当前位置:文档之家› java实现一元线性回归算法

java实现一元线性回归算法

java实现一元线性回归算法
java实现一元线性回归算法

java实现一元线性回归算法

网上看一个达人用java写的一元线性回归的实现,我觉得挺有用的,一些企业做数据挖掘不是用到了,预测运营收入的功能吗?采用一元线性回归算法,可以计算出类似的功能。直接上代码吧:1、定义一个DataPoint类,对X和Y坐标点进行封装:

package com.zyujie.dm;

public class DataPoint {

/** the x value */

public float x;

/** the y value */

public float y;

/**

* Constructor.

*

* @param x

* the x value

* @param y

* the y value

*/

public DataPoint(float x, float y) {

this.x = x;

this.y = y;

}

}

2、下面是算法实现回归线:

/**

* File : DataPoint.java

* Author : zhouyujie

* Date : 2012-01-11 16:00:00

* Description : Java实现一元线性回归的算法,回归线实现类,(可实现统

计指标的预测)

*/

package com.zyujie.dm;

import java.math.BigDecimal;

import java.util.ArrayList;

public class RegressionLine // implements Evaluatable {

/** sum of x */

private double sumX;

/** sum of y */

private double sumY;

/** sum of x*x */

private double sumXX;

/** sum of x*y */

private double sumXY;

/** sum of y*y */

private double sumYY;

/** sum of yi-y */

private double sumDeltaY;

/** sum of sumDeltaY^2 */

private double sumDeltaY2;

/** 误差 */

private double sse;

private double sst;

private double E;

private String[] xy;

private ArrayList listX;

private ArrayList listY;

private int XMin, XMax, YMin, YMax;

/** line coefficient a0 */

private float a0;

/** line coefficient a1 */

private float a1;

/** number of data points */

private int pn;

/** true if coefficients valid */

private boolean coefsValid;

/**

* Constructor.

*/

public RegressionLine() {

XMax = 0;

YMax = 0;

pn = 0;

xy = new String[2];

listX = new ArrayList();

listY = new ArrayList();

}

/**

* Constructor.

*

* @param data

* the array of data points

*/

public RegressionLine(DataPoint data[]) {

pn = 0;

xy = new String[2];

listX = new ArrayList();

listY = new ArrayList();

for (int i = 0; i < data.length; ++i) {

addDataPoint(data[i]);

}

}

/**

* Return the current number of data points.

*

* @return the count

*/

public int getDataPointCount() {

return pn;

}

/**

* Return the coefficient a0.

*

* @return the value of a0

*/

public float getA0() {

validateCoefficients();

return a0;

}

/**

* Return the coefficient a1.

*

* @return the value of a1

*/

public float getA1() {

validateCoefficients();

return a1;

}

/**

* Return the sum of the x values. *

* @return the sum

*/

public double getSumX() {

return sumX;

}

/**

* Return the sum of the y values. *

* @return the sum

*/

public double getSumY() {

return sumY;

}

/**

* Return the sum of the x*x values. *

* @return the sum

*/

public double getSumXX() {

return sumXX;

}

/**

* Return the sum of the x*y values. *

* @return the sum

*/

public double getSumXY() {

return sumXY;

}

public double getSumYY() {

return sumYY;

}

public int getXMin() {

return XMin;

}

public int getXMax() {

return XMax;

}

public int getYMin() {

return YMin;

}

public int getYMax() {

return YMax;

}

/**

* Add a new data point: Update the sums.

*

* @param dataPoint

* the new data point

*/

public void addDataPoint(DataPoint dataPoint) { sumX += dataPoint.x;

sumY += dataPoint.y;

sumXX += dataPoint.x * dataPoint.x;

sumXY += dataPoint.x * dataPoint.y;

sumYY += dataPoint.y * dataPoint.y;

if (dataPoint.x > XMax) {

XMax = (int) dataPoint.x;

}

if (dataPoint.y > YMax) {

YMax = (int) dataPoint.y;

}

// 把每个点的具体坐标存入ArrayList中,备用

xy[0] = (int) dataPoint.x + "";

xy[1] = (int) dataPoint.y + "";

if (dataPoint.x != 0 && dataPoint.y != 0) {

System.out.print(xy[0] + ",");

System.out.println(xy[1]);

try {

// System.out.println("n:"+n);

listX.add(pn, xy[0]);

listY.add(pn, xy[1]);

} catch (Exception e) {

e.printStackTrace();

}

/*

* System.out.println("N:" + n);

System.out.println("ArrayList

* listX:"+ listX.get(n));

System.out.println("ArrayList listY:"+

* listY.get(n));

*/

}

++pn;

coefsValid = false;

}

/**

* Return the value of the regression line function at x. (Implementation of

* Evaluatable.)

