当前位置:文档之家› PA+kPB最值探究(胡不归+阿氏圆)及以阿氏圆为背景的线段和最值问题

PA+kPB最值探究(胡不归+阿氏圆)及以阿氏圆为背景的线段和最值问题

PA+kPB最值探究(胡不归+阿氏圆)及以阿氏圆为背景的线段和最值问题
PA+kPB最值探究(胡不归+阿氏圆)及以阿氏圆为背景的线段和最值问题

“PA+k·PB”型的最值问题

【问题背景】

“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理。

而当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。

此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。即点P在直线上运动和点P在圆上运动。

其中点P在直线上运动的类型称之为“胡不归”问题;

点P在圆周上运动的类型称之为“阿氏圆”问题。

本文将分别从这两类入手与大家共同探究线段最值问题的解决方案。

【知识储备】

线段最值问题常用原理:

①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;

②两点间线段最短;

③连结直线外一点和直线上各点的所有线段中,垂线段最短;

【模型初探】

(一)点P在直线上运动“胡不归”问题

如图1-1-1所示,已知sin∠MBN=k,点P为角∠MBN其中一边BM上的一个动点,点A在射线BM、BN的同侧,连接AP,则当“PA+k·PB”的值最小时,P点的位置如何确定?

分析:本题的关键在于如何确定“k·PB”的大小,过点P作PQ⊥BN垂足为Q,则k·PB=PB·sin∠MBN=PQ,

∴本题求“PA+k·PB”的最小值转化为求“PA+PQ”的最小值(如图1-1-2),即A、P、Q三点共线时最小(如图1-1-3),本题得解。

图1-1-1 图1-1-2 图1-1-3

动态展示:见GIF格式!

思考:当k值大于1时,“PA+k·PB”线段求和问题该如何转化呢?

提取系数k即可哦!!!

【数学故事】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?…何以归”。这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问

题”。

【模型初探】

(二)点P 在圆上运动 “阿氏圆”问题

如图所示2-1-1,⊙O 的半径为r,点A 、B 都在⊙O

外,P 为⊙O 上的动点,已知r=k ·OB.连接PA 、PB ,则当“PA+k ·PB ”的值最小时,P 点的位置如何确

图2-1-1 图2-1-2 图2-1-3

分析:本题的关键在于如何确定“k ·PB ”的大小,(如图2-1-2)在线段

OB 上截取OC 使OC=k ·r,则可说明△BPO 与△PCO 相似,即k ·PB=PC 。

∴本题求“PA+k ·PB ”的最小值转化为求“PA+PC ”的最小值,即A 、P 、C 三点共线时最小(如图2-1-3),本题得解。

动态展示:见GIF 格式!

【问题背景】阿氏圆又称阿波罗尼斯圆,已知平面上两点A 、B ,则所有满足PA=kPB (k ≠1)的点P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。

“阿氏圆”一般解题步骤:

第一步:连接动点至圆心O(将系数不为1的线段的两个端点分别与圆心相连接),则连接OP、OB;

第二步:计算出所连接的这两条线段OP、OB长度;

第三步:计算这两条线段长度的比OP k

=;

OB

第四步:在OB上取点C,使得OC OP

=;

OP OB

第五步:连接AC,与圆O交点即为点P.

阿氏圆最值模型(学生版)

中考数学几何模型11:阿氏圆最值模型名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为 圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. 【模型建立】 如图1所示,⊙O 的半径为R ,点A 、B 都在⊙O 外,P 为⊙O 上一动点,已知R=25 OB ,连接PA 、PB ,则当“PA+25PB ”的值最小时,P 点的位置如何确定?

