴和弯管内壁,合并在样品中,尽量减少样品损失,保证采样的准确性。 15. 用定电位电解法烟气分析仪对烟气二氧化硫、氮氧化物等测试,应在仪器显示浓度值变化趋于稳定后读数,读数完毕将采样探头取出,置于环境空气中,清洗传感器至仪器读数在以

GB16297固定污染源废气环境检测限值

1997年1月1日前设立的污染源 序号污染 物 最高允许排放浓度 (mg/m3) 最高允许排放速率(kg/h) 无组织排放监控浓度 排气筒(m) 一级二级三级监控点浓度 1 二 氧 化 硫 1200 (硫、二氧化硫、硫酸和 其它含硫化合物生产) 15 20 30 40 50 60 70 80 90 100 1.6 2.6 8.8 15 23 33 47 63 82 100 3.0 5.1 17 30 45 64 91 120 160 200 4.1 7.7 26 45 69 98 140 190 240 310 无组织排放源 上风向设参照 点,下风向设监 控点 0.50 (监控点与 参照点浓度 差值) 700 (硫、二氧化硫、硫酸和 其它含硫化合物使用) 2 氮 氧 化 物 1700 (硝酸、氮肥和火炸药生 产) 15 20 30 40 50 60 70 80 90 100 0.47 0.77 2.6 4.6 7.0 9.9 14 19 24 31 0.91 1.5 5.1 8.9 14 19 27 37 47 61 1.4 2.3 7.7 14 21 29 41 56 72 92 无组织排放源 上风向设参照 点,下风向设监 控点 0.15 (监控点与 参照点浓度 差值) 420 (硝酸使用和其它) 3 颗 粒 物 22 (碳黑尘、染料尘) 15 20 30 40 禁 排 0.60 1.0 4.0 6.8 0.87 1.5 5.9 10 * 周界外浓度最 高点 肉眼不可见 80** (玻璃棉尘、石英粉尘、 矿渣棉尘) 15 20 30 40 禁 排 2.2 3.7 14 25 3.1 5.3 21 37 无组织排放源 上风向设参照 点,下风向设监 控点 2.0 (监控点与 参照点浓度 差值) 150 (其它) 15 20 30 40 50 60 2.1 3.5 14 24 36 51 4.1 6.9 27 46 70 100 5.9 10 40 69 110 150 无组织排放源 上风向设参照 点,下风向设监 控点 5.0 (监控点与 参照点浓度 差值) 4 氟150 1 5 禁0.30 0.4 6 周界外浓度最0.25

固定源废气监测技术规范关于采样口的具体要求

固定源废气监测技术规范关于采样口的具体要 求 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

固定源废气监测技术规范关于采样口的具体要求 5.1 采样位置 5.1.1 采样位置应避开对测试人员操作有危险的场所。 5.1.2 采样位置应优先选择在垂直管段,应避开烟道弯头和断面 急剧变化的部位。采样位置应设置在距弯头、阀门、变径管下游方 向不小于 6 倍直径,和距上述部件上游方向不小于 3 倍直径处。 采样断面的气流速度最好在 5m/s 以上。 5.1.3 测试现场空间位置有限,很难满足上述要求时,可选择比 较适宜的管段采样,但采样断面与弯头等的距离至少是烟道直径的 1.5 倍。 5.1.4 对于气态污染物,由于混合比较均匀,其采样位置可不受 上述规定限制,但应避开涡流区。如果同时测定排气流量,采样位 置仍按 5.1.2 选取。 5.1.5 必要时应设置采样平台,采样平台应有足够的工作面积使 工作人员安全、方便地操作。平台面积应不小于 1.5m2,并设有 1.1m 高的护栏和不低于 10cm 的脚部挡板,采样平台的承重应不 小于200kg/m2,采样孔距平台面约为 1.2m~1.3m。 5.2 采样孔 5.2.1 采样孔 单 位 为 毫 米a)带有盖板的采样孔 b)带有管堵的采样孔 c)带有 管帽的采样孔图 1 几种封闭形式的采样孔 5.2.1.1 在选定的测定位置上开设采样孔,采样孔的内径应不小 于 80mm,采样孔管长应不大于 50mm。不使用时应用盖板、管堵或 管帽封闭(图 1)。当采样孔仅用于采集气态污染物时,其内径应 不小于 40mm。 5.2.1.2 对正压下输送高温或有毒气体的烟道,应采用带有闸板 阀的密封采样孔(图 2) 图2带有闸板阀的密封采样孔

