当前位置:文档之家› 高温合金孔加工技术研究

高温合金孔加工技术研究

高温合金孔加工技术研究
高温合金孔加工技术研究

高温合金孔加工技术研究

随着科学技术和人类文明进步的需要,机械产品高性能、多功能、高质量要求十分强烈,产品结构要求也更加紧凑,零件尺寸向微细化发展。为满足上述要求,具有高硬度、高韧性和高耐磨性的难加工材料在产品中使用得越来越多。

以发电设备为例,汽轮机从30万普通机组到超超临界100万以及燃机等大功率高参数设备,耐高温、耐磨、耐酸的零部件材料采用镍基高温合金或其它难加工材料的比例正在快速增加。据不完全统计,十余年前企业以常规机组为主导产品时,所涉及的高温合金等难加工材料仅GH132等极少数的零件材料。而目前,因火电、气电、核电、风电等新产品的特殊要求,高强度不锈钢、抗低温脆性金属、高温耐热合金等十余种材料给切削加工带来了很大难题,其中高温合金就有近十个牌号,所涉及零件有十余种。这里只就镍基高温合金孔加工问题进行技术探讨。

与一般钢材相比,高温合金的切削加工难点主要表现在以下几个方面:

1)加工硬化倾向大。比如GH4169未强化处理的基体硬度约HRC37,切削后表面产生0.03毫米左右的硬化层,硬度增加到HRC47左右,硬化程度高达27%。加工硬化现象对刀具寿命有很大影响,通常会产生严重的边界磨损。

2)切削力大。高温合金强度比汽轮机常用合金钢材料高30%以上,在600℃以上的切削温度下,镍基高温合金材料的强度仍高于普通合金钢材料。未强化处理的高温合金单位切削力在4000N/mm2以上,而普通合金钢仅2500N/mm2。

3)材料导热性差。切削高温合金时产生的大量切削热由刀具承受,刀尖承受了高达800~1000℃的切削温度,在高温和大切削力作用下,将导致切削刃产生塑性变形、粘结与扩散磨损。

4)镍基合金主要成份为镍和铬,另外还添加有少量其它元素:钼、钽、铌、钨等,值得注意的是,钽、铌、钨等也是用来制造硬质合金(或高速钢)刀具的主要成分,用这些刀具加工高温合金会产生扩散磨损和磨料磨损。

孔加工的一般特点

孔加工是切削加工中难度较大的加工方式,属半封闭式加工。特别是实心钻孔时,切削热极易滞留在切削刃附近,切削热和切屑的及时排出很困难,这是影响刀具寿命的关键所在,必须给以足够的关注。

镗孔和扩孔加工是在有预钻孔条件下切削,与车削加工状态相似,但刀杆系统刚性随孔的深径比增加而呈三次方递减,通常镗孔和扩孔的刀杆系统刚性比车削和铣削条件低得多。为了保证孔加工精度、改善排屑条件,刀刃结构、刀杆直径和刀杆强度必须给予合理匹配。

高温合金孔加工技术难点

相对于一般钢材切削加工,切削高温合金的刀具寿命要低50%以上,加工效率很低,加工成本也高得多。高温合金孔加工主要难点是:

1) 切削力大,消耗机床功率大。比如,采用某进口品牌的?68机夹扁钻在GH901上进行实心钻孔,功率消耗大于30KW,而用相当直径的机夹复合钻在15CrMo汽缸中分面上钻孔功率消耗低于10KW。

2) 孔加工是半封闭的切削,产生的高切削热和断屑困难的切屑难以及时排出远离刀尖,刀具磨损更为剧烈。例如,在采用普通麻花钻钻GH901时按普通材料切削用量加工,仅几分钟,刀尖就呈现出蓝色表面的烧伤现象。

3) 用普通的钻削方法难以保证高温合金孔的精度要求。其原因是钻削轴向力大,用摇臂钻床等系统刚性较差的设备加工,钻头等刀具易产生较大的弯曲,导致钻孔偏斜,影响钻孔精度。例如,用普通麻花钻加工GH901阀杆?14.5径向孔时,钻头在较大的钻削力作用下,

发生弯曲,刀刃磨损极快,无法正常切削;改为镗床钻孔,在其它切削条件不变的情况下,顺利地完成了钻孔任务。

4) 高温合金孔加工中,刀具磨损比加工普通钢材快得多,且需要切削性能更好的刀具材料。据研究资料统计,加工高温合金的刀具费用是一般钢材的5~10倍。

高温合金孔加工刀具材料

可用于高温合金加工的刀具材料主要有CBN、陶瓷、硬质合金及高速钢。

中小型孔钻削加工的刀具材料推荐使用以超细晶粒合金作基体的新型涂层(如TiAlN、TiZrN)硬质合金,这种材料具有优异的耐磨性和很低的摩擦系数,是目前难加工材料切削最常用的刀具材料。如国内外一些刀具专业厂生产的整体硬质合金钻头及可转位镗刀大量使用了该项技术。

在高温合金钻、扩、铰加工中,仍然大量使用高速钢材料。高速钢刀具材料的韧性比硬质合金高得多,对机床精度和系统刚性要求没有硬质合金刀具高,因此在大中型孔的钻削加工中更有优势。

高温合金实心钻孔

钻头基本结构及要求对镍基高温合金类难加工材料进行实心钻削加工时,常用刀具有整体钻头、机夹钻。机夹钻包括机夹深孔钻(如机夹扁钻、可转位深孔钻)和可转位浅孔钻(用于加工长径比小于5的实心孔)。整体钻头包括硬质合金钻头和高速钢钻头,?20以下的孔推荐使用整体硬质合金钻。使用整体硬质合金钻要求机床有足够的进给精度、回转精度和刚性。普通镗铣床及钻床主轴跳动一般超过0.05毫米,不能满足硬质合金钻头使用要求。钻头应优先采用公差等级H6圆柱柄,并用精密强力夹头或液压夹头装夹,以提高刀具系统精度。关于整体硬质合金钻头(以及焊接硬质合金钻)的刃磨,要求有数控刀具磨床及相关修磨软件,如果企业没有修磨条件,可以优先推荐使用高速钢钻头加工高温合金。

钻削高温合金,要求钻头有更好精度,据有关资料介绍,一些航空航天加工厂钻削这类材料时要求其钻尖径向跳动不大于0.02毫米。钻头的关键还是钻尖的结构,包括锋角、横刃宽度、前角以及钻尖的对称性。

增大锋角可减少刃屑接触长度,降低切削热,改善钻头切削条件。高温合金钻头的锋角推荐135°~140°。

钻头横刃对钻削性能有非常大的影响,一般情况下,横刃处的钻削力可占整个钻头切削力的60%左右,如果不对横刃进行适当的修磨处理,在钻削高温合金材料时,钻尖很快就会磨损烧伤。S形(国内叫十字形)修磨,就是为了加大横刃处前角,减少横刃的长度。未经修磨过的钻头,横刃处前角为-30°左右,经“十字修磨”后横刃处前角大于-15°。这是降低钻头扭矩和切削热的有效途径,这对延长刀具寿命和提高切削条件十分有利。国内外开发的许多新型钻头产品,其横刃均有此特点。

钻削高温合金孔的钻尖要有足够的对称性,这是控制孔尺寸和位置精度的必要条件。采用机磨是控制钻头锋角、横刃对称性的最好办法。

钻孔冷却方式为了便于排屑,市场上推出了内冷孔钻头,可供给充足的水溶性冷却液或雾状冷却剂等,使排屑变得更为顺畅,这种方式对切削刃的冷却效果也很理想。但该钻头要求机床具有内冷系统,或者有外冷转内冷机构。同时,该类钻头的刀具成本高,而且刀具修磨一般要求在刀具刃磨中心上重磨。