解决办法:如图2,在线段OB 上截取OC 使OC= 25R ,则可说明△BPO 与△PCO 相似,则有25 PB=PC 。故本题求“PA+25PB ”的最小值可以转化为“PA+PC ”的最小值,其中与A 与C 为定点,P 为动点,故当A 、P 、C 三点共线时,“PA+PC ”值最小。 【技巧总结】 计算PA k PB + 的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P 使得PA k PB + 的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP ,OB 2.计算出这两条线段的长度比 OP k OB =3.在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB = 4.则=PA k PB PA PC AC ++≥ ,当A 、P 、C 三点共线时可得最小值

中考数学几何模型之阿氏圆最值模型(解析版)

中考数学几何模型:阿氏圆最值模型 名师点睛 拨开云雾 开门见山 在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. A B P O 【模型建立】 如图 1 所示,⊙O 的半径为R ,点 A 、B 都在⊙O 外 ,P 为⊙O 上一动点,已知R=2 5 OB , 连接 PA 、PB ,则当“PA+ 2 5 PB ”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段 OB 上截取OC 使 OC=25R ,则可说明△BPO 与△PCO 相似,则有2 5 PB=PC 。故本题求“PA+ 2 5 PB ”的最小值可以转化为“PA+PC ”的最小值,其中与A 与C 为定点,P 为动点,故当 A 、P 、C 三点共线时,“PA+PC ”值最小。

【技巧总结】 计算PA k PB +g 的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P 使得PA k PB +g 的值最小,解决步骤具体如下: 1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB 2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值

《广猛说题系列之胡不归与阿氏圆两类系数不为1的最值小例》(下集)

《广猛说题系列之胡不归与阿氏圆两类系数不为1的最值小例》(下集) 《上集》讲的是一种特殊的系数不为1的最值问题,名叫“胡不归”,同学们你们记住了吗?会解决这个模型了吗?下面再提供一个表面上与其很类似的问题,但本质不同,称之为“阿波罗尼斯圆”模型,简称“阿氏圆”问题! (“阿氏圆”问题)问题2:如图2,已知点B(8,0),C(0,6),半径为3的⊙O上有一动点P,求PB+1/2*PC的最小值. “美丽的图形会说话”(朋友语)!先呈上解决此题的终极图形,如图2-1,同学们可对照此图先自行参悟,然后再听我娓娓道来!

简析:此题依然是一个“两定一动型”最值问题,且动点P被“绑在”了半径为3的⊙O上运动,动点P的本质特征也就是⊙O的本质特征,即到原点O的距离始终为3,解题的关键肯定也要抓住这个本质特征; 此题让人望而却步的,还是在不为1这个系数上,即“1/2”,如何处理“1/2”成为了解题的难点;回顾上面的“胡不归”模型,里面也有不为1的系数,我们利用“构造三角函数”的联想机制,成功将系数转化为1;其间之所以能“构造三角函数”,是因为动点从一个定点出发先沿着一条定直线运动,构造的关键也是抓住这条定直线及其上的这一个定点,即过定直线上的定点向这条定直线的某一侧(视具体情况而定)作一个锐角,使其正弦值等于要处理的系数,从而将系数顺利转化为1; 那么本题可不可以同样处理呢?显然不行,动点P在一个圆上运动,该怎么构造三角函数啊!看来此路不通,那就再作其他联想吧! 想啊……想啊……,想到目标是要处理“1/2*PC”,与点B无关,那就先擦去PB,减少题目中的干扰线条,如图2-2所示,将目光就聚焦在一点,即PC上;

(先打)线段和差的最大值与最小值练习题(最全)

初中几何中线段和(差)的最值问题 一、两条线段和的最小值。 基本图形解析: 一)、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: A 、A ’ 是关于直线m 的对称点。 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧: (2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: (4)、台球两次碰壁模型 变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、 E 点,使得围成的四边形ADEB 周长最短. 变式二:已知点A 位于直线m,n 的内侧 , 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短. 二)、一个动点,一个定点: (一)动点在直线上运动: 点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动 点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧: 2、点与圆在直线同侧: 三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。( 原理用平移知识解) (1)点A 、B 在直线m 两侧: 过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左 平移PQ 长,即为P 点,此时P 、Q 即为所求的点。 (2)点A 、B 在直线 m 同侧: m m A m A B m n n n m n n n m m n m n m n m m m m m