102大气固定污染源氟化物的测定

江苏省百斯特检测技术有限公司作业指导书大气固定污染源氟化物的测定 JCZY—102 编制人 校核人 批准人 批准日期

大气固定污染源 氟化物的测定作业指导书 1 引用标准 国家环境保护总局标准 HJ/T67-2001 《固定污染源氟化物的测定 离子选择电极法》 2 适用范围 本方法适用于烟气中氟化物的测定。 本方法检出限:当采样体积为150L 时,为6×10-2mg/m3,测定的范围:1~1000mg/m3。 3 原理 使用滤筒、氢氧化钠溶液采集尘氟及气态氟,加硝酸溶液处理后制备成样品溶液,用氟离子电极测定。氟离子电极在含氟离子的溶液中,当溶液的总离子强度为定值而且足够大时,其电极电位与溶液中氟离子活度的对数成直线关系,通过绘制标准曲线,从测得的电位值得到氟离子的含量。 4 试剂和材料 4.1超细玻璃纤维滤筒或合成纤维滤筒。 4.2吸收液 氢氧化钠溶液C (NaOH )=0.3mol/L ;将12g 氢氧化钠溶于水,并稀释至1000mL 。 4.3 0.1%溴甲酚绿指示剂 称取100mg 溴甲酚绿于研钵中,加少量(1+4)乙醇,研细,用(1+4)乙醇配成100mL 溶液。 4.4盐酸溶液 C (HCl )=1.0mol/L:取84.0mL 盐酸用水稀释至1000m 。 4.5盐酸溶液 C (HCl )=0.25mol/L:取21.0mL 盐酸用水稀释至1000mL 。 4.6氢氧化钠溶液C (NaOH )=1.0mol/L :将40g 氢氧化钠溶于水并稀释至1000mL 。 4.7总离子强度缓冲溶液(TISAB ) 称取59.0g 柠檬酸钠(Na3C6H5O7·2H2O ),20.0g 硝酸钾,置于1000mL 烧杯中,加300mL 水溶解,加溴甲酚绿指示剂1.0mL ,用浓盐酸溶液及氢氧化钠溶液调节至溶液刚转变为蓝绿色为止,pH 为 5.5(也可在酸度计上,用酸、碱溶液调节至pH5.5),移入1000mL 容量瓶,用水稀释至标线,摇匀。 4.8氟化钠标准贮备溶液 称取0.2210g 氟化钠(优级纯,经110℃烘干2h ),溶解于水,移入100mL 容量瓶中,用水稀释至标线,摇匀,保存聚乙烯塑料瓶中。此溶液每毫升含1000ug 氟。 4.9氟化钠标准溶液 临用时将氟化钠标准贮备溶液用水稀释成 2.5ug/mL 、 5.0ug/mL 、10.0ug/mL 、25.0ug/mL 、50.0ug/mL 、100.0ug/mL 的氟的标准溶液。 5 实验步骤 5.1采样 当烟气中共存尘氟和气态氟时,采样方法进行等速采样。在加热式滤筒采样管的出口,串联三个装有75mL 吸收液的多孔玻板吸收瓶,分别捕集尘氟和气态氟。 当烟气中不含尘氟或只测定气态氟时,可采用烟气采样方法,在采样管出口串联两个装有50mL 吸收液的多孔玻板吸收瓶,以0.5~2L/min 的流量采样5~20min 。 采样管与吸收瓶之间的连接管,选用聚四氟乙烯管,并应尽量短。 5.2分析 校准曲线的绘制 作业指导书 第 2 页 共 3页 第 0次修改 江苏省百斯特检测技术有限公司 大气固定污染源氟化物的测定

固定污染源废气挥发性有机物监测技术规范

ICS点击此处添加ICS号 点击此处添加中国标准文献分类号DB11 北京市地方标准 DB 11/ ****—2016 固定污染源废气挥发性有机物 监测技术规范 The Technical Specification for Monitoring of volatile organic compounds emitted from stationary source 点击此处添加与国际标准一致性程度的标识 (征求意见稿) (本稿完成日期:2016.07.01) 2016-XX-XX发布2016-XX-XX实施