在一般情况下,钻削可以采用外冷方式。加工高温合金有效的冷却是必不可少的,水基切削液是冷却效果最好的切削液。为了改善实心钻孔的冷却条件,喷液嘴应尽量接近钻头入口处,并与钻头轴线夹角小于30°,喷液方向尽量与钻头螺旋沟槽方向一致,见图所示。

外冷方式

高速钢麻花钻高速钢麻花钻是低速加工高温合金的传统刀具,其优点是容易手工修磨,刀具材料韧性好,对机床的要求相对较低。下面是用高速钢麻花钻加工高温合金孔的实例。

工件材料:GH901

机床:数控落地镗床TK6513,机床功率30KW

钻头:普通HSS麻花钻,锋角140°,横刃修磨要窄0.2mm

钻头尺寸:?12.3×80

切削用量:Vc=3.864m/min,fn=0.06mm/r

冷却条件:外冷,马斯特水基切削液,每钻进3mm立即退刀,防止钻刃空转与孔底反复挤压磨擦而增加高温合金材料的加工硬化层厚度,钻尖全部退出,其目的是对钻头及孔内进行冷却,提高切削液冷却效果,改善排屑条件。

一个孔加工时间:17分钟

刀具磨损:锋刃有较轻微的磨损

加工效果:孔的直线度、表面粗糙度均达到了预钻孔要求

可转位浅孔钻可转位浅孔钻是带可转位硬质合金刀片的高效钻孔刀具,其钻孔效率是普通钻头的4倍以上。东汽最早在贝拉尔蒂数控镗床上用于加工普通钢材料法兰面螺栓孔,目前已在常用钢材加工中广泛使用。通过试验该钻头也能用于高温合金阀杆的钻削加工,但要求刀具有如下结构特点:

第一、刀片要有较锋利的切削刃,以降低钻削力;

第二、刀片断屑槽要合理,减少切屑的过分卷曲变形带来的大量切削热;

第三、根据机床功率选用合适的刀具直径;

第四、选择合适的刀具长径比,尽量增加刀具系统刚性。

现以高温合金轴类零件?71×240径向孔加工为例进行分析。

1 浅孔钻的选择

与整体钻和硬质合金焊接钻相比,浅孔钻的切削力较大,在选择时要考虑系统刚性和机床功率等基础问题。为了满足高温合金对钻头的要求,首先选择刚性较好的3倍径浅孔钻。

另外经试验,钻头直径选择?68时,切削消耗功率接近TK6513数控落地镗床的额定功率

30KW。为此,结合现有资源,选择了?58的浅孔钻。具体规格如下:

钻头规格:?58×174

刀片型号:P28479—7 WAP35

2 切削用量的选择

如前所述,高温合金材料的切削加工性很差,在加工中的切削用量要比加工普通材料低得多,如在车削GH901阀杆时切削用量仅为Vc=25m/min、 fn=0.15mm/r、ap=2mm。而高温合金实心孔的钻削难度更是高于一般车削加工。另外,实心钻削加工刀具排屑空间很有限,还需要考虑排屑的状态,试验表明,“C”型屑有利于排屑,较合理的切削用量如下(钻头半径为29mm):

Vc≤20m/min、fn=0.1mm/r

3 钻削方法

因机床无内冷系统,切屑无法及时排出。为克服该问题,减少切屑对刀具寿命的影响,同麻花钻钻孔情况相同,需采用间隙进给方式,即每钻5毫米深度立即退刀,以防止钻刃空转与孔底反复挤压磨擦而增加高温合金材料的加工硬化层厚度,钻尖要全部退出,其目的是对钻头及孔内进行冷却,提高切削液冷却效果,改善排屑条件。

因钻头有效钻削深度不够,加工中采用了分头钻削方式,即先从一端钻至钻头工作深度,再调头从另一端钻削接通。

4 柱面钻孔前要求

在圆柱面上直接钻径向孔,与在斜面上钻孔一样,会使钻头偏斜,影响孔的位置和尺寸精度。因此在钻孔前必须首先用大于钻头直径80%、小于孔最终直径的铣刀铣削出一个平面,保证钻头轴线垂直于被钻孔表面。浅孔钻就不会偏斜中心,以保证钻出的底孔位置正确。

镗孔加工

孔的精加工一般用铰孔和镗孔两种方法,铰孔是效率更高的工艺方法,但铰刀通常是定尺寸刀具(即使是可调铰刀也只能微调孔尺寸),只能对孔的形状和尺寸准确控制,无法修正孔的位置误差。一把镗刀可满足较大尺寸范围内准确尺寸的控制,不仅能控制孔的形状尺寸精度,对孔的位置精度更有铰削加工不能替代的作用。

刀片的选择加工中选用了URMA镗刀系统。该镗刀采用了国际标准系列刀片,其优点是便于根据加工材料特点更广泛地选择可转位镗刀片。镗刀片型号如下:

·粗镗刀片与车间现有精车刀片型号相同:CNMG1204**

·精镗刀片:CCMT09T3**、CCMT06**

在选择镗刀片时,刀尖半径是必须考虑的几何参数,因为刀尖半径影响了切削力的大小。一般车削加工的刀尖圆角半径为0.8毫米,对于镗加工,刀具系统刚性的限制,通常刀尖圆角半径为0.4毫米左右,精镗时甚至推荐0.2毫米的刀尖圆角半径。

以上型号刀片我们可以在国内外许多专业厂样本中寻找,这给我们选择更适合加工高温合金镗刀片带来了很大的方便。最早用该镗刀系统粗精镗高温合金GH901材料时,使用了镗刀系统自配刀片,这些刀片适合加工普通钢,根本不能满足镗孔要求,刀具寿命很短。为此,根据车间现有条件,结合高温合金车削和铣削加工经验,为URMA镗刀系统选择了多家专业厂生产的标准精镗刀片,代表材料有TT5030、S05F等涂层硬质合金。经试验所选刀片更适合高温合金的镗削加工,以CNMG120408-MP、CCMT09T302-FA两种型号刀片为例。

粗镗孔

1 切削用量选择

粗镗孔常用可转位双刃镗刀,所用刀片CNMG120408-MP。在镗孔加工中,排屑是重要的环节,连续的带状切屑会缠绕刀尖,并影响表面加工质量,排屑效果差,对刀具寿命和加工面质量有较大的影响。过短的切屑说明切屑卷曲严重,产生切削热增加,切削过程平稳性较差。在选定刀片后切削用量与加工件余量和刀片断屑槽型有关,粗镗刀的刀片槽型为NP,理想的断屑条件是:ap=1~4mm,f=0.10~0.4mm/r。对于高温合金镗孔,一定要有足够的水基切削液作冷却,尽量使切削液接近刀刃切削区。如没有内冷系统,镗削高温合金孔的切削用量应取下限:

Vc=16m/min、ap=2mm 、f=0.1mm/r。

从钻孔尺寸?58至最终孔尺寸?71,最后留精镗余量0.05毫米,单边余量共6.45毫米,因此,需走4刀完成粗镗加工,余量分配如下:

?62 → ?66 → ?70 → ?70.9。

该孔长径比为3.5,但所用镗刀系统的接长杆直径Φ50,刀杆总长尺寸250毫米,长径比为5,为提高精镗前孔的尺寸和形位精度,最后一刀为半精镗,其目的是校准前面工序加工误差。

2 边界磨损及对策

切削高温合金时,切削区的切削温度很高,特别是在与空气接触的过渡切削刃处,刀具材料与空气中的氧、氮、氢等活性元素发生反应,过渡切削刃部分产生裂纹剥落或崩刃,这种磨损形式被称为边界磨损。在高温合金的切削加工中,边界磨损是最常见的磨损形式。