5最值系列之阿氏圆问题

最值系列之阿氏圆问题 所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆. 如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 构成的图形为圆. 下给出证明 法一:首先了解两个定理 (1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则 AB DB AC DC = . F E D C B A 证明: ABD ACD S BD S CD = ,ABD ACD S AB DE AB S AC DF AC ?= =?,即AB DB AC DC = (2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则 AB DB AC DC = . A B C D E 证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DB AC DC = . 接下来开始证明步骤:

如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PA k MB PB ==,故M 点为定点,即∠APB 的角平分线交AB 于定点; 作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PA k NB PB ==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点; 又∠MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆. 法二:建系 不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设 P (x ,y ),PA=kPB ,即: ()()()()()()22 2222 2 2222222 2 22 12210 2201 x m y k x m k y k x y m k m x k m m k m x y x m k ++=-+-+-++-=++-+=- 解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线. 那么这个玩意和最值有什么关系呢?且来先看个例子: 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交 AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则1 2 PA PB +的最小值为__________.

九年级数学胡不归与阿氏圆

最值问题“AP+k?PB”最小值模型一胡不归型(“AP+k?PB”型)(动点P在直线上运动) 例题1.如图,四边形ABCD是菱形,AB=4,且∠ABC=600,M为对角线BD (不含B点)上任意一点,则AM+ 2 1 BM的最小值. 例题2.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则AP+BP+CP的最小值为_______ 总结: 第一步:将所求线段和改写为PB m n PA 的形式( m n <1) 第二步:在PB的一侧,PA的异侧,构造一个角度α,使得sinα= m n 第三步:过A作第二步所构造的角的一边垂线,该垂线段即为所求最小值 — 第四步:计算(本步骤最难) 变式练习1、如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则线段AP+BP+PD的最小值为 2.如图,在ACE ?中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上。 (1)试说明CE是⊙O的切线。 (2)若ACE ?中AE边上的高为h,试用含h的代数式表示⊙O的直径AB; (3)设点D是线段AC上任意一点(不含端点),连接OD,当 2 1 CD+OD的最小值为6时,求⊙O的AB的长。 、 (3)如图,△ABC在直角坐标系中,AB=AC,A(0,2),C(1,0),D为射线AO上一点,一动点P从A出发,运动路径为A→D→C,点P在AD上的运动速度是在CD上的3倍,要使整个运动时间最少,则点D的坐标应为_______ (4).二次函数c x ax y+ - =2 2图象与x轴交于A、C两点,点C(3,0),与y轴交于点B(0,-3)。 A B — P

线段和差最值问题

专题一.线段和(差)的最值问题 【知识依据】 1.线段公理——两点之间,线段最短; 2.对称的性质——①关于一条直线对称的两个图形全等;②对称轴是两个对称图形对应点连线的垂直平分线; 3.三角形两边之和大于第三边; 4.三角形两边之差小于第三边; 5、垂直线段最短。 一、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: A 、A ’ 是关于直线m 的对称点。 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧: P m A B m A B m A B P m A B A' n m A B Q P n m A B P'Q'

(2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: (4)、台球两次碰壁模型 变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短. 变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短. n m A B Q P n m A B B'Q P n m A B B'A' n m A B m n A B E D m n A B A'B'm n A P Q m n A A'

二、一个动点,一个定点: (一)动点在直线上运动: 点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动:点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧: 2、点与圆在直线同侧: m n A P m n A B m n A P m n A A'B m O A P'P m O B A B' m O A P m O A B A'