目次 前言................................................................................ II 引言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 测定项目的确定 (2) 5 监测方法的选择 (2) 6 采样技术要求 (3) 7 样品的运输和保存 (5) 8 结果与计算 (6) 9 质量保证与质量控制 (6) 附录A(规范性附录)固定污染源废气苯系物的测定气袋采样-气相色谱质谱法 (8) 附录B(资料性附录)固定污染源废气非甲烷总烃或总烃标准监测方法表 (14) 附录C(资料性附录)固定污染源废气特征项目标准监测方法表 (15) 附录D(资料性附录)固定污染源废气中挥发性有机物的检测流程 (16)

固定污染源废气监测的影响因素及应对措施

固定污染源废气监测的影响因素及应对措施 监测固定污染源废气必须确保其数据的准确性和精密性,然而因监测过程受到多种因素影响,给监测带来极大难度。为此,监测人员应对废气全程监测进行把握,以确保检测数据及监测质量的可靠和真实,为监测技术提供可靠的参考资料。 标签:固定污染源;废气监测;影响因素 一、影响固定污染源废气监测的因素 (一)对工业生产状况及其废气排放的监测 工业生产是重大的污染源,工业生产工况的变化给其废气排放量带来极大影响,而排放量的变化给监测质量带来一定影响。工业生产的工况不同时,其废气排放量存在较大差异,废气中污染物的含量也会存在较大差异。所以,监测污染源废气需要对监测时间进行准确控制,并明确工业生产工况周期,把握好各个时间段内的工况内容。监测废气排放的前期,必须明确污染源是否处于正常工作情况下的负荷量。而后对不同时段的废气排放量进行测量,并掌握其排放量變化状况,以进一步明确工况同废气排放量间的关系,为数据参照系统的构建及完善提供依据,对废气排放特征进行分析和把握,为监测的准确性提供保障。 (二)滤筒质量对监测效果的影响 样品采集时,通常以滤筒为介质来计算样品浓度和确定污染因子。因此,滤筒是监测废气的必备工具,其质量的优劣直接关系到监测效果的准确性和可靠性。因而选择滤筒时应严格关注其材质,挑选滤筒管壁好的滤筒,并确保其型号同检测器的匹配。使用滤筒过程中,对滤筒重量进行严格测量,以避免或降低其他因素对滤筒质量的影响,进而使废气监测的质量得以提高。 (三)样品数据的计算对监测结果的影响 如果样品数据计算不够准确同样会影响对固定污染源废气的监测结果。所以,计算样品数据时应严格按照技术规范及相关操作标准来计算样品浓度,计算参数必须准确,以此来确保计算结果的准确性。同时,计算排放筒废气排放量时,应以及其速率和浓度的合理分区来计算,并依据有关参数进行整个分析和计算。 二、提高固定污染源废气监测准确性的对策 (一)采样工作的精细化 采样工作同监测质量的关系密切,直接关系到监测结果的准确性。因此,应做好采样工作,达到精细化的程度。比如进行现场勘查,以此明确固定污染源废

固定污染源废气低浓度颗粒物测定方法重量法

DB37 山东省环境保护标准 DB/□□□-2014 固定污染源废气 低浓度颗粒物的测定 —重量法 Determination of Mass Concentration of Particulate Matter (Dust) at Low Concentration Emitted from Stationary Sources--Manual Gravimetric Method (征求意见稿) 201□-□□-□□发布 201□-□□-□□实施 ICS 发布 山东省环境保护厅 山东省质量技术监督局

目次 前言 (Ⅱ) 1 适用范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 方法原理 (2) 5 采样的基本要求 (2) 6 采样装置和仪器 (3) 7 排气参数的测定 (4) 8 排气流速流量的测定 (5) 9 排气中颗粒物的测定 (5) 10 结果计算与表示 (7) 11质量保证质和量控制 (8) 12注意事项 (8) 附录A(规范性附录)采样平台要求 (8) 附录B(规范性附录)确定等速率 (11)