*

* @param x

* the value of x

* @return the value of the function at x

*/

public float at(int x) {

if (pn < 2)

return Float.NaN;

validateCoefficients();

return a0 + a1 * x;

}

/**

* Reset.

*/

public void reset() {

pn = 0;

sumX = sumY = sumXX = sumXY = 0;

coefsValid = false;

}

/**

* Validate the coefficients. 计算方程系数 y=ax+b 中的a

*/

private void validateCoefficients() {

if (coefsValid)

return;

if (pn >= 2) {

float xBar = (float) sumX / pn;

float yBar = (float) sumY / pn;

a1 = (float) ((pn * sumXY - sumX * sumY) / (pn * sumXX - sumX

* sumX));

a0 = (float) (yBar - a1 * xBar);

} else {

a0 = a1 = Float.NaN;

}

coefsValid = true;

}

/**

* 返回误差

*/

public double getR() {

// 遍历这个list并计算分母

for (int i = 0; i < pn - 1; i++) {

float Yi = (float)

Integer.parseInt(listY.get(i).toString());

float Y =

at(Integer.parseInt(listX.get(i).toString()));

float deltaY = Yi - Y;

float deltaY2 = deltaY * deltaY;

/*

* System.out.println("Yi:" + Yi);

System.out.println("Y:" + Y);

* System.out.println("deltaY:" + deltaY);

* System.out.println("deltaY2:" + deltaY2);

*/

sumDeltaY2 += deltaY2;

// System.out.println("sumDeltaY2:" + sumDeltaY2);

}

sst = sumYY - (sumY * sumY) / pn;

// System.out.println("sst:" + sst);

E = 1 - sumDeltaY2 / sst;

return round(E, 4);

}

// 用于实现精确的四舍五入

public double round(double v, int scale) {

if (scale < 0) {

throw new IllegalArgumentException(

"The scale must be a positive

integer or zero");

}

BigDecimal b = new BigDecimal(Double.toString(v));

BigDecimal one = new BigDecimal("1");

return b.divide(one, scale,

BigDecimal.ROUND_HALF_UP).doubleValue();

}

public float round(float v, int scale) {

if (scale < 0) {

throw new IllegalArgumentException(

"The scale must be a positive integer or zero");

}

BigDecimal b = new BigDecimal(Double.toString(v));

BigDecimal one = new BigDecimal("1");

return b.divide(one, scale,

BigDecimal.ROUND_HALF_UP).floatValue();

}

}

3、线性回归测试类:

/**

* File : DataPoint.java

* Author : zhouyujie

* Date : 2012-01-11 16:00:00

* Description : Java实现一元线性回归的算法,线性回归测试类,(可实现统计指标的预测)

*/

package com.zyujie.dm;

/**

*

* Linear Regression

* Demonstrate linear regression by constructing the regression line for a set

* of data points.

*

*

* require DataPoint.java,RegressionLine.java

*

*

* 为了计算对于给定数据点的最小方差回线,需要计算

SumX,SumY,SumXX,SumXY; (注:SumXX = Sum (X^2))

*

* 回归直线方程如下: f(x)=a1x+a0

*

* 斜率和截距的计算公式如下:

* n: 数据点个数

*

* a1=(n(SumXY)-SumX*SumY)/(n*SumXX-(SumX)^2)

* a0=(SumY - SumY * a1)/n

* (也可表达为a0=averageY-a1*averageX)

*

*

* 画线的原理:两点成一直线,只要能确定两个点即可

* 第一点:(0,a0) 再随意取一个x1值代入方程,取得y1,连结(0,a0)和(x1,y1)两点即可。

* 为了让线穿过整个图,x1可以取横坐标的最大值Xmax,即两点为

(0,a0),(Xmax,Y)。如果y=a1*Xmax+a0,y大于

* 纵坐标最大值Ymax,则不用这个点。改用y取最大值Ymax,算得此时x的值,使用(X,Ymax),即两点为(0,a0),(X,Ymax)

*

*

* 拟合度计算:(即Excel中的R^2)

*

* *R2 = 1 - E

*

* 误差E的计算:E = SSE/SST

*

* SSE=sum((Yi-Y)^2) SST=sumYY - (sumY*sumY)/n;

*

*/

public class LinearRegression {

private static final int MAX_POINTS = 10;

private double E;

/**

* Main program.