动态几何之胡不归阿氏圆,旋转相似问题

“胡不归”“阿氏圆”及旋转相似 一、胡不归型 【背景知识】 有一则历史故事:说的是一个身在他乡的小伙子,得知父亲病危的消息后便日夜赶路回家。然而,当他气喘吁吁地来到父亲的面前时,老人刚刚咽气了。人们告诉他,在弥留之际,老人在不断喃喃地叨念:“胡不归?胡不归?” 早期的科学家曾为这则古老的传说中的小伙子设想了一条路线。(如下图)A是出发地,B是目的地;A C是一条驿道,而驿道靠目的地的一侧是沙地。为了急切回家,小伙子选择了直线路程A B 。 但是,他忽略了在驿道上行走要比在砂土地带行走快的这一因素。如果他能选择一条合适的路线(尽管这条路线长一些,但是速度可以加快),是可以提前抵达家门的。 那么,这应该是那条路线呢?显然,根据两种路面的状况和在其上行走的速度值,可以在A C上选定一点D ,小伙子从A走到D ,然后从D折往B ,可望最早到达B 。用现代的科学语言表达,就是: 若在驿道上行走的速度为 ,在沙地上行走的速度为,即求的最 小值. 例题1、如图,P 为正方形A B C D对角线B D上一动点,若A B =2,则A P +B P +C P 的最小值为_______ 解析:∵正方形A B C D为轴对称图形 ∴A P =P C A B C D P

∴A P+B P+C P=2A P+B P= ∴即求的最小值 接下去就是套路 我们要构造一个出来 连接A E,作∠D B E=30°,交A C于E,过A作A F⊥B E,垂足为F 在R t△P B F中, ∵∠P B F=30° ∴ 由此我们把构造出来了 ∴的最小值即为A F线段的长 ∵∠B A E=45°,∠A E B=60° ∴解直角△A B E,得A O=B O=,O E=,O B= 根据面积法,·=· 求出A F= (此外本题费马点亦可) 例题2

线段和差最值问题-经典模型(新)

线段和(差)的最值问题 此类问题特点:1.两个定点,一个定点;2. 线段和最小值,线段差最大值 一、线段和最小值问题 若在一条直线m上,求一点P,使PA+PB最小; (1)两侧/异侧型:定点A、 B在直线m(动点P所在直线)两侧:直接连接A、B两点交直线m于一点P,该点P即为所求点。(PA+PB=AB) (2)同侧型:定点A、B在动点P所在直线m同侧:(方法:一找二作三连): 一找:找定点A、B,动点P及动点所在的直线m;二作:任选一个定点做对称;三连:连接对称点与另一个定点,其连线交动点所在直线于一点P,该点P即为所求。(PA+PB=PA’+PB=A’B) m A B P m A B 二、线段差最大值问题 若在一条直线m上,求一点P,使得最大 (1)同侧型:定点A、B在直线m(动点P所在直线)两侧:直接连接A、B两点交直线m于一点P,该点P即为所求点。() (2)两侧/异侧型:定点A、B在直线m(动点P所在直线)两侧:任选一个定点做对称;三连:连接对称点与另一个定点,其连线交动点所在直线m于一点P,该点P即为所求点。()

线段和最小值练习题 1.如图1,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为. 2. 如图2所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为. 3.如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________. 图1 图2 图3 图4 4. 如图4,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为. 5. 如图5,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm. 6.已知正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB +PE的最小值是 7. 如图6,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为. 8.如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ 周长的最小值为cm.(结果不取近似值) 图5 图6 图7 9. 如图8,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是.

第11讲阿氏圆最值模型(解析版)

中考数学几何模型11:阿氏圆最值模型 名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. B P O

【模型建立】 如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=2 5 OB, 连接PA、PB,则当“PA+2 5 PB”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段OB 上截取OC使OC=2 5 R,则可说明△BPO与△PCO相似,则有 2 5 PB=PC。 故本题求“PA+2 5 PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、 P、C 三点共线时,“PA+PC”值最小。 【技巧总结】 计算PA k PB +g的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P使得PA k PB +g的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP,OB

2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值 典题探究 启迪思维 探究重点 例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则1 2 PA PB +的最小值为__________. E A B C D P 【分析】这个问题最大的难点在于转化1 2 PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,