前言 为贯彻《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》,实施大气固定污染源排放低浓度颗粒物的监测,制定本标准。 本标准按照GB/T1.1-2009给出的规则起草。 本标准规定了固定污染源排气中测定低浓度颗粒物的手工重量法。 本标准扩展了GB/T 16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》,适用于固定污染源排气中低浓度颗粒物的测定。 本标准的附录A和B为规范性附录。 本标准由山东省环境保护厅提出并负责解释。 本标准由山东省环保标准化技术委员会归口。 本标准起草单位:山东省环境监测中心站、青岛崂山应用技术研究所、武汉市天虹仪表有限责任公司、山东国舜建设集团有限公司。 本标准起草人:潘光、李恒庆、宋毅倩、谷树茂、潘齐、丁君、徐标

固定源废气监测技术规范关于采样口的具体要求

固定源废气监测技术规范 关于采样口的具体要求 Final revision by standardization team on December 10, 2020.

固定源废气监测技术规范关于采样口的具体要求 采样位置 5.1.1 采样位置应避开对测试人员操作有危险的场所。 5.1.2 采样位置应优先选择在垂直管段,应避开烟道弯头和断面急剧变化的部位。采 样位置应设置在距弯头、阀门、变径管下游方向不小于 6 倍直径,和距上述部件上游方向不小于 3 倍直径处。采样断面的气流速度最好在 5m/s 以上。 5.1.3 测试现场空间位置有限,很难满足上述要求时,可选择比较适宜的管段采样, 但采样断面与弯头等的距离至少是烟道直径的倍。 5.1.4 对于气态污染物,由于混合比较均匀,其采样位置可不受上述规定限制,但应 避开涡流区。如果同时测定排气流量,采样位置仍按 5.1.2 选取。 5.1.5 必要时应设置采样平台,采样平台应有足够的工作面积使工作人员安全、方便 地操作。平台面积应不小于 1.5m2,并设有 1.1m 高的护栏和不低于 10cm 的脚部挡 板,采样平台的承重应不小于200kg/m2,采样孔距平台面约为 1.2m~1.3m。 采样孔 5.2.1 采样孔 单位 为毫 米a)带有盖板的采样孔 b)带有管堵的采样孔 c)带有管帽的采样孔图 1 几 种封闭形式的采样孔 5.2.1.1 在选定的测定位置上开设采样孔,采样孔的内径应不小于 80mm,采样孔管长 应不大于 50mm。不使用时应用盖板、管堵或管帽封闭(图 1)。当采样孔仅用于采集气态污染物时,其内径应不小于 40mm。 5.2.1.2 对正压下输送高温或有毒气体的烟道,应采用带有闸板阀的密封采样孔(图 2) 图2带有闸板阀的密封采样孔

固定污染源废气颗粒物的测定β射线法.doc

《固定污染源废气颗粒物的测定β射线法》 (征求意见稿) 编制说明 标准编制组 二〇一九年十二月

目录 1 项目背景 (3) 1.1任务来源 (3) 1.2工作过程 (3) 2 标准制定的必要性分析 (4) 2.1颗粒物的环境危害 (4) 2.2颗粒物的治理技术 (4) 2.3颗粒物的监测方法 (5) 2.4现行颗粒物监测标准的实施情况和存在问题 (5) 3 国内外相关分析方法研究 (6) 3.1国外相关分析方法研究 (6) 3.2国内相关分析方法研究 (7) 3.3相关仪器方法原理研究 (8) 4 标准制定的基本原则和技术路线 (9) 4.1标准制定的基本原则 (9) 4.2标准制定的技术路线 (9) 5 方法研究报告 (10) 5.1方法研究目标 (10) 5.2适应范围 (10) 5.3规范性引用文件 (10) 5.4术语和定义 (11) 5.5方法原理 (11) 5.6试剂和材料 (12) 5.7仪器和设备 (13) 5.8样品 (16) 5.9结果计算与表示 (17) 5.10精密度和准确度 (18) 5.11质量保证和质量控制 (20) 5.12注意事项 (21) 6 方法验证 (21) 6.1验证方案的制定工作 (21) 6.2方法验证方案内容 (21) 6.3方法验证过程 (22) 6.4方法验证报告 (24) 7 仪器性能测试 (24) 8 Β射线源取得管理机构的豁免权 (25) 附件:方法验证报告 (28)