*

* @param args

* the array of runtime arguments

*/

public static void main(String args[]) {

RegressionLine line = new RegressionLine();

line.addDataPoint(new DataPoint(1, 136));

line.addDataPoint(new DataPoint(2, 143));

line.addDataPoint(new DataPoint(3, 132));

line.addDataPoint(new DataPoint(4, 142));

line.addDataPoint(new DataPoint(5, 147));

printSums(line);

printLine(line);

}

/**

* Print the computed sums.

*

* @param line

* the regression line

*/

private static void printSums(RegressionLine line) {

System.out.println("\n数据点个数 n = " +

line.getDataPointCount());

System.out.println("\nSum x = " + line.getSumX());

System.out.println("Sum y = " + line.getSumY());

System.out.println("Sum xx = " + line.getSumXX());

System.out.println("Sum xy = " + line.getSumXY());

System.out.println("Sum yy = " + line.getSumYY());

}

/**

* Print the regression line function.

*

* @param line

* the regression line

*/

private static void printLine(RegressionLine line) {

System.out.println("\n回归线公式: y = " + line.getA1() + "x + "

+ line.getA0());

System.out.println("误差: R^2 = " + line.getR());

}

//y = 2.1x + 133.7 2.1 * 6 + 133.7 = 12.6 + 133.7 = 146.3

//y = 2.1x + 133.7 2.1 * 7 + 133.7 = 14.7 + 133.7 = 148.4

}

我们运行测试类,得到运行结果:

1,136

2,143

3,132

4,142

5,147

数据点个数n = 5

Sum x = 15.0

Sum y = 700.0

Sum xx = 55.0

Sum xy = 2121.0

Sum yy = 98142.0

回归线公式: y = 2.1x + 133.7

误差:R^2 = 0.3658

假如某公司:

1月收入,136万元

2月收入,143万元

3月收入,132万元

4月收入,142万元

5月收入,147万元

我们可以根据回归线公式:y = 2.1x + 133.7,预测出6月份收入:y = 2.1 * 6 + 133.7 = 12.6 + 133.7 = 146.3

多元线性回归的计算方法

多元线性回归的计算方法 摘要 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭 消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。 多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由 于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。 但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下: Zy=β1Zx1+β2Zx2+…+βkZxk 注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。 多元线性回归模型的建立 多元线性回归模型的一般形式为 Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+ =1,2,…,n 其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数 (regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为 E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki βj 也被称为偏回归系数(partial regression coefficient) 多元线性回归的计算模型

excel一元及多元线性回归实例

野外实习资料的数理统计分析 一元线性回归分析 一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。如果两个变量的关系大致是线性的,那就是一元线性回归问题。 对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在 X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。 在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。对于这种线性关系,可以用数学公式表示: Y = a + bX 这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X 的回归方程。其中a为常数,b为Y对于X的回归系数。 对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。计算a与b值的公式为:

式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。n为样本数。 当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。 得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。r值的绝对值越大,两个变量之间的相关程度就越高。当r为正值时,叫做正相关,r为负值时叫做负相关。r 的计算公式如下: 式中各符号的意义同上。 在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。具体的检验方法在后面介绍。