2020年九年级数学中考复习专题:胡不归和阿氏圆问题 教案设计(无答案)

2020年中考复习专题:“胡不归”问题 在前面的最值问题中往往都是求某个线段最值或者形如PA+PB最值,除此之外我们还可能会遇上形如“PA+kPB”这样的式子的最值,此类式子一般可以分为两类问题: (1)胡不归问题; (2)阿氏圆. 本文简单介绍“胡不归”模型 【故事介绍】 从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家,根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”(“胡”同“何”) 而如果先沿着驿道AC先走一段,再走砂石地,会不会更早到家? 【模型建立】 如图,一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1< V2,A、B为定点,点C在直线MN上,确定点C的位置使AC V2+BC V1 的值最小 【问题分析】 AC V2+BC V1 =1 V1 (BC+V1 V2 AC),记k=V1 V2 ,即求BC+kAC的最小值 【问题解决】 构造射线AD使得sin∠DAN=k,CH AC =k,CH=kAC.

将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH 取到最小值,即BC+kAC最小. 【模型总结】 在求形如“PA+kPB"的式子的最值问题中,关键是构造与kPB相等的线段,将“PH+kPB”型问题转化为“PA+PC”型. 而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段. 【2019长沙中考】如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE BD的最小值是 上的一个动点,则CD+√5 5 【2019南通中考】如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上PD的最小值等于 的一动点,则PB+√3 2

中考数学之_线段和(差)的最值问题

求线段和(差)的最值问题 【知识依据】:1.线段公理——两点之间,线段最短;2.对称的性质——①关于一条直线对称的两个图形全等;②对称轴是两个对称图形对应点连线的垂直平分线;3.三角形两边之和大于第三边;4.三角形两边之差小于第三边。5、垂直线段最短 一、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: A 、A ’ 是关于直线m 的对称点。 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧: m m A B m A B m n m n

(2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: (4)、台球两次碰壁模型 变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短. 变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短. n m A n n n m

二、一个动点,一个定点: (一)动点在直线上运动: 点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动 点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧: 2、点与圆在直线同侧: m n m n m n m m m m m

(完整word版)专题:阿氏圆与线段和最值问题(含答案),推荐文档

专题:阿氏圆与线段和最值问题 以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要. 具体内容如下: 阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、 B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m 内分和外分定线段 AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆. 定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型. PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型 阿氏圆基本解法:构造母子三角形相似 例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP +BP 的最小值. (1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有 = =,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴ =,∴PD =BP ,∴AP +BP =AP +PD . 请你完成余下的思考,并直接写出答案:AP +BP 的最小值为 . (2)自主探索:在“问题提出”的条件不变的情况下,AP +BP 的最小值为 . (3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A +PB 的最小值. 【分析】(1)利用勾股定理即可求出,最小值为AD = ;

2020年春胡不归与阿氏圆专题学习

“PA+k·PB”型的最值问题 【问题背景】 “PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理。 而当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。 此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。即点P在直线上运动和点P在圆上运动。 其中点P在直线上运动的类型称之为“胡不归”问题; 点P在圆周上运动的类型称之为“阿氏圆”问题。 本文将分别从这两类入手与大家共同探究线段最值问题的解决方案。 【知识储备】 线段最值问题常用原理: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短;

【模型初探】 (一)点P在直线上运动“胡不归”问题 如图1-1-1所示,已知sin∠MBN=k,点P为角∠MBN其中一边BM上的一个动点,点A在射线BM、BN的同侧,连接AP,则当“PA+k·PB”的值最小时,P点的位置如何确定? 分析:本题的关键在于如何确定“k·PB”的大小,过点P作PQ⊥BN垂足为Q,则k·PB=PB·sin∠MBN=PQ, ∴本题求“PA+k·PB”的最小值转化为求“PA+PQ”的最小值(如图1-1-2),即A、P、Q三点共线时最小(如图1-1-3),本题得解。 图1-1-1 图1-1-2 图1-1-3 动态展示:见GIF格式! 思考:当k值大于1时,“PA+k·PB”线段求和问题该如何转化呢? 提取系数k即可哦!!!