《固定污染源废气颗粒物的测定β射线法》 编制说明 1 项目背景 1.1 任务来源 (1)《固定污染源废气颗粒物的测定β射线法》标准制订项目列入2017年第一批辽宁省地方标准制修订项目计划,项目编号为2017019。 (2)《固定污染源废气颗粒物的测定β射线法》标准制订项目承担单位为辽宁省生态环境监测中心。 1.2 工作过程 (1)成立编制小组、编写有关文件 2019年3月,辽宁省生态环境监测中心作为本标准的承担单位与有关专家进行了联系,成立了由环境监测和仪器设计人员组成的标准制订小组。在调研文献资料、国内外颗粒物的测定β射线法及应用,充分考虑国内现有类似标准的基础上,形成标准初稿、制定实验室和现场验证方案。 主要起草人及其所做的工作: xx:第1起草人,负责调查研究、标准内容设计、标准草案起草和修改等全部工作; xx:主要起草人,参与标准技术路线的设计、草案的起草和修改工作; xx:主要起草人,参与方法应用过程中的采样及分析工作; xx:主要起草人,参与方法应用过程中的采样及分析工作; xx:主要起草人,参与方法应用过程中样品分析处理工作; xx:主要起草人,参与方法应用过程中的采样及分析工作; (2)召开专家论证会、修改有关文件 2019年10月,组织专家对标准初稿、实验室和现场验证方案设计进行开题论证,并根据专家的论证意见、建议对标准初稿以及验证方案进行适当的修改和补充完善。 (3)完成实验室和现场验证测试 2019年10月-2019年12月,组织验证单位进行实验室测试和现场验证,综合评价测试结果,调整分析方法的关键特性指标。

固定污染源废气低浓度颗粒物的测定重量法

固定污染源废气低浓度颗粒物的测定重量法 (征求意见稿) 编制说明 编制组 2015年9月

一、项目背景 (3) 1.任务来源 (3) 2.工作过程 (3) 二、修订本标准的必要性分析 (3) 1.固定污染源颗粒物污染的危害 (4) 2.相关环保标准和环保工作的需要 (4) 3.现行环境监测分析方法标准的实施情况和存在问题 (4) 4.低浓度颗粒物测定技术的最新进展 (5) 三、国内外相关分析方法研究 (5) 1.主要国家、地区及国际组织相关分析方法研究 (5) 2.国内相关分析方法研究 (7) 四、标准制修订的基本原则和技术路线 (7) 1.标准制修订的基本原则 (7) 2.标准制修订的技术路线 (8) 五、方法研究报告 (10) 1.适用范围 (10) 2.规范性引用文件 (11) 3.术语和定义 (11) 4.方法原理 (11) 5.仪器和设备 (12) 6.采样位置和采样点 (13) 7.采样 (13) 8.结果与表述 (14) 9.质量控制措施 (14) 六、方法验证 (16) 1.实验内容 (16) 2.质量控制措施 (16) 3.验证实验室基本情况 (18) 4.验证实验结论 (18) 参考文献: (19)

一、项目背景 1.任务来源 2015年6月,河北省环境保护厅向河北省环境监测中心站下达了起草《固定污染源低浓度颗粒物的测定重量法》方法标准的任务。 标准的制定由河北省环境监测中心站牵头,石家庄环境监测中心、秦皇岛市环境保护监测站、兴隆县环境监测站、河北省大名市环境监测站、唐山永正环境监测有限公司协作;青岛明华电子仪器有限公司、青岛崂山应用技术研究所、青岛容广电子科技有限公司提供支持。 2.工作过程 按照河北省环境保护厅的要求,召集各参加单位,成立了标准编制小组,制定了详细的标准编制计划与任务分工,具体工作计划如下: (1)对国内外有关“低浓度颗粒物的测定重量法”的标准内容、包括测定原理、采样装置、采样程序、质量控制、结果计算及方法性能进行调研,对国内外固定污染源低浓度颗粒物采样设备的工作原理、测试方法、可行性及应用情况进行调研,对国内外相关分析方法进行研究比较,对国内固定污染源排放的相关法律、法规和政策进行分析研究,收集国内外关于低浓度颗粒物测定的文献资料,分类归纳。 (2)依据调研的内容,参考相关标准,确定标准的适用范围,并制定相应的技术路线; (3)对确定的技术指标和验证方案进行测试、比对,验证其可行性,形成测试报告和验证报告; (4)完成编制说明和标准文本。 目前,我们查阅了国内外“低浓度颗粒物的测定重量法”的相关标准、固定污染源颗粒物采样设备标准及检定规程、各类固定污染源颗粒物测定标准及烟尘烟气排放标准中颗粒物规定限值,结合我省各环境监测站和排废企业对低浓度颗粒物检测方法的应用研究及需求情况的广泛调研,进行了分类、归纳和总结,在此基础上完成了标准草案。 二、修订本标准的必要性分析