减少边界磨损的基本方法有两种,一是采用小的刀具主偏角,二是采用变切深加工方法。但小的主偏角会增大镗刀杆的弯曲变形,因此变切深加工是改善镗孔加工硬化现象对刀具影响的最有效手段。变切深加工,是指所选切深要与上次的切深不相同,使刀刃与工件切削面的接触区产生变化,以改善切削边界接触状态。在数控加工中,可通过连续改变刀具切深,在

一次走刀中实现变切深加工方法,更有效地缓解刀具的边界磨损,该方法要求镗床有径向控制刀尖移动的功能。相比而言,第一种方法便于操作。

精镗孔精镗内孔最关键的是镗削过程的安全性,需要一刀切过,孔的各项参数达到质量要求。主要注意的是两个方面问题,一是保持稳定的切削排屑过程,二是确保刀具寿命满足孔的切削长度。

注意保持足够的切削液以辅助排屑和提高刀具寿命。一般要求较小的切削深度,并形成稳定连续的细螺旋屑,这样可提高精镗孔过程的可靠性,保持稳定的切削过程。对于高温合金精镗孔,切削用量需取低值。高温合金车、铣加工经验告诉我们硬质合金刀具寿命通常是切削合金钢时的50%以内,刀具寿命一般在30分钟左右。为此在选择切削用量后,应验算刀具能否一刀完成至少一个孔的精镗加工。

根据所选硬质合金精镗刀片CCMT09T302-FA结构特点,最终确定如下切削用量:

Vc=22m/min、ap=0.05mm、f=0.1mm/r

按上述切削用量,一个孔的切削时间在25分钟以内。而且孔的加工质量完全达到了图纸技术要求:孔的精度0.02以内,表面粗糙度Ra1.6以内。

刀具预调在数控加工中,刀具系统通常需要机外调刀——刀具预调,其目的是减少数控机床的停机时间,增加机床运行效率。旋转刀具预调包括刀具系统的工作长度和刀具直径两个参数。对于粗镗刀可直接将刀具参数调至所需尺寸。在切削力的作用下,镗刀系统将产生弹性弯曲变形,即所谓让刀。粗镗让刀对加工尺寸影响很小,预调可不考虑所产生的影响。但在预调精镗刀时,必须充分考虑让刀对刀具预调尺寸的影响。镗孔时让刀量的大小与材料性能、切削用量,系统刚性等因素有关,我们很难定量判定精镗孔时的让刀量。

解决让刀影响有效办法是预调加试切法对刀。首先将镗刀预调至比孔最终尺寸小0.05毫米,比如加工孔径最终尺寸为?71±0.02,可预调至?70.95,先进行试切,检测试切孔实际尺寸与孔公差带中间值的差值d,在刀具、工件装夹系统不变的前提下,将精密微调镗刀调整一个d,再进行试切直到满足孔最终尺寸要求。

如需要更直观的观查调尺寸,可在刀尖沿刀具直径方向上装百分表(或千分表)作为辅助检测。

结束语

高温合金的切削加工性远远低于普通合金钢,其刀具成本和其它加工成本有较大增加。但使用高温合金材料大大提高了产品运行效能,也大幅增加了产品的附加值,这才是我们更要关注的。在加工高温合金等难加工材料时,只要正确认识其切削加工性,合理选择刀具结构和切削参数,就能最大限度地降低刀具成本,提高加工效率。高温合金孔加工主要应注意以下几点:

1) 无论是钻削还是镗削,机床运动精度及工艺系统刚性应尽量高。

2) 刀具的装夹应选用高精度的刀柄夹头,如精密强力夹头、液压夹头。

3) 切削用量要选择合理,一是通过切削用量控制切屑形状,方便排屑,二是注意刀具寿命满足孔加工长度要求。

4) 实心钻孔采用外冷方式时,为改善冷却和排屑效果,采用间隙进给方式,即每钻几毫米深度立即退刀,以防止钻刃空转与孔底反复挤压摩擦而增加高温合金材料的加工硬化层厚度,钻尖要全部退出,其目的是对钻头及孔内进行冷却,提高切削液冷却效果,改善排屑条件。

5) 孔加工关键问题除排屑外,还需很好解决高的切削温度,加工高温合金更是如此。充分有效的冷却是不可缺少的手段,首选水基切削液冷却。

6) 选用镗刀片时要求切削刃有大的前角,保持切削刃强度的前提下切削刃尽量锋利。

7) 卷屑槽型和刀具刃磨角度要合理,孔的粗加工要求切屑为小的“C”型屑,改善排屑效果,精镗要求切屑呈短螺旋屑,保持镗削过程平稳。

8) 粗镗时可采用变切深切削方法,能减少刀具的边界磨损,延长刀具寿命。

高温合金材料最新发展

高温合金材料最新发展 新一代高温合金 New Generation Ni-based and Co-based Superalloys 高温合金由于具有优的高温力学性能和抗腐蚀、氧化能力等综合性能,而广泛地用于航空航天发 动机、地面燃气轮机以及其他恶劣服役环境中的关键设备中。 Ni and Co-based superalloys have good balanced properties of high temperature strength, toughness, and resistance to degradation in corrosive or oxidizing environments, which make the materials widely used in aircraft and power-generation turbines, rocket engines, and other aggressive environments. 1.第四代镍基单晶高温合金(Ru-containing Single Crystal Ni-base Superalloys) 先进镍基单晶高温合金由于其高温下优良的综合性能而成为高推比(>12)航空发动机高压涡轮 叶片的首选材料,与传统低Cr商业单晶合金的设计思路不同,利用Ru和高Cr及其交互作用有可能 通过改变γ’相形貌,即改变合金元素在γ和γ’两相中分配比和点阵错配度,提高蠕变性能,并保持良好 的综合性能。 Different from commercial single crystal superalloys with low levels of Cr addition, high levels of Cr and Ru additions as well as the effects of their interaction influence the morphology of γ’ precipitates remark ably. They changed the elemental partitioning ratio between the γ and γ’ phases, and the lattice misfits of these experimental alloys, and enhanced the creep life with keeping the balanced properties. These new

铝合金表面处理国内外应用现状

表面工程技术 铝合金表面处理国内外研究应用现状Aluminum alloy surface treatment of domestic and foreignresearch and application status 学院名称:材料科学与工程学院 专业班级:复合材料1101 学生姓名:曹成成 学号:3110706055 指导教师:张松立 2014 年6 月

【摘要】综述了近年来铝合金表面改性技术取得的研究进展,介绍了镀层技术,转化膜处理技术、高能束表面处理技术等方法制备铝合金表面层的原理、特点及研究成果简要介绍了铝合金表面处理技术的新进展,重点介绍了铝合 金的阳极氧化、电镀、化学镀和微弧氧化、激光熔覆等工艺。 关键词:铝合金;表面处理;阳极氧化;电镀;化学镀;微弧氧化;激光熔覆 前言 铝是元素周期表中第三周期主族元素,为面心立方晶格,无同素异构转变,延展性好、塑性高,可进行各种机械加工。铝的化学性质活泼,在干燥空气中铝的表面立即形成厚约1~3 nm 的致密氧化膜,使铝不会进一步氧化并能耐水;铝是两性的,既易溶于强碱,也能溶于稀酸。铝在大气中具有良好的耐蚀性。纯铝的强度低,只有通过合金化才能得到可作结构材料使用的各种铝合金。铝合金的突出特点是密度小、强度高。铝中加入Mn、Mg 形成的Al-Mn、Al-Mg 合金具有很好的塑性和较高的强度,称为防锈铝合金,如3A21 ,5A05。硬铝合金的强度较防锈铝合金高,但防蚀性能有所下降,这类合金有Al-Cu-Mg 系如 2A11 ,2A12。Al-Cu-Mg- Zn 系为超硬铝,如7A04 ,7A09。新近开发的高强度硬铝,强度进一步提高,而密度比普通硬铝降低15 % ,且能挤压成型,可用作摩托车骨架和轮圈等构件。Al-Li 合金可制作飞机零件和承受载重的高级运动器材。通过在铝中加入3 %~5 %(质量分数) 的比铝更轻的金属锂,就可以制造出强度比纯铝高20 %~25 % ,密度仅2. 5 t/ m3 的铝锂合金。这种合金用在大型客机上,可以使飞机的重量减少5 t 多,而载客人数不减。 尽管铝合金材料具有密度小、热膨胀系数低、比刚度和比强度高等优点,但