二次函数有关线段和差面积最值问题-doc

二次函数之最值问题 ◆ 线段和或差(或三角形周长)最值问题:此类问题一般是利用轴对称的性质和两点之间线段最短确定最 短距离,这个距离一般用勾股定理或两点之间距离公式求解.特殊地,也可以利用平移和轴对称的知识求解固定线段长问题. ◆ 最短距离和找法:以动点所在的直线为对称轴,作一个已知点的对称点,连结另一个已知点和对称点的 线段,与对称轴交于一点,这一点即为所求点.线段长即为最短距离和. ◆ 线段长最值问题:根据两点间距离公式12x x -把线段长用二次函数关系式表示出来求最值. 几何面积最值问题:此类问题一般是先运用三角形相似,对应线段成比例等性质或者用“割补法”或者利用平行线得到三角形同底等高进行面积转化写出图形的面积y与边长x 之间的二次函数关系,其顶点的纵坐 标即为面积最值. 例1、已知二次函数2y x bx c =++的图象过点()3,0A -和点()1,0B ,且与y 轴交于点C ,D 点在抛物线上且横坐标是2-.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA PD +的最小值.? ? ?例2、如图,在平面直角坐标系xOy 中,直线3 2y x =- +分别交x轴、y 轴于C 、A 两点.将射线AM 绕着点A顺时针旋转45°得到射线AN.点D 为AM上的动点,点B 为AN 上的动点,点C 在∠MAN 的内部. (1)求线段A C的长; (2)求△BC D周长的最小值; (3)当△BCD 的周长取得最小值,且52 BD =时,△BCD 的面积为________. ? ?????1、已知抛物线21y ax bx =++经过点()1,3A 和点()2,1B .(1)求此抛物线解析式; (2)点C、D 分别是x轴和y 轴上的动点,求四边形ABCD 周长的最小值;?(3)过点B作x 轴的垂线,垂足为E 点.点P 从抛物线的顶点出发,先沿抛物线的对称轴到达F 点,再沿FE 到达E 点,若P 点在对称轴上的运动速度是它在直线FE 上运动速度的2倍,试确定点F 的位置,使 得点P 按照上述要求到达E 点所用的时间最短.????

求线段(或线段和)(周长)最值问题

求线段(或线段和)(周长)最值问题 福建莆田月塘中学潘立城 中考数学压轴题中常出现有关几何最值问题,很多同学不知如何想,无从下手,感到这类题目很难,应该是尖子生同学做的题目,与我们这些一般生无关,避而远之。 这类题目很多,内容丰富,涉及面广,解法灵活多样,就像孙悟空七十二变,变化多端。孙悟空再怎么变化,也跑不出如来佛的“手掌心”。 解几何最值的“手掌心”是什么呢? : 撑握了如来佛的这一法宝,有关几何最值的各种“妖魔鬼怪”题都能解答。 一、“手掌心”法宝: 三角形中两边之和大于第三边 特征:“一”条线段且“动”点“不”在定线上,无规律找关键点:定点,中点,圆心。 ④线段的转移 特征:“定”点在“定”直线上 ⑤二次函数最值 特征:有“表达式” ①垂线段最短 ②两点间线段最短 “弯”线 变 “直”线 特征 “直”线的特征 ①“直”线:定点--动点 (定点--动点--动点) (动点--动点--动点) ②直:定点--动点--定点 直:动点--定点--动点