固定污染源废气 氟化氢的测定 离子色谱法 (暂行)(HJ688-2013)

氟化氢检测(监测)方法指导书(方法标准号:HJ688-2013) 编制: 审核: 批准: 批准日期:

1方法原理 本方法采用加热的采样管连续从固定污染源采集废气样品,经加热的过滤器滤除颗粒物,废气样品进入冷却的碱性吸收液,气态氟化物被吸收生成氟离子。经离子色谱仪分离检测,保留时间定性,响应值定量。 2适用范围 本标准规定了测定固定污染源废气中氟化氢的离子色谱法。 本标准适用于固定污染源废气中气态氟化物的测定,以氟化氢浓度表示,不能测定碳氟 化物,如氟利昂。 当采样体积 120L,定容体积 200ml 时,检出限为 0.03mg/m 3 ,测定下限为 0.12mg/m 3 ; 定容体积 500ml 时,检出限为 0.08mg/m 3 ,测定下限为 0.32mg/m 3 。 3仪器及试剂 3.1 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂;水,GB/T 6682,二级。 3.1.1氢氧化钾(KOH)。 3.1.2无水碳酸钠(Na2CO3)。 3.1.3氟化钠(NaF),优级纯:在110℃下干燥 2h,于干燥器中保存。 3.1.4吸收液

3.1. 4.1氢氧化钾溶液:c(KOH) = 0.1mol/L。称取 5.6g 氢氧化钾(3.1.1),溶解于水,稀释至 1000ml。 3.1. 4.2氢氧化钾-碳酸钠溶液:c(KOH) = 0.006mol/L,c(Na2CO3) = 0.008mol/L。称取 0.33g 氢氧化钾(3.1.1) 和 0.85g 无水碳酸钠(3.1.2),溶解于水,稀释至 1000ml。 3.1.5 淋洗液 3.1.5.1氢氧化钾溶液:c(KOH) = 0.030mol/L。称取 1.7g 氢氧化钾(3.1.1),溶解于水,稀释至 1000ml。 3.1.5.2 氢氧化钾-碳酸钠溶液:c(KOH) = 0.0018mol/L,c(Na2CO3) = 0.0024mol/L。称取 0.1g 氢氧化钾 (3.1.1)和 0.26g 无水碳酸钠(3.1.2),溶解于水,稀释至 1000ml。 3.1.6 氟化钠标准贮备溶液:ρ(F-) = 500μg/ml。 称取 0.1105g 氟化钠(3.1.2)溶解于水中,移入 100ml 容量瓶中,用水稀释至标线,摇匀,贮于聚乙烯瓶中,在4℃下可保存一个月,临用时取出放至室温再用。也可使用有证标准溶液进行配制。 3.1.7氟化钠标准使用液:ρ(F-) = 5μg/ml。 吸取 1.00ml 氟化钠标准贮备溶液(3.1.6),移入 100ml 容量瓶中,用淋洗液(3.1.5)稀释至标线,摇匀,临用现配。 3.1.8 微孔滤膜:孔径0.45μm,材质为乙酸纤维或聚四氟乙烯(PTFE)。 3.2 仪器和设备 3.2.1 玻璃量器 除非另有说明,分析时均使用国家标准的 A 级玻璃量器。 3.2.2烟气采样器 烟气采样器应符合 HJ/T 47 的技术要求,由采样管、过滤装置、吸收单元、干燥器、冷却装置、流量计量和控制装置及抽气泵等组成,见图 1。抽气泵应保证足够的抽气量,当采 样系统负载阻力为 20kPa 时,抽气泵抽气流量应不低于 2.0L/min。