线性回归推导及实例

数据点基本落在一条直线附近。这告诉我们,变量X与Y的关系大致可看作是线性关系,即它们之间的相互关系可以用线性关系来描述。但是由于并非所有的数据点完全落在一条直线上,因此X与Y的关系并没有确切到可以唯一地由一个X值确定一个Y值的程度。其它因素,诸如其它微量元素的含量以及测试误差等都会影响Y的测试结果。如果我们要研究X与Y的关系,可以作线性拟合 (2-1-1) 我们称(2-1-1)式为回归方程,a与b是待定常数,称为回归系数。从理论上讲,(2-1-1)式有无穷多组解,回归分析的任务是求出其最佳的线性拟合。 二、最小二乘法原理 如果把用回归方程计算得到的i值(i=1,2,…n)称为回归值,那么实际测量值y i与回归值i之间存在着偏差,我们把这种偏差称为残差,记为e i(i=1,2,3,…,n)。这样,我们就可以用残差平方和来度量测量值与回归直线的接近或偏差程度。残差平方和定义为: (2-1-2) 所谓最小二乘法,就是选择a和b使Q(a,b)最小,即用最小二乘法得到的回归直线是在所 有直线中与测量值残差平方和Q最小的一条。由(2-1-2)式可知Q是关于a,b的二次函数,所以它的最小值总是存在的。下面讨论的a和b的求法。 三、正规方程组 根据微分中求极值的方法可知,Q(a,b)取得最小值应满足 (2-1-3) 由(2-1-2)式,并考虑上述条件,则 (2-1-4) (2-1-4)式称为正规方程组。解这一方程组可得 (2-1-5) 其中 (2-1-6)

(2-1-7) 式中,L xy称为xy的协方差之和,L xx称为x的平方差之和。 如果改写(2-1-1)式,可得 (2-1-8) 或 (2-1-9) 由此可见,回归直线是通过点的,即通过由所有实验测量值的平均值组成的点。从力学观点看, 即是N个散点的重心位置。 现在我们来建立关于例1的回归关系式。将表2-1-1的结果代入(2-1-5)式至(2-1-7)式,得出 a=1231.65 b=-2236.63 因此,在例1中灰铸铁初生奥氏体析出温度(y)与氮含量(x)的回归关系式为 y=1231.65-2236.63x 四、一元线性回归的统计学原理 如果X和Y都是相关的随机变量,在确定x的条件下,对应的y值并不确定,而是形成一个分布。当X 取确定的值时,Y的数学期望值也就确定了,因此Y的数学期望是x的函数,即 E(Y|X=x)=f(x) (2-1-10) 这里方程f(x)称为Y对X的回归方程。如果回归方程是线性的,则 E(Y|X=x)=α+βx (2-1-11) 或 Y=α+βx+ε(2-1-12) 其中 ε―随机误差 从样本中我们只能得到关于特征数的估计,并不能精确地求出特征数。因此只能用f(x)的估计 式来取代(2-1-11)式,用参数a和b分别作为α和β的估计量。那么,这两个估计量是否能够满足要求呢? 1. 无偏性 把(x,y)的n组观测值作为一个样本,由样本只能得到总体参数α和β的估计值。可以证明,当满足下列条件: (1)(x i,y i)是n个相互独立的观测值 (2)εi是服从分布的随机变量 则由最小二乘法得到的a与b分别是总体参数α和β的无偏估计,即 E(a)= α E(b)=β 由此可推知 E()=E(y)

总结:线性回归分析的基本步骤

总结:线性回归分析的基本 步骤 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线性回归分析的基本步骤 步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下: 作出其散点图如下:

②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。

如将()()222777100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。

一元线性回归模型案例分析

一元线性回归模型案例分析 一、研究的目的要求 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。 影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 从2002年《中国统计年鉴》中得到表2.5的数据: 表2.52002年中国各地区城市居民人均年消费支出和可支配收入

一元线性回归分析法

一元线性回归分析法 一元线性回归分析法是根据过去若干时期的产量和成本资料,利用最小二乘法“偏差平方和最小”的原理确定回归直线方程,从而推算出a(截距)和b(斜率),再通过y =a+bx 这个数学模型来预测计划产量下的产品总成本及单位成本的方法。 方程y =a+bx 中,参数a 与b 的计算如下: y b x a y bx n -==-∑∑ 222 n xy x y xy x y b n x (x)x x x --==--∑∑∑∑∑∑∑∑∑ 上式中,x 与y 分别是i x 与i y 的算术平均值,即 x =n x ∑ y =n y ∑ 为了保证预测模型的可靠性,必须对所建立的模型进行统计检验,以检查自变量与因变量之间线性关系的强弱程度。检验是通过计算方程的相关系数r 进行的。计算公式为: 22xy-x y r= (x x x)(y y y) --∑∑∑∑∑∑ 当r 的绝对值越接近于1时,表明自变量与因变量之间的线性关系越强,所建立的预测模型越可靠;当r =l 时,说明自变量与因变量成正相关,二者之间存在正比例关系;当r =—1时,说明白变量与因变量成负相关,二者之间存在反比例关系。反之,如果r 的绝对值越接近于0,情况刚好相反。 [例]以表1中的数据为例来具体说明一元线性回归分析法的运用。 表1: 根据表1计算出有关数据,如表2所示: 表2:

将表2中的有关数据代入公式计算可得: 1256750x == (件) 2256 1350y ==(元) 1750 9500613507501705006b 2=-??-?=(元/件) 100675011350a =?-=(元/件) 所建立的预测模型为: y =100+X 相关系数为: 9.011638 10500])1350(3059006[])750(955006[1350 750-1705006r 22==-??-???= 计算表明,相关系数r 接近于l ,说明产量与成本有较显著的线性关系,所建立的回归预测方程较为可靠。如果计划期预计产量为200件,则预计产品总成本为: y =100+1×200=300(元)

线性拟合C语言算法

最小二乘法拟合一条直线(C语言代码) #include #define N 10 //N为要拟合的数据的个数 float X[10] = {1.9,0.8,1.1,0.1,-0.1,4.4,4.6,1.6,5.5,3.4}; float Y[10] = {0.7,-1.0,-0.2,-1.2,-0.1,3.4,0.0,0.8,3.7,2.0}; float K=0; //拟合直线的斜率 float R=0; //拟合直线的截距 float x_sum_average=0; //数组X[N] 个元素求和并求平均值 float y_sum_average=0; //数组Y[N] 个元素求和并求平均值 float x_square_sum=0; //数组X[N] 个个元素的平均值 float x_multiply_y=0; //数组X[N]和Y[N]对应元素的乘机 float Squre_sum(float c[N]) ; float Sum_Average(float d[N]); float X_Y_By(float m[N],float n[N]); float Squre_sum(float c[N]); void Line_Fit(void); void Line_Fit(void) { x_sum_average= Sum_Average(X); y_sum_average= Sum_Average(Y); x_square_sum = Squre_sum(X); x_multiply_y = X_Y_By(X,Y); K = ( x_multiply_y - N * x_sum_average * y_sum_average)/( x_square_sum - N * x_sum_average*x_sum_average ); R = y_sum_average - K * x_sum_average; printf("K = %f\n",K); printf("R = %f\n",R); } float Sum_Average(float d[N]) { unsigned int i=0; float z=0;

案例分析 一元线性回归模型

案例分析报告 (2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月 案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,?最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定?

我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。 为了与“城镇居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 以下是2008年各地区城镇居民人均年消费支出和可支配收入表

线性回归算法

线性回归 1. 代价函数最小化的方法: ● (批量)梯度下降法 ● 正归方程 2. 梯度下降法 先假设一个定点,然后按照一定的步长顺着这个点的梯度进行更新迭代下去,最后可以找到一个局部最优点,使代价函数在这个局部取得最小值 量(vector) 测 价

度 注: 1.是对θi的求偏导 2.批量梯度下降的每一步都用到了所有的训练样本 3.在多维问题中,要保证这些特征值都具有相近的维度,使得梯度下降 算法更快的收敛. 特征缩放公式: 1.除以最大值 2. 3.学习率的选择: 可以绘制迭代次数和代价函数的图表来观测算法在何时趋于收敛通常可以考虑尝试些学习率:α=0.01,0.03,0.1,0.3,1,3,10 规可以一次性求出最优解 ①定义训练的参数(学习率训练次数打印步长) ②输入训练集(定义占位符X = tf.placeholder("float")Y = tf.placeholder("float")) ③随机生成w与b(初始化的方式很多种,方式不同可能会影响训练效果) ④创建线性模型(pred = tf.add(tf.multiply(X, W), b))