二、类型名词解释:定直线指动点运动所在的直线 ①垂线段最短特征:“弯”线变“直 ”线对称轴 l A C B M 定点 “弯”线 “直”线 例2.(2012湖北鄂州3分)在锐角三角形ABC中, BC=2 4,∠ABC=45°,BD平分∠ABC,M、N分 别是BD、BC上的动点,则CM+MN的最小值是 4 。 ①标:定点A,定点C,动点B 定直线AC,定直线l ②特征:“弯”线变“直”线 对称轴:定直线l 作点A关于定直线l的对称点M “弯”线AB+BC变“直”线MC “直”线:定点M--动点B--定点C 垂线段最短 ①标:定点C,动点M,动点N 定直线BD,定直线BC ②特征:“弯”线变“直”线 对称轴:定直线BD 作点N关于定直线BD的对称点E “弯”线CM+MN变“直”线CME “直”线:定点C--动点M--动点E 垂线段最短

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等) 一、基本图形 最值问题在几何图形中分两大类: ①[定点到定点]:两点之间,线段最短; ②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边; ④[定线到定线]:平行线之间,垂线段最短; ⑤[定点到定圆]:点圆之间,点心线截距最短(长); ⑥[定线到定圆]:线圆之间,心垂线截距最短; ⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。 简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆) 【知识背景】 阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。 【定 义】 阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。即: )1(≠=k k PB PA ,如下图所示: 上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。 【几何证明】 证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理

若AD 是∠BAC 的角平分线,则有: CD BD AC AB = 。即“两腰之比”等于“两底边之比”。 其逆定理也成立:即CD BD AC AB = ,则有:AD 是∠BAC 的角平分线。 知识点2:外角平分线定理及其逆定理 若AD 是△ABC 外角∠EAC 的角平分线,则有 CD BD AC AB = 。即“两腰之比”等于“两底边之比”。 其逆定理也成立:即CD BD AC AB = ,则有:AD 是外角∠EAC 的角平分线。 【阿氏圆的证明】 有了上述两个知识储备后,我们开始着手证明阿氏圆。

垂线段最短(胡不归、阿氏圆)问题

专题 线段和差最值问题 ② —— 垂线段最短问题 一.几何模型 基础模型 问 题 答 案 点A 的位置如图所示,点B 是水平直线上的一个动点,点P 在另外一条直线上。如何确定点P 与B 的位置,使得AP+PB 最小? 过点A 作垂线段AB 垂直于水平的直线,垂足为B ,AB 与另一直线的交点P 即为所求。 变式模型 ① 问 题 答 案 点A 的位置如图所示,点B 是水平直线上的一个动点,点P 在另外一条直线上。如何确定点P 与B 的位置,使得AP+PB 最小? 当点A 位于两直线之间时,先作点A 的对称点,再作垂线段即可。 变式模型 ②【胡不归问题】 问 题 答 案 如图,点P 是角的一边上的动点,如何确定点P 的位置使得θsin ?+OP AP 最小? 以OP 为边,构造∠POH=θ,过点A 作AH ⊥OH 交角的一边为点P 即可。

变式模型③【阿波罗尼斯圆】 问题答案 如图,⊙O的半径OA k? = r,如何在⊙O上取一点C 使得?k AC+BC最小。 在OA上取一点D,使得OD=?k OC,连接BD交 ⊙O于点C即可。 二.典型例题 例1 如图,在平面直角坐标系中,直线3 4 3 + =x y分别与x轴、y轴交于点A,B,抛物线1 2 2+ + - =x x y与y轴交于点C.若点E在抛物线的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值. 例2 (2015 天河区期末25题) 如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上. (1)证明:CE是⊙O的切线; (2)设点D是线段AC上任意一点(不含端点),连接OD,当AB=8时,求OD+ 2 1 CD的最小值.

经典几何中线段和差最值(含答案)

几何中线段和,差最值问题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.