固定污染源采样

第二节污染源采样 (一)固定污染源采样 一、填空题 1.对除尘器进出口管道内气体压力进行测定时,可采用校准后的标准皮托管或其他经过校正的非标准型皮托管(如S形皮托管),配压力计或倾斜式压力计进行测定。 2.按等速采样原则测定锅炉烟尘浓度时,每个断面采样次数不得少于次,每个测点连续采样时间不得少于 min,每台锅炉测定时所采集样品累计的总采气量应不少于1m3,取3次采样的算术均值作为管道的烟尘浓度值。 3.采集烟尘的常用滤筒有玻璃纤维滤筒和滤筒两种。 4.烟尘测试中的预测流速法,适用于工况的污染源。 5.固定污染源排气中颗粒物等速采样的原理是:将烟尘采样管由采样孔插入烟道中,采样嘴气流,使采样嘴的吸气速度与测点处气流速度,并抽取一定量的含尘气体,根据采样管上捕集到的颗粒物量和同时抽取的气体量,计算排气中颗粒物浓度。 6.在烟尘采样中,形状呈弯成90°的双层同心圆管皮托管,也称型皮托管。 7.在矩形烟道内采集烟尘,若管道断面积<0.1m2,且流速分布、对称并符合断面布设的技术要求时,可取断面中心作为测点。 8.蒸汽锅炉负荷是指锅炉的蒸发量,即锅炉每小时能产生多少吨的,单位为比。9.测定锅炉烟尘时,测点位置应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化的部位。测点位置应在距弯头、接头、阀门和其他变径管段的下游方向大于倍直径处。 10.用S形皮托管和U形压力计测量烟气的压力时,可将S形皮托管一路出口端用乳胶管与U形压力计一端相连,并将S形皮托管插入烟道近中心处,使其测量端开口平面平行于气流方向,所测得的压力为。 11.通常在风机后的压入式管道中进行烟尘采样,管道中的静压和动压都为 (填“正”或“负”),全压为 (填“正”或“负”)。

固定污染源废气的采样检测

固定污染源废气采样与检测相关问题 1.采样时如何对锅炉的负荷进行调查? 答:可找企业陪同人看蒸汽流量表或到控制室看自动记录装置或锅炉生产运行记录;小锅炉若无蒸汽流量表,可核查锅炉入水量,即查水表;还可以用燃料消耗量和热值,结合燃烧效率、锅炉热效率推算蒸汽所含热量来折算蒸汽产量。比如记录锅炉热工仪表输入和输出量,通过热水量及热水升高温度计算热耗量,来测算实际生产负荷。计算示例:锅炉负荷=(监时蒸汽产量/锅炉公称产量)×100%。 2.采样开孔位置不满足方法标准和规范要求时该怎么办? 答:采样位置不符合方法标准和规范要求时,可要求排污企业对烟道进行改造,若因场地和工艺条件限制不能改造,很难满足要求时,可选择比较适宜的管段采样,但采样断面与弯头等的距离应至少是烟道直径的1.5倍,并应适当增加测点的数量和采样频次;也可对采样位置的流速场进行预测,如监测断面最大流速与最小流速之比大于3,则采样点至少加密1倍,可在水平和垂直方向都开孔来采样。 3.《大气污染物综合排放标准》(GB16297-1996)只给出了GB/T16157-1996,其它污染物监测应采用何方法? 答:GB16297-1996除引用了GB/T16157外还引用了GB3095,因此凡与GB3095同名的污染物监测均应采用GB3095表3规定的各污染物分析方法;对于其它污染物根据环函【2010】90号精神;“在监测环境质量标准和污染物排放标准中规定的污染物项目时,任何部门或单位都应采用依法制定、现行有效的环境监测方法标准和环境监测技术规范。”如硫酸雾和沥青烟的监测应分别采用HJ544-2016和HJ/T45-1999的方法来监测。 4.含氧量不属污染指标,但为什么固定污染源原排气监测还要测含氧量? 答:在固定污染源排气监测中,为了消除燃烧设备运行工况差异和人为稀释因素的影响,必须用标准规定的基准含氧量或过量空气系数进行折算,以避免基准含氧量或过量空气系数过小造成“浓缩”,使排放浓度“增加”;或因基准含氧量或过量空气系数值过大造成“稀释”,使排放浓度“降低”造成达标排放的假像。所以必须通过测氧含量来计算排放浓度。 5.是不是只要固定污染源颗粒物浓度小于20mg/m3,便不能用 GB/T16157-1996的方法? 答:根据根据环保部GB/T16157-1996修改单(2017年第87号公告)的含义,GB/T16157-1996只适用于颗粒物浓度>20mg/m3的废气。因此当颗粒物浓度小于20mg/m3时,除单台出力65t/h及以下的锅炉外,均不宜再采用GB/16157-1996监测,而应采用HJ836-2017来监测。 6.当烟气流速太低,烟尘采样器不能自动启动采样时该怎么办?