⑤用均方差计算training cost(cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)) ⑥使用梯度下降进行优化(optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)) ⑦变量初始化与创建图 init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) ⑧开始训练 Fit所有的训练数据 设定每50次的打印内容 ⑨用测试集进行测试 计算testing cost 计算training cost 与testing cost之间的差值并输出 ⑩画图 程序: import tensorflow as tf import numpy import matplotlib.pyplot as plt rng = numpy.random #产生随机数 # Parameters(参数学习率训练次数打印步长) learning_rate = 0.01 training_epochs = 1000 display_step = 50 # Training Data train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1]) train_Y= numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827, 3.465,1.65,2.904,2.42,2.94,1.3]) n_samples = train_X.shape[0] # tf Graph Input X = tf.placeholder("float") Y = tf.placeholder("float")

总结:线性回归分析的基本步骤

线性回归分析的基本步骤 步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下: 作出其散点图如下:

②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例 ,求出E (Y |X 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。 如将()()22277 7100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为:

③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。 ④样本回归方程(线):通过样本数据估计出?β ,得到样本观测值的拟合值与解释变量之间的关系方程??Y X β=称为样本回归方程。如下图所示: ⑤四者之间的关系: ⅰ:总体回归模型建立在总体数据之上,它描述的是因变量Y 和自变量X 之间的真实的非确定型依赖关系;样本回归模型建立在抽样数据基础之

线性回归分析的基本步骤

步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下: 作出其散点图如下: ②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量

总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例 ,求出E (Y |X 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。 如将()()2227 77100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。

如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。 ④样本回归方程(线):通过样本数据估计出?β ,得到样本观测值的拟合值与解释变量之间的关系方程??Y X β=称为样本回归方程。如下图所示: ⑤四者之间的关系: ⅰ:总体回归模型建立在总体数据之上,它描述的是因变量Y 和自变量X 之间的真实的非确定型依赖关系;样本回归模型建立在抽样数据基础之上,它描述的是因变量Y 和自变量X 之间的近似于真实的非确定型依赖

回归研究分析方法总结全面

回归分析方法总结全面

————————————————————————————————作者:————————————————————————————————日期:

一、什么是回归分析 回归分析(Regression Analysis)是研究变量之间作用关系的一种统计分析方法,其基本组成是一个(或一组)自变量与一个(或一组)因变量。回归分析研究的目的是通过收集到的样本数据用一定的统计方法探讨自变量对因变量的影响关系,即原因对结果的影响程度。 回归分析是指对具有高度相关关系的现象,根据其相关的形态,建立一个适当的数学模型(函数式),来近似地反映变量之间关系的统计分析方法。利用这种方法建立的数学模型称为回归方程,它实际上是相关现象之间不确定、不规则的数量关系的一般化。 二、回归分析的种类 1.按涉及自变量的多少,可分为一元回归分析和多元回归分析一元回归分析是对一个因变量和一个自变量建立回归方程。多元回归分析是对一个因变量和两个或两个以上的自变量建立回归方程。 2.按回归方程的表现形式不同,可分为线性回归分析和非线性回归分析 若变量之间是线性相关关系,可通过建立直线方程来反映,这种分析叫线性回归分析。 若变量之间是非线性相关关系,可通过建立非线性回归方程来反映,这种分析叫非线性回归分析。 三、回归分析的主要内容 1.建立相关关系的数学表达式。依据现象之间的相关形态,建立适当的数学模型,通过数学模型来反映现象之间的相关关系,从数量上近似地反映变量之间变动的一般规律。 2.依据回归方程进行回归预测。由于回归方程反映了变量之间的一般性关系,因此当自变量发生变化时,可依据回归方程估计出因变量可能发生相应变化的数值。因变量的回归估计值,虽然不是一个必然的对应值(他可能和系统真值存在比较大的差距),但至少可以从一般性角度或平均意义角度反映因变量可能发生的数量变化。 3.计算估计标准误差。通过估计标准误差这一指标,可以分析回归估计值与实际值之间的差异程度以及估计值的准确性和代表性,还可利用估计标准误差对因变量估计值进行在一定把握程度条件下的区间估计。 四、一元线性回归分析 1.一元线性回归分析的特点 1)两个变量不是对等关系,必须明确自变量和因变量。 2)如果x和y两个变量无明显因果关系,则存在着两个回归方程:一个是以x为自变量,y 为因变量建立的回归方程;另一个是以y为自变量,x为因变量建立的回归方程。若绘出图