一般处理方法: 常用定理: 两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系(已知两边长固定或其和、差固定时) 二、典型题型 1.如图:点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =32,则△PMN 的周长的最小值为 6 . 2.如图,当四边形P ABN 的周长最小时,a = 4 7 . 线段和(周长)最小 转化 构造三角形 两点之间,线段最短 垂线段最短 P A +PB 最小, 需转化, 使点在线异侧 |P A -PB |最大, 需转化,使点在线同侧 线段差最大 线段最大(小)值 三角形三边关系定理 三点共线时取得最值 平移 对称 旋转 使点在线异侧 (如下图) 使点在线同侧 (如下图) 使目标线段与定长线段构成三角形 平移 对称 旋转 l B'A B P l B'B A P

3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|P A﹣PB|的最大值为5. D P B′ N B M A 4.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为 2 . 5.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD 内部时,PD的最小值等于8- 5 4. 6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为1 2 .

2020中考数学专题10——最值问题之阿氏圆

2020中考专题10——最值问题之阿氏 班级 ________姓名 ____________ . 【模型解析】 “阿氏圆”樓型——u PA + k PB M 型最值 ?条件:A 、B 为定点,P 为ΘO±一个动A, — = k (0

√2 2 尝试解决,为了解决这个问題,下面给出一种耘題思路:如图2,连按CP,在CB 上取点D,使 CD CP 1 PD 1 1 CD=I,则有一=—=-,Xv ZPCD=ZBCP, ΛΔPCDS≤ΔJCP, — = -, APD=-BP, CP CB 2 BP 2 2 :.AP--BP^AP^PD. 2 请你芫成余下的思考,芥直按写出答案,AP +I BP 的最小值为 ______________ . 2 自主探索:在“问题提出"的条件不变的情况下,^AP^BP 的最:、值为 ______________ . 拓展延伸:己知扇形CoD 中,ZCOD=90°, OC=6, 0Λ=3f 0B≡5f 点P 是弧CD 上一点,求 的最小值. 【巩固训练】 2?如BB 2,在Rt?ABC 中? ZB=90t ? AB=CB=2,以点B 为圆心作HIB 与AC 相切.点P 为OaB 上任 3?如图3,己知点P 是边长为6的正方形ABCD 内SC —动点?PA=3■求PC÷- PD 的量小值为 .—动点.则PA? PC 的最小值是 __________ 1 ?如图 1,在 Rt?ABC 中,ZACB=90? , CB=4, CA=6, HIC 半径为 2,点 P 为21上一动点,连按 AP,

中考数学中的二次函数的线段和差以和最值问题

v1.0 可编辑可修改 二次函数与线段和差问题 例题精讲:如图抛物线与x轴交于A,B(1,0),与y 轴交于点C,直线经过点A,C.抛物线的顶点为D,对称轴为直线l,(1)求抛物线解析式。 (2)求顶点D的坐标与对称轴l. (3)设点E为x轴上一点,且AE=CE,求点E的坐标。 (4)设点G是y轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。 (5)在直线l上是否存在一点F,使得△BCF的周长最小,若存在,求出点F 的坐标及△BCF周长的最小值,若不存在,说明理由。 (6)在y轴上是否存在一点S,使得SD-SB的值最大,若存在,求出S点坐标,若不存在,说明理由。 (7)若点H是抛物线上位于AC上方的一点,过点H作y轴的平行线,交AC 于点K,设点H的横坐标为h,线段HK=d ①求d关于h的函数关系式 ②求d的最大值及此时H点的坐标 (8)设点P是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少

1.如图,矩形的边OA在轴上,边OC在轴上,点的坐标为(10,8),沿直线OD折叠矩形,使点正好落在上的处,E点坐标为(6,8),抛物线经过、、三点。 (1)求此抛物线的解析式。 (2)求AD的长。 (3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标。

2.如图,在平面直角坐标系中,抛物线4 1 2+ =x y 与轴相交于点A ,点B 与点O 关于点A 对称。 (1)填空:点B 的坐标是 。 (2)过点的直线 (其中)与轴相交于 点C ,过点C 作直线平行于轴,P 是直线上一点,且PB=PC ,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由。 (3)在(2)的条件下,若点C 关于直线BP 的对称点恰好落在该抛物线的对称轴上,求此时点P 的坐标。

相关主题
文本预览
相关文档 最新文档