固定污染源烟气(SO2、NOx、颗粒物等)监测质量保证和质量控制要求汇总

CEMS比对监测的质量保证和质量控制 固定污染源排气中颗粒物测定与气态污染物的检测过程中质量保证和质量控制要求,散见于于9个标准及规范,分别是: 1.《固定污染源排气中颗粒物测定与气态污染物采样方法》GB/T 16157-1996及其修改单(环境保护部公告【2017】第87号) 2.《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范》HJ 75-2017 3.《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测系统技术要求及检测方法》HJ 76-2017 4.《污染源自动监测设备比对监测技术规定(试行)》中国环境监测总站 2010年8月 5.《固定污染源监测质量保证与质量控制技术规范(试行)》HJ/T 373-2007 6.《固定源废气监测技术规范》HJ/T 397-2007 7.《固定污染源废气氮氧化物的测定定电位电解法》HJ 693-2014 8.《固定污染源废气二氧化硫的测定定电位电解法》HJ57-2017 9.《固定污染源废气低浓度颗粒物的测定重量法》HJ 836-2017 综合以上标准中的质量保证和质量控制要求,比对监测主要从监测人员、监测仪器与设备、采样过程质量控制、实验室分析质量控制、监测报告出具等方面进行质量保证和质量控制。 1、监测人员 (1)要求监测人员经培训后持证上岗。 (2)生态环境监测要求至少2人进行现场监测工作。 (3)监测过程应有照片视频等资料。 注:(2、3条依据为《检验检测机构资质认定生态环境监测机构评审补充要求》) 2、监测仪器与设备

(1)监测仪器设备应经检定/校准合格并在有效期内使用。 GB/T 16157-1996中12.2规定的仪器与设备(排气温度测量仪表、S行皮托管、斜管微压计、空盒大气压力表、真空压力表或压力计、转子流量计、采样管加热温度、分析天平、采用嘴),应依据标准至少半年自行校准一次。 定电位电解法烟气(S02、NO。CO)测定仪应在每次使用前校准。采用仪器量程20%一30%、 50%一60%、80%一90%处浓度或与待测物相近浓度的标准气体校准,若仪器示值偏差不高于±5%,测定仪可以使用。 至少每季度对测氧仪校准一次,采用高纯氮校正其零点。用纯净空气调整测氧仪示值,在标准大气压下其示值为20.9%。 定电位电解法烟气测定仪和测氧仪的电化学传感器寿命一般为1—2年,到期后应及时更换。在有效使用期内若发现传感器性能明显下降或失效,须及时更换传感器,更换后测定仪需重新检定方可使用。 (2)监测仪器与设备应定期维护保养,应制定仪器与设备管理程序和操作规程,使用时做好仪器与设备使用记录,保证仪器与设备处于完好状态。 (3)每季度现场抽查仪器与设备使用情况和使用记录。 3、采样质量控制 按照规范要求进行采样,进行气密性检查、校准、采样流量控制等操作。 4、实验室分析质量控制 每批样品应至少做一个全程空白样,实验室内应进行质控样品的测定。 5、监测报告 监测报告应执行三级审核制度。 实例:比对监测质量保证与质量控制措施: 1.监测人员全部持证上岗。 2.检测仪器均在检定有效期内。 3.测量气态污染物时,采样测量前、后均采用有证标准物质进行校准。 4.颗粒物测定每批做1个全程空白样。 5.整个检测过程均严格执行《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技 术规范》HJ 75-2017和《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测系统技术要求及检测方法》HJ 76-2017的相关要求。 6.监测报告应执行三级审核制度。

相关主题
文本预览
相关文档 最新文档