(完整word版)多元线性回归模型案例分析

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。其中已有变量:“c ”—截距项 “resid ”—剩余项。在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。 年份 人口自然增长率 (%。) 国民总收入(亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 2006 5.38 213132 1.5 16024

多元线性回归模型的各种检验方法

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββ 22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0 H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。如果拒绝0H ,说明解释变量j X 对 被解释变量Y 具有显著的线性影响,估计值j β?才敢使 用;反之,说明解释变量j X 对被解释变量Y 不具有显 著的线性影响,估计值j β?对我们就没有意义。具体检验 方法如下: (1) 给定虚拟假设 0H :j j a =β;

(2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-=-= 的数值; 11?)?(++-==j j jj jj j C C Se 1T X)(X ,其中σβ (3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝 0H ;反之,无法拒绝0H 。 t 检验方法的关键是统计量 )?(?j j j Se t βββ-=必须服从已 知的t 分布函数。什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21 =。这保证了误差u 自身的随机性,即无自相关性,

一元线性回归分析论文

一元线性回归分析的应用 ——以微生物生长与温度关系为例 摘要:一元线性回归预测法是分析一个因变量与一个自变量之间的线性关系的预测方法。应用最小二乘法确定直线,进而运用直线进行预测。本文运用一元线性回归分析的方法,构建模型并求出模型参数,对分析结果的显著性进行了假设检验,从而了微生物生长与温度间的关系。 关键词:一元线性回归分析;最小二乘法;假设检验;微生物;温度 回归分析是研究变量之间相关关系的统计学方法,它描述的是变量间不完全确定的关系。回归分析通过建立模型来研究变量间的这种关系,既可以用于分析和解释变量间的关系,又可用于预测和控制,进而广泛应用于自然科学、工程技术、经济管理等领域。本文尝试用一元线性回归分析方法为微生物生长与温度之间的关系建模,并对之后几年的情况进行分析和预测。 1 一元线性回归分析法原理 1.1 问题及其数学模型 一元线性回归分析主要应用于两个变量之间线性关系的研究,回归模型模型为εββ++=x Y 10,其中10,ββ为待定系数。实际问题中,通过观测得到n 组数据(X i ,Y i )(i=1,2,…,n ),它们满足模型i i i x y εββ++=10(i=1,2,…,n )并且通常假定E(εi )=0,V ar (εi )=σ2各εi 相互独立且服从正态分布。回归分析就是根据样本观 察值寻求10,ββ的估计10?,?ββ,对于给定x 值, 取x Y 10???ββ+=,作为x Y E 10)(ββ+=的估计,利用最小二乘法得到10,ββ的估计10? ,?ββ,其中??? ? ??????? ??-???? ??-=-=∑ ∑ ==n i i n i i i x n x xy n y x x y 1221110???βββ。 1.2 相关系数 上述回归方程存在一些计算相关系数。设L XX =∑ ∑==-=-=n i i n i i def xx x n x x x L 1 2 2 1 2 )(,称为关于X 的离

(完整版)多元线性回归模型公式

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21), n a ,...,2,1=。那么,多元线性回归模型的结构形式为: a ka k a a a x x x y εββββ+++++=...22110(3.2.11) 式中: k βββ,...,1,0为待定参数; a ε为随机变量。 如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为 ?=k k x b x b x b b ++++...22110(3.2.12) 式中: 0b 为常数; k b b b ,...,,21称为偏回归系数。 偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。 根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使 ()[]min (2) 1 2211012 →++++-=??? ??-=∑∑==∧ n a ka k a a a n a a a x b x b x b b y y y Q (3.2.13) 有求极值的必要条件得 ???????==??? ??--=??=??? ??--=??∑∑=∧=∧n a ja a a j n a a a k j x y y b Q y y b Q 110) ,...,2,1(0202(3.2.14) 将方程组(3.2.14)式展开整理后得:

SPSS多元线性回归分析教程

线性回归分析的SPSS操作 本节容主要介绍如何确定并建立线性回归方程。包括只有一个自变量的一元线性回归和和含 有多个自变量的多元线性回归。为了确保所建立的回归方程符合线性标准,在进行回归分析之前, 我们往往需要对因变量与自变量进行线性检验。也就是类似于相关分析一章中讲过的借助于散点 图对变量间的关系进行粗略的线性检验,这里不再重复。另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。 一、一元线性回归分析 1数据 以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。数据编辑 窗口显示数据输入格式如下图7-8 (文件7-6-1.sav): 图7-8 :回归分析数据输入 2?用SPSS进行回归分析,实例操作如下: 2.1.回归方程的建立与检验 (1) 操作 ①单击主菜单An alyze / Regression / Li near ,?进入设置对话框如图7-9所示。从左边变量表 列中把因变量y选入到因变量(Depe ndent)框中,把自变量x选入到自变量 (I ndepe ndent)框中。在方法即Method —项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方 程时把所选中的全部自变量都保留在方程中。所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。具体如下图所示:

② 请单击Statistics 按钮,可以选择需要输出的一些统计量。 女口 Regression Coefficients (回 归 系数)中的Estimates ,可以输出回归系数及相关统计量,包括回归系数 B 、标准误、标准化回归 系数BETA 、T 值及显著性水平等。 Model fit 项可输出相关系数 R ,测定系数R 2,调整系数、 成后点击Continue 返回主对话框。 回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反 回归分析的假定,为此需进行多项残差分析。由于此部分容较复杂而且理论性较强,所以不在此 详细介绍,读者如有兴趣,可参阅有关资料。 ③ 用户在进行回归分析时,还可以选 择是否输出方程常数。单击 Options ??按钮,打开它的 对话框,可以看到中间有一项 Include constant in equation 可选项。选中该项可输出对常数的检验。 在Options 对话框中,还可以定义处理缺失值的方法和设置多元逐步回归中变量进入和排除方程 的准则,这里我们采用系统的默认设置,如图 7-11所示。设置完成后点击 Continue 返回主对话 框。 估计标准误及方差分析表。 上述两项为默认选项, 请注意保持选中。 设置如图7-10所示。设置完 图7-9线性回归分析主对话框 图7-10: 线性回归分析的 Statistics 选项 图7-11 :线性回归分析的 Options 选项

回归分析法(一元线性回归)

回归分析法 摘要:略。 关键词:回归分析、回归模型、相关性检验、置信区间。 回归分析的起源:回归分析起源.doc 回归分析定义:利用数据统计原理,对大量统计数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程(函数表达式),并加以外推,用于预测今后的因变量的变化的分析方法。 分类: 1.根据因变量和自变量的个数来分类: 一元回归分析;多元回归分析; 2. 根据因变量和自变量的函数表达式来分类: 线性回归分析;非线性回归分析; 几点说明: 1.通常情况下,线性回归分析是回归分析法中最基本的方法,当遇到非线性回 归分析时,可以借助数学手段将其化为线性回归;因此,主要研究线性回归问题,一点线性回归问题得到解决,非线性回归也就迎刃而解了,例如,取对数使得乘法变成加法等;当然,有些非线性回归也可以直接进行,如多项式回归等; 2.在社会经济现象中,很难确定因变量和自变量之间的关系,它们大多是随机 性的,只有通过大量统计观察才能找出其中的规律。随机分析是利用统计学原理来描述随机变量相关关系的一种方法; 3.由回归分析法的定义知道,回归分析可以简单的理解为信息分析与预测。信 息即统计数据,分析即对信息进行数学处理,预测就是加以外推,也就是适当扩大已有自变量取值范围,并承认该回归方程在该扩大的定义域内成立,然后就可以在该定义域上取值进行“未来预测”。当然,还可以对回归方程进行有效控制; 4.相关关系可以分为确定关系和不确定关系。但是不论是确定关系或者不确定 关系,只要有相关关系,都可以选择一适当的数学关系式,用以说明一个或几个变量变动时,另一变量或几个变量平均变动的情况。

案例分析一元线性回归模型

案例分析一元线性回归 模型 Revised as of 23 November 2020

案例分析报告 (2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 02 学生姓名:陈维维 2014 年 11月 案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为元,最低的青海省仅为人均元,最高的上海市达人均元,上海是黑龙江的倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定

我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。 为了与“城镇居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 以下是2008年各地区城镇居民人均年消费支出和可支配收入表

相关主题
文本预览
相关文档 最新文档