铝合金的研究现状及应用

科技广场2015.12 0引言 随着工业化向现代化高速发展,节能减重环保型材料需求量剧增。这种需求,使得铝合金的用量逐年增加。铝在地壳中的含量很高,在所有金属元素中排第一,其年产量大于其他有色金属年产总和,且铝合金质轻无毒性易回收利用,满足轻量化环保型合金的发展应用。铝合金密度低、比强度高、熔点低、铸造性能好、力学性能佳、加工性能好、导电性、传热性及抗腐蚀性能优良的特点使其广泛应用于交通运输、航海航天航空、化工工业、食品工业、电子通讯、复合材料、金属包装、建筑、输电行业、文体卫生等领域[1-2]。铝合金在所有金属材料中的使用排第二,仅次于钢铁[3]。由于冶炼铝生产工艺的优化以及技术水平的提高,降低了铝合金的成本,铝合金的应用越来越广泛。本文论述了铝合金的特点、分类、研究现状及应用,并提出铝合金未来研究方向。1铝合金的研究现状 铝工业的发展进程不到两百年,但因其密度小、易导热导电、耐蚀性好,且能与其他金属形成优质铝基合金,因此,铝合金发展迅猛并广泛应用于汽车、船舶、火车、飞机、炼钢等领域,成为国富民强的重要材料。根据成分和工艺不同,可将铝合金分为铸造铝 铝合金的研究现状及应用 StatusQuoofResearchinAluminumAlloysandtheApplication 白志玲 Bai Zhiling (六盘水师范学院,贵州六盘水553004) (Liupanshui Normal University,Guizhou Liupanshui553004) 摘要:铝合金具有密度低、力学性能佳、加工性能好、无毒、易回收、导电性、传热性及抗腐蚀性能优良等特点,在船用行业、化工行业、航空航天、金属包装、交通运输等领域广泛使用。本文叙述了铝合金的特点、分类,综述了铝合金的研究现状及应用,指出目前铝合金在发展中存在的问题,明确了铝合金的研究方向。 关键词:铝合金;研究现状;应用 中图分类号:TG146文献标识码:A文章编号:1671-4792(2015)12-0018-03 Abstract:Aluminum alloys have been widely used in marine,chemical industry,aerospace,metal packaging, transportation and other fields owing to their merits,such as low density,good mechanical property,good cutting property,non-toxic,recyclable,electrical conductivity,thermal conductivity,good corrosion resistance and so on. The paper introduces the characteristics and classification of aluminum alloys,as well as the status quo in its re-search and application,points out existing problems in the development,and puts forward directions for researches in the future. Keywords:Aluminum Alloys;Status Quo of Research;Application ★基金项目:六盘水师范学院高层次人才科研启动 基金(编号:LPSSYKYJJ201417);贵州省科技厅联 合基金项目(黔科合LH字[2014]7460号) 18 DOI:10.13838/https://www.doczj.com/doc/dd18221808.html,ki.kjgc.2015.12.004

铝合金轮毂热处理

铝合金轮毂热处理

————————————————————————————————作者: ————————————————————————————————日期: ?

铝合金轮毂热处理 1、铝合金轮毂热处理过程及重要性 热处理就是以一定的加热速度,升到某一温度下保温一定时间并以一定的速度冷却,得到某种合金组织和性能要求的一种加工方法。其主要目的是:提高力学性能,增强耐腐性能,改善加工性能,获得尺寸的稳定性。 铸造铝合金轮毂选用的材料是A356铝合金(美国牌号),对应的国内合金牌号为ZL101,属铝-硅系铸造合金,通常采用T6热处理工艺,含义如下表: 表1 热处理状态代号、名称及特点 代号热处理状态名称目的 T1人工时效提高硬度,改善加工性能,提高合金的强度。 T2 退火消除内应力,消除机加工引起的加工硬化,提高尺寸稳定性及增加合金的塑性。 T4 固溶处理提高强度和硬度,获得最高的塑性及良好的抗蚀性能。 T5 固溶处理+不完全人工时 效 用以获得足够高的强度,并保持有高的塑性,但抗蚀性 下降。 T6 固溶处理+完全人工时效用以获得最高的强度,但塑性及抗蚀性降低。 T7 固溶处理+稳定化回火提高尺寸稳定性和抗蚀性,保持较高的力学性能。 T8固溶处理和软化回火获得尺寸的稳定性,提高塑性,但强度降低。 铝合金轮毂的热处理强化的主要方法是固溶淬火加人工时效。在Al-Si-Mg合金中,固溶处理的实质在于:将合金加热到尽可能高的温度,并在该温度下保持足够长的时间,使强化相Mg 2 Si充分溶入α-Al固溶体,随后快速冷却,使高温时的固溶体呈过饱和状态保留到室温。温度愈高,愈接近固相线温度,则固溶处理的效果愈好。固溶处理也会改变共晶Si的形态,随着固溶保持时间的延长,Si相有一个缓慢球化和不断粗化的过程,这种过程随固溶温度的提高而增强。一般铝合金轮毂的固溶温度选择在535--545℃之间,时间为6小时。固溶温度对Si相形态的影响要比保温时间的影响大得多,通过参照相关理论和试验发现,550℃保温100分钟后的Si相形态等同于540℃保温300分钟后的形态,目前中信戴卡公司热处理工序步进式连续炉,除特殊产品有明确要求外,均采用固溶550℃保温140分钟左右的热处理工艺。当然,选择的是较高的固溶温度,对设备稳定性的要求也很高,炉膛内各部温度要均匀,否则局部温度过高,会导致部分产品过热、过烧。 铝合金轮毂淬火时的水温一般选择在60--80℃之间,而且水的状态对机械性能也有一定影响,这是因为轮毂淬火时水温升高,工件表面局部水气化的可能性增大,一旦气囊形成,冷速就明显降低,这会使机械性能降低,因而在工件淬火的情况下,必须要开启水循环装置(搅拌器、循环泵等),使水箱内的水处

高温合金的研究现状

航空航天镍基高温合金的研究现状 1万艳松2鞠祖强 南昌航空大学航空制造工程学院10032129 万艳松 南昌航空大学航空制造工程学院10032121 鞠祖强 摘要 简单介绍了镍基高温合金的发展历程,综述了近年来镍基高温合金的研究进展,并探讨了镍基高温合金的应用和发展趋势。 关键字:镍基高温合金性能发展现状 1.引言 高温合金是一种能够在600℃以上及一定应力条件下长期工作的金属材料,而镍基高温合金是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金。 2.镍基高温合金发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。 3.镍基高温合金成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr 主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。

中国铝合金压铸业的发展及现状

中国铝合金压铸业的发展及现状 发表时间:2018-06-11T13:51:27.290Z 来源:《建筑学研究前沿》2017年第36期作者:沙雯雯 [导读] 我国压铸业的发展始于二十世纪九十年代,当时虽然还是一个新兴行业。 广东鸿图南通压铸有限公司 226300 摘要:近些年来随着科学技术的不断发展,越来越多的合成材料被铸造出来并被广泛使用,其中压铸铝合金便是其中的一种。我国的航空航天、各式各样的电子产品、无人驾驶汽车等技术目前正发展的如火如荼,而在这些领域里就要广泛用到压铸铝合金,因为压铸铝合金具有非常好的耐腐蚀性、良好的导电导热性、超高的强度以及易于铸造和加工的特性。俗话说的好有需求就会有供应,因此我国的压铸铝合金年产量增加了将近八分之一,在有色合金压铸件的产量里占据了十分之一的地盘。不过话又说了回来,科学技术的进步为该行业的发展带来了无限的机会,在科技的不断推动下我国的铝合金压铸件会造的越来越来好,规模越来越大,铸件越来越优。本文对铝合金压铸业的现状和发展做了一定的研究,以期能够帮助到需要的从行业者。 关键字:铝合金压铸业;发展;现状 引言 我国压铸业的发展始于二十世纪九十年代,当时虽然还是一个新兴行业,不过该行业的发展速度却非常之快,并且随着科学技术的不断发展和人们日常生活的需要,铝合金压铸行业的发展变得越来越好,铝合金压铸产品的种类变得越来越丰富,不同种类的合金正在悄无声息的改变我们的生活。 1我国压铸行业标准的发展历史 在此之前先介绍一下我国压铸行业标准的发展历史,在二十世纪六十年代我国的压铸工艺已经初具规模,注意,是压铸工艺而不是压铸行业,但并没有一套成型的压铸标准,只能参考原苏联的压铸标准;到了二十世纪七十年代才制定了HB5012—1974《铝合金压铸件》以及GB1173—1177—1974《铸造有色合金》等标准;经过十年的发展之后制定的JB3018—3072-82《有色压铸合金技术条件》以及 JB2702—80《锌合金、铝合金、铜合金压铸件技术条件》标准;到二十世纪八十年代末,我国该行业相关人士初步商定要制定一个更加成熟的行业标准;自此到1994年我国正式发布了包括GB/T15114—94《铝合金压铸件》、GB/T15115—94《压铸铝合金》等在内的七个用于压铸行业的标准;至2009年,最新版的国家推荐标准正式出台,即以GB/T15114—2009《铝合金压铸件》和GB/T15115—2009《压铸铝合金》这两个标准代替GB/T15114—94《铝合金压铸件》、GB/T15115—94《压铸铝合金》这两个标准。 2我国铝合金压铸行业的现状 压铸铝合金行业的发展始于二十世纪九十年代,具体来讲该合金的大量使用是在1914年之后,自此之后它便与我们的生活息息相关,其发展速度也得到了空前的提高。当然,压铸铝合金也有类别之分,按硬度来划分的话可以分为高强度和中低强度的压铸铝合金,按合金种类不同可以分为Al-Mg、Al-SiCu-Mg、Al-Si-Mg、Al-Zn、Al-Si-Cu等几大种类。接下来就挑几种压铸铝合金给大家简单介绍。 2.1 Al-Mg系合金 用Al和Mg制造而成的合金压铸件通常用来给一些具有较高防腐要求和需要特殊外观的压铸件,该合金兼具Al和Mg的优点,不仅强度高而且抗腐蚀性好,相较于其他的合金来讲阳极化处理及承受抛光的性能会好一些。不过这种合金的压铸难度会比较大,在压铸的过程中必须非常小心,否则很容易压铸失败。 2.2 Al-Si合金 相较于Al-Mg而言该合金的制造工艺就相对简单了许多,不过任何事情都是相对的,因为其制造起来比较粗糙所以不会用来做一些对需要超高精度的铸件,但是该材料也具有良好的耐腐蚀性,因此可以用来铸造一些对精度要求不太高以及零承重或者微承重的铸件。 2.3 Al-Si-Mg系及Al-Si-Cu系合金 由三种金属铸造而成的合金比前两类合金具有更优的性能。目前用三种金属铸造而成的合金已经在世界上广泛使用,足以见得该合金的性能十分出众,并且该合金的产出量也占得合金产出总量的十分之七。尤其是Al-Si-Cu的压铸合金,人们越来越多的关注到了这类合金。值得注意的是该类合金是最先用压铸方法制造的合金,可见其地位不一般。总体来讲合金具有单一金属所没有的优点,这也是为什么它能够取代单一金属的地位。 3我国铝合金压铸行业的发展 任何行业的发展都需要一个漫长的过程,都会从萌芽走向成熟,铝合金压铸行业的发展也是如此,在该行业的发展过程中,不同的时期会根据当时社会发展的现状和需要诞生不同的压铸技术。所谓的压铸技术就是利用高压将所需要的金属化成熔液然后根据需要压入不同的模具中的一种精密铸造法。利用压铸造出来的合金通常要比用普通方法铸造出的合金性能更优。目前世界上已经有多种压铸方法的出现,比较常用的有半固态压铸技术、真空压铸技术、挤压压铸技术等。 半固态压铸技术指的是在合金熔液将要凝固时对其进行搅拌使其变成浆料,再将这些浆料压铸成我们所需要的铸件。当前用到的两种常见的工艺分别是触变成型工艺和流变成形工艺。 顾名思义,真空压铸法即要将压铸模具中的空气抽空,使得模具内的气压降低,在模具内外压强差的作用下降合金熔液压入模具内,与此同时合金熔液会在压力的作用下做模具内凝固成型。用这种方法压铸而成的模具的密度比较大,不会存在较多的气孔。 挤压压铸技术可以说是一个非常全能的压铸方法了,它不仅能替代上述两种我们提到的压铸方法,更能替代其他更多的压铸方法,因此我国的许多企业已经将该种压铸方法用于实际生产当中。用挤压压铸技术铸造出的铸件力学性能较高,铸件十分紧凑。 4结语 从上文可以看出铝合金压铸行业的发展已经变得越来越成熟,各种各样的铝合金压铸产品也越来越多,随着人们对大自然的认识的不断加深,各种各样的金属也不断被发现,因此各种各样的合金也在不断的被研制出来,在不同的行业应用不同的合金对铝合金铸造业的发展乃至整个社会的发展都有一定的推动作用。与此同时我们也要不断探讨研究和改进各种合金的铸造方法,通过一次次的实验确定合金材

铰孔工艺

6. 6铰孔工艺、编程 材料:45#钢,正火处理 图6-6-1圆周均布孔加工零件 6. 6 . 1铰孔加工工艺 1 ?铰孔加工概述 钻孔是在实体材料中钻出一个孔,而铰孔是扩大一个已经存在的孔。铰孔和钻孔、扩孔 一样都是由刀具本身的尺寸来保证被加工孔的尺寸的,但铰孔的质量要高得多。铰孔时,铰 刀从工件孔壁上切除微量金属层,以提高其尺寸精度和减小其表面粗糙度值,铰孔是孔的精 加工方法之一,常用作直径不很大、硬度不太高的工件孔的精加工,也可用于磨孔或研孔前 的预加工。机铰生产率高,劳动强度小,适宜于大批大量生产。 铰孔加工精度可达IT9?IT7级,表面粗糙度一般达Ra1.6?0.8呵。这是由于铰孔所用的铰刀结构特殊,加工余量小,并用很低的切削速度工作的缘故。 直径在100 mm以内的孔可以采用铰孔,孔径大于100 mm时,多用精镗代替铰孔。在 镗床上铰孔时,孔的加工顺序一般为:钻(或扩)孔一镗孔一铰孔。对于直径小于12 mm的孔,由于孔小镗孔非常困难,一般先用中心钻定位,然后钻孔、扩孔,最后铰孔,这样才能保证孔的直线度和同轴度。 如图6-6-1所示的工件,加工6XQ20H7均布孔,孔面有Ra1.6的表面质量要求,适合用铰孔方法进行孔的精加工。 一般来说,对于IT8级精度的孔,只要铰削一次就能达到要求;IT7级精度的孔应铰两次,先用小于孔径 0.05?0.2 mm的铰刀粗铰一次,再用符合孔径公差的铰刀精铰一次;IT6级精度的孔则应铰削三次。 铰孔对于纠正孔的位置误差的能力很差,因此,孔的有关位置精度应由铰孔前的预加工 工序予以保证,在铰削前孔的预加工,应先进行减少和消除位置误差。如,对于同轴度和

铝合金车轮低压铸造工艺

铝合金车轮低压铸造工艺 目录 铝合金车轮低压铸造工艺 1 低压铸造工艺 1.1 低压铸造原理 1.2 低铸汽车铝合金轮的工艺特点 1.3 汽车铝轮低压铸造工艺设计 1.4 汽车铝轮低压铸造模具设计 1.5 铝轮低压铸造工艺过程 1. 模具检查 2. 模具喷砂 3. 模具的准备 4. 模具涂料 5. 涂料性能和配比 6. 涂料的选择 7. 模具的预热和喷涂 1.6 开机前的准备工作 1. 保温炉的准备 2. 陶瓷升液管的准备 3. 设备和工艺工装的准备

1.7 铝车轮低压铸造液面加压规范 1. 加压规范的几种类型 2. 铝车轮低压铸造加压规范的设定 3. 设计铝轮低铸加压曲线的步骤 4. 铝轮低铸工艺曲线实例 1.8 铸件缺陷分析,原因及解决办法 1. 疏松(缩松)的形成与防止 2. 缩孔的形成与防止 3. 气孔的形成与防止 4. 针孔的形成与防止 5. 轮毂的变形原因及防止 6. 漏气的产生原因及防止 7. 冷隔(冷接,对接),欠铸(浇不足,轮廓不清)的形成与防止 8. 凹(缩凹,缩陷)的形成与防止 铝合金车轮低压铸造工艺 铝合金车轮制造技术是多种多样的,而铝车轮的铸造工艺,目前主要有两种:一种是金属型重力铸造,一种是低压铸造。我们主要是做汽车铝合金车轮,制造工艺采用的 是低压铸造。我们教材面向的对象主要是我们公司的员工,所以对工艺技术的介绍是有针对性的,介绍的方法也是不一样的。 1 低压铸造工艺 1.1 低压铸造原理 低压铸造是将铸型放在一个密闭的炉子上面,型腔的下面用一个管(叫升液管)和炉膛里的金属液相通。如果在炉膛中金属液面上加入带压力的空气,金属液会从升液管中

铝合金中含铁相的研究现状和发展趋势分析

论文题目:铝合金中含铁相的研究现状和发展趋势 姓名:韩志强 班级:材硕1511 学号:1570388 2015/10/25

摘要 铝以及铝与其它元素所形成的铝合金具有优良的力学性能,在工业领域内得到了广泛的应用,一直以来在世界范围内备受瞩目。但由于工业上受到工艺及模具的限制,从熔炼到成形的过程中很容易引进杂质元素,从而使其在某些领域中的应用受到了阻碍。 在众多杂质元素中,对铝合金组织及力学性能影响最大的是铁元素。它一直被人们当做合金中的有害元素,铁极难溶于铝中,共晶点的铁含量为 1.8%,不会固溶超过1.9%,超过这个数值,铁会与铝化合成一种中间相,该相组织粗大,尖锐,会影响合金总体的力学性能。 硅同样被认为是合金中的另一种杂质元素,合金中的这两种杂质元素容易形成金属间化合物,分别形成常见的两种相,即β-铁相和α-铁相。 铝合金质量轻,延展性好,大量使用,铝铁合金除了自身优点外,还具有其它的优良性能,良好的耐腐蚀性能、极好的耐磨耐硬和高强度等,使其在工业领域内的关注度逐渐上升。 研究表明富含铁相的铝合金经过变形后再进行T6热处理会发生性能降低的反常现象。 关键词:铝合金;铁元素;硅;热处理

Abstract Aluminum and aluminum alloys of aluminum and other elements formed have excellent mechanical properties, in the industrial fields has been widely used, it has been well received around the world. However, due to limitations on the process and die by the industry, from smelting to the molding process it is very easy to introduce impurity elements, making it apply in some areas has been hampered. Among impurity elements in aluminum alloy microstructure and mechanical properties of greatest impact is iron. It has been known as the harmful elements in the alloy, iron extremely difficult to dissolve aluminum and iron content of the eutectic point of 1.8%, not a solid solution over 1.9%, more than the value of iron and aluminum will synthesize an intermediate phase which organization coarse, sharp, it will affect the mechanical properties overall. Silicon alloy is also considered to be another impurity element, the alloy impurity elements both easy to form inter metallic compounds were formed common to both-phases, phase and α-iron β- iron phases. Lightweight aluminum quality, scalability, extensive use of aluminum alloy in addition to its own merits, but also has other excellent performance, good corrosion resistance, excellent wear resistance and high strength hard to make it in the field of industry attention gradually increased. Studies have shown that iron-rich phase deformation of aluminum alloy after T6 heat treatment and then be-reduced performance anomalies occur. Key words: aluminum alloy; iron; silicon; heat treatment

Ni—Cr—Al高温合金材料的研究现状及发展

Ni—Cr—Al高温合金材料的研究现状及发展 【摘要】随着航天、航空、电力、冶金、能源、石化工业的迅速发展,对高温抗氧化合金材料的服役性要求越来越高,高温抗氧化合金材料已经成为影响工业发展的决定因素,这就给高温抗氧化合金的研制和开发提出新的机遇和挑战。Ni-Cr-Al合金以其抗高温、抗氧化性能被广泛的应用于燃气轮机叶片等高温部件,在国防和工业生产中,扮演着重要角色。 【关键词】Ni-Cr-Al高温合金;性能;研究现状;发展 1.引言 镍是一种耐腐蚀性优良、韧性较好的金属材料,具有良好的力学、物理和化学性能,添加适宜的元素可提高它的抗氧化性、耐腐蚀性、高温强度和改善某些物理性能。Ni-Cr-Al合金的成分主要是镍铝,铬的含量较少,是重要的高温合金材料,在能源开发、化工、电子、航海、航空和航天等部门中都有广泛的应用,物理与化学的性能不言而喻,耐高温、抗蠕变、抗腐蚀性能好,凭借这些优良性能,使镍铬铝合金成为未来高温合金材料中最有前景和价值的合金材料之一,因此,研究镍铬铝合金对现实工业生产具有重要的意义。 2.概述 Ni-Cr-Al高温合金依靠其耐高温抗氧化性能,成为重要高温材料之一,在国防和工业生产中,扮演着重要的角色,以其优良的性能被广泛应用于航空航天,电力,冶金等高温部件。Ni-Cr-Al高温合金这样良好的性能主要依靠Al和Cr来形成一层Al2O3和Cr2O3保护性氧化膜,氧化膜生长缓慢,粘附性较好,对基体起到良好的保护作用。 3.Ni-Cr-Al合金的发展历程 3.1 Ni-Cr合金:Ni-Cr合金可作为耐热、抗高温氧化和耐腐蚀的涂层。典型的镍铬合金为镍含量80%、铬含量为20%,但也有镍为60%,铬为16%和其余为铁的。其中80Ni20Cr合金是热喷涂常用的材料,该合金具有较好的耐高温氧化性能,耐酸和碱腐蚀,是制备耐热、耐蚀涂层的典型材料。由于涂层致密、与基体材料的粘结性好,通常作为耐热陶瓷涂层的粘结底层,既能增加涂层的结合强度,同时又能防止高温氧化和腐蚀性气体对金属的侵蚀,但该合金不耐硫化氢、亚硫酸气体、盐类及高温潮湿下还原性气体的腐蚀,在硝酸、盐酸溶液中也容易受到侵蚀。可广泛应用于锅炉水冷管壁(包括重油余热锅炉中的水冷管壁及燃煤锅炉水冷管壁)和换热器管壁,以减缓锅炉管壁的腐蚀与冲蚀。如美国TAFA公司为喷涂锅炉水冷壁保护涂层而设计的牌号为45CT的镍铬合金丝,保护锅炉管道,延长其使用寿命。 3.2 Ni-Al合金:用于电弧喷涂的Ni-Al合金丝,镍、铝的质量比为Ni:Al=95:

铝合金的研究现状及其在航空航天的深远发展

铝合金的研究现状及其在航空航天的深远发展 *** 南昌航空大学飞行器工程学院 摘要:作为地壳含量中最多的金属,凭借自身的优越的化学性质,使得它在现实生活中得到广泛应用,除了生活中常见的铝合金窗户,门等普通一般的工具。随着社会的发展和技术的提高,科学家们对铝合金的研究越来越深入,越来越透彻,其在先进领域方面的应用也越来越广泛,不管是航空还是航天,我们都可以看见它的影子。但这远不是对铝合金研究的结束,而是开始! 关键词:铝合金、现状、航空航天、深远发展。 1、引言:以铝为基的合金总称。主要合金元素有铜、硅、镁、锌、锰,次要合金元素有镍、铁、钛、铬、锂等。铝,原子序数为13,原子量为26.98,原子体积为(立方厘米/摩尔):10.0,面心立方结构,熔点660℃,密度2.702,地壳中含量(ppm):82000 。纯铝的密度小(ρ=2.7g/cm3),大约是铁的1/3,但强度比较高,接近或超过优质钢,可加工成各种型材,具有优良的导电性、导热性,熔点低(660℃),铝是面心立方结构,故具有很高的塑性(δ:32~40%,ψ:70~90%),易于加工,可制成各种型材、板材。抗腐蚀性能好;但是纯铝的强度很低,退火状态σb 值约为8kgf/mm2,故不宜作结构材料。铝合金的主要分类,包括以下九种:一系:1000系列铝合金代表1050、1060 、1100系列。在所有系列中1000系列属于含铝量最多的一个系列。纯度可以达到99.00%以上。由于不含有其他技术元素,所以生产过程

比较单一,价格相对比较便宜,是目前常规工业中最常用的一个系列。目前市场上流通的大部分为1050以及1060系列。二系:2000系列铝合金代表2024、2A16(LY16)、2A02(LY6)。2000系列铝板的特点是硬度较高,其中以铜原属含量最高,大概在3-5%左右。2000系列铝棒属于航空铝材,目前在常规工业中不常应用。三系:3000系列铝合金代表3003 、3A21为主。我国3000系列铝板生产工艺较为优秀。3000系列铝棒是由锰元素为主要成分。含量在1.0-1.5之间,是一款防锈功能较好的系列。四系:4000系列铝棒代表为4A01 4000系列的铝板属于含硅量较高的系列。通常硅含量在4.5-6.0%之间。属建筑用材料,机械零件,锻造用材,焊接材料;低熔点,耐蚀性好,产品描述: 具有耐热、耐磨的特性。五系:5000系列铝合金代表5052、5005、5083、5A05系列。5000系列铝棒属于较常用的合金铝板系列,主要元素为镁,含镁量在3-5%之间。又可以称为铝镁合金。主要特点为密度低,抗拉强度高,延伸率高,疲劳强度好,但不可做热处理强化。在相同面积下铝镁合金的重量低于其他系列.在常规工业中应用也较为广泛。在我国5000系列铝板属于较为成熟的铝板系列之一。六系:6000系列铝合金代表6061 主要含有镁和硅两种元素,故集中了4000系列和5000系列的优点6061是一种冷处理铝锻造产品,适用于对抗腐蚀性、氧化性要求高的应用。可使用性好,容易涂层,加工性好。七系:7000系列铝合金代表7075 主要含有锌元素。也属于航空系列,是铝镁锌铜合金,是可热处理合金,属于超硬铝合金,有良好的耐磨性.也有良好的焊接性,但耐腐蚀性较差。目前基本依靠进口,

铝合金轮毂热处理相关知识

铝合金轮毂热处理相关知识 1、铝合金轮毂热处理过程及重要性 热处理就是以一定的加热速度,升到某一温度下保温一定时间并以一定的速度冷却,得到某种合金组织和性能要求的一种加工方法。其主要目的是:提高力学性能,增强耐腐性能,改善加工性能,获得尺寸的稳定性。 铸造铝合金轮毂选用的材料是A356铝合金(美国牌号),对应的国内合金牌号为ZL101,属铝-硅系铸造合金,通常采用T6热处理工艺,含义如下表: 表1 热处理状态代号、名称及特点 铝合金轮毂的热处理强化的主要方法是固溶淬火加人工时效。在Al-Si-Mg 合金中,固溶处理的实质在于:将合金加热到尽可能高的温度,并在该温度下保持足够长的时间,使强化相Mg2Si充分溶入α-Al固溶体,随后快速冷却,使高温时的固溶体呈过饱和状态保留到室温。温度愈高,愈接近固相线温度,则固溶处理的效果愈好。固溶处理也会改变共晶Si的形态,随着固溶保持时间的延长,Si相有一个缓慢球化和不断粗化的过程,这种过程随固溶温度的提高而增强。一般铝合金轮毂的固溶温度选择在535--545℃之间,时间为6小时。固溶温度对Si 相形态的影响要比保温时间的影响大得多,通过参照相关理论和试验发现,550℃保温100分钟后的Si相形态等同于540℃保温300分钟后的形态,目前中信戴卡公司热处理工序步进式连续炉,除特殊产品有明确要求外,均采用固溶550℃保温140分钟左右的热处理工艺。当然,选择的是较高的固溶温度,对设备稳定性

的要求也很高,炉膛内各部温度要均匀,否则局部温度过高,会导致部分产品过热、过烧。 铝合金轮毂淬火时的水温一般选择在60--80℃之间,而且水的状态对机械性能也有一定影响,这是因为轮毂淬火时水温升高,工件表面局部水气化的可能性增大,一旦气囊形成,冷速就明显降低,这会使机械性能降低,因而在工件淬火的情况下,必须要开启水循环装置(搅拌器、循环泵等),使水箱内的水处于流动状态,水温均匀,工件表面没有形成气囊的机会,保持一定的冷却速度,确保淬火效果。 控制淬火的转移时间对Mg2Si强化相的分布很重要,转移时间长会使强化元素扩散析出而降低合金的力学性能,所以转移时间越短越好,这也是生产实际中为什么要求转移时间控制在20s之内的原因。 淬火后人工时效温度的选择,对轮毂机械性能的影响非常明显,较高的时效温度下,屈服强度σ0.2随时效时间的增加而提高,延伸率δ则会降低,硬度升高。相反较低的时效温度和较短时效的时间,屈服强度σ0.2会偏低,而延伸率δ升高,硬度降低。目前时效温度通常选择130--160℃之间,时间为150分钟左右。 根据热处理工序特点及质量特性,热处理工序被定为T特性工序。铝合金轮毂热处理的重要性在于,产品能否满足安全使用要求。其质量特性不能用肉眼直观的进行判别,各项性能指标需要借助专门的检验仪器和设备,对轮毂进行各类检测而获得,由于受到检测频率和检测部位的限制,对于每一炉产品,甚至对每一个产品,检测都只是个别的、局部的,无论如何都不能达到对热处理质量100%的检测,检验也不能完全反映整批产品或整个产品的热处理质量;而且由于热处理过程特点是连续生产,批量投入,一旦出现热处理质量问题,对整个工序的影响面很大;另外热处理的产品是经过了熔炼、铸造、X光等工序的轮毂半成品,如果出现热处理质量问题,其损失也是不言而喻的;更主要的是轮毂热处理缺陷的漏检,很容易引发严重的质量事故,给企业带来无法估量的损失。 2、影响铝合金轮毂热处理性能的因素 首先是热处理工序对性能的影响(工艺参数是前提,工艺执行是过程);其次是化学成分的影响(合金元素的含量控制,尤其是有害元素Fe的控制);第三是熔炼过程中铝液的净化(除渣、除气)、晶粒细化(常用细化剂AL-TI-B)、变质效果(常用变质剂Sr);第四是铸造过程中的产生的疏松、夹杂、气孔、

铝合金材料的现状与发展趋势

铝合金材料的现状与发展趋势 发表时间:2018-09-11T11:22:54.293Z 来源:《新材料.新装饰》2018年3月上作者:佟有志 [导读] 我国当前国民经济的飞速发展,刺激更多的基础行业加快发展步伐。随着国际形势的严峻挑战,重视工业生产及其材料装备的工作任重道远 (东北轻合金有限责任公司,150060) 摘要:我国当前国民经济的飞速发展,刺激更多的基础行业加快发展步伐。随着国际形势的严峻挑战,重视工业生产及其材料装备的工作任重道远。铝合金作为一种重要的战略合金金属,在航空、航天、船舶、民用建筑、医疗以及军事工业等众多行业中得到广泛应用推广,已经变得不可替代。当前我国对高强铝合金的热处理技术研究距离国际最先进水平尚有进步空间,从业工作者应该积极探讨如何运用热处理技术来提供铝合金的材料性能,实现技术创新,为我国的重工业发展提供良好的物质基础。 关键词:铝合金材料;现状;发展趋势 1 铝合金概述 铝合金材料具有优良的性能,仅次于银、铜和金。它的抗大气腐蚀和加工性能也非常好,除此之外,它还有快速的冷冻成型和切削性能及铸造的优越性能。铝合金材料具有良好的导热性能,可以通过化学的方法将铝合金的热能转化为物理的机械性能和良好的腐蚀性能。按纯铝分类为高纯铝、工业高纯铝和工业纯铝。高纯铝的纯度为99%,主要用于制造电容器、铝箔、包铝以及熔炼铝合金。按变形铝合金的种类划分可以分为铸造铝合金材料、抗腐蚀性防锈铝合金材料及坚固的硬性铝合金材料。 2 铝合金材料在线缆行业的应用分析 2.1铝合金材料代替铜芯成为电线电缆生产企业的新宠 从铝合金材料的生产成本和它的应用范畴的来看,对未来电缆行业发展都有极大的发展潜力,在未来的几年里,铝合金很有可能成为电线电缆生产企业的新宠。从市场铜的价格趋势来看,铜材料的价格十分昂贵,加上各地越来越多的电网兴建给铝合金的发展带来了机会,也能让电线电缆企业找到更合适的电缆材料,同时也有效的解决对铜材料的过渡依懒性。首先,我国是个人口大国,国内资源有限,特别是铜矿资源,再加上这几年铜的价格不断上升却不减的局面,令众多的电线电缆企业发展十分艰难,随着电缆电线的生产本不断增加,电缆企业的利润越来越少,一些企业开始为了盈利不择手段,在铜材方面动脑筋,参杂质量,造成破坏铜等现象在业内比比皆是。 2.2有希望打破电线电缆生产企业唯“铜”是从的问题 随着电线电缆行业和铝合金材料的不断优化和拓展运用,铝合金材料将有希望打破电线电缆生产企业唯“铜”是从的难问题。近几年来,由于人类不合理的活动导致自然环境不断恶化和自然资源匮乏,若不能及时的研发和创新出新型的材料代替自然资源材料,那国家将面临自然资源的匮乏和环境不断恶化的严重问题。我国电线电缆行业的材料在过去的十几年至今仍依赖于铜材料,而我国对于铜资源的占有量是非常少的。随着铝合金材料的不断优化和发展及自身的优越性能,一些线缆企业越来越重视铝合金材料在线缆输电的应用。这有效的解决了电线电缆企业唯铜是从的难问题。铝合金材料通过复杂的化学和物理变化等一系列的处理之后而形成新的铝合金材料,新的铝合金材料比原来的铝合金材料在性能上有所改变了很多,比如铝合金的导热性能和抗腐蚀性能及柔韧性能等都增强了。新的铝合金材料由于性能增强而有效的避免了纯铝导体电缆连接不稳定和机械性能低的问题。与传统的钢材料对比,铝合金的导电性和安全性及各种性能都不弱于铜材料的电缆。铝合金材料和铜材料在性能上相比较有突出的优势。而合金电缆在成本上相对于铜芯电缆来说优势明显。另外,铝合金和铜材料的导电性一样的时候,铝合金材料电缆的重量比铜芯材料电缆的重量轻了许多,所以在电线电缆的安装工程中有一定的优越性,成本也有所降低。 2.3铝合金备受国外电线电缆生产厂家和市场的亲睐 在去年亚洲高端电线电缆峰会上,铝合金材料在未来线缆行业的运用引起大家的备受关注和讨论,由此可见,铝合金电缆越来越来受到关注,它的用途也将会重新被发掘和开发广泛应用。在国外,铝合金在电线电缆行业的应用是非常广泛的,并且有着一定的历史。就拿美国和加拿大这两个发达国家来说,铝合金材料在线缆行业的应用就有长达40年的历史。 综上所述,从铝合金材料自身的优越和国家的政策,特别是这几年环境和资源问题的出现,全世界都在关注和寻找能够与自然和谐发展的资源。环保、节能和再利用的资源已备受社会得重视和研究都将给铝合金的发展带来契机。 3 铝合金材料在其他行业的发展前景 3.1在汽车行业的发展 随着汽车行业的迅速发展,对材料的要求也越来越高。而铝合金材料的不断优化和自身优越性能的优势,在汽车行业的应用也越来越广泛。传统的汽车制造材料多为钢材,其结构和重量都很不理想,而铝合金质量轻和高强度等优越性能为汽车提供了优良的材料,为铝合金应用领域的扩展提供了可能。 铝合金新型材料的硬度高,柔韧性好及耐腐蚀性的优良性能。钢铁在公共设施场所中的护栏抗氧化和空气能力非常差,也经不起太阳和风雨的侵蚀,容易生锈腐蚀,而铝合金材质的护栏拥有优良的抗腐蚀性能就可以很好的解决护栏生锈的问题,同时有效的解决了经常维修和成本贵的问题。铝合金材料金属制成的产品在外观上还具有形式美和强烈的立体感,视觉冲击力也很强。铝合金材料具有良好的腐蚀性能,在交通护栏和汽车等行业逐渐广泛应用。 3.2在热交换器应用的发展 热交换器的使用在我国已有一定的历史积淀,它是一种结合铝合金材料生产出来的高性能产品。在日常生活也非常常见,一般的汽车换热器、家电散热和集热产品内部零件便是用铝合金材料制成的。热交换器用铝合金材料是通过的轧制复合方法制备而成,铝合金材料的加工工艺在我国国内当时来说是没有出现的,所以这是首创,并且东北轻合金有限责任公司“汽车换热器用铝合金复合箔的研制”项目在2001年荣获了国家科学技术进步奖二等奖。 3.3稀土铝合金的发展 稀土铝合金材料是在现代发展起来的新型金属制品。由于稀土元素(如锆、钪、铒等)加入铝合金中起到了良好的改性作用,显著提

相关主题
文本预览
相关文档 最新文档