当前位置:文档之家› 现代设计理论与方法实验报告书

现代设计理论与方法实验报告书

现代设计理论与方法实验报告书

班级:

学号:

姓名:

日期:

《现代设计理论与方法》实验报告一.实验目的

机械优化设计是一门实践性较强的课程,学生通过实际上机计算可达到以下目的:

1.加深对机械优化设计方法的基本理论和算法步骤的理解;

2.培养学生独立编制或调试计算机程序的能力;

3.掌握常用优化方法程序的使用方法;

4.培养学生灵活运用优化设计方法解决工程实际问题的能力。

二.实验项目和对每个实验项目的要求

序号实验项目实验要求

1 黄金分割法1、明确黄金分割法的基本原理、计算步骤及程序框图;

2、编制或调试黄金分割法应用程序;

3、用测试题对所编程序进行测试;

4、撰写实验报告;

2 复合型法 1.明确复合型法基本原理、计算步骤及程序框图等;

2.编制或调试复合型法应用程序;

3.用测试题多所编程序进行测试;

4.撰写实验报告。

三.程序框图、源程序、实验方法原理及课本实例和测试题

1.黄金分割法

1)程序框图

ε<-a b

N Y

N

N

Y

开 始

给定a ,b ,ε

)(),(618.0)

(),(382.0222111x F F a b a x x F F a b a x =-+?=-+?

?21F F <

)()(682.0,,2222

1211x F F a b a x F F x x x a ?-+????

)()(382.0,,1112211

2x F F a b a x F F x x x b ?-+????

?

ε<-a b *)(*)(5.0*x F F a b x =+=

输出**,F x

结 束

2)实验C语言程序

#include

#include

#include

#define e 0.001

#define tt 0.01

float function(float x)

{

double y=8*pow(x,3)-2*pow(x,2)-7*x+3;

/*求解的一维函数*/

return(y);

}

void finding(float a[3],float f[3])

{

float t=tt,a1,f1,ia;

int i;

a[0]=0; /*初始区间的下界值*/ f[0]=function(a[0]);

for(i=0;;i++)

{

a[1]=a[0]+t;f[1]=function(a[1]);

if(f[1]

if(fabs(f[1]-f[0]>=e))

{

t=-t;a[0]=a[1];f[0]=f[1];

}

else{

if(ia==1) return;

t=t/2;ia=1;

}

}

for(i=0;;i++)

{

a[2]=a[1]+t;f[2]=function(a[2]);

if(f[2]>f[1]) break;t=2*t;

a[0]=a[1];f[0]=f[1];

a[1]=a[2]; f[1]=f[2];

}

if(a[0]>a[2])

{

a1=a[0];f1=f[0];

a[0]=a[2];f[0]=f[2];

a[2]=a1;f[2]=f1; }

return;

}

float gold(float *ff)

{

float a1[3],f1[3],a[4],f[4];

float aa;

int i;

finding(a1,f1);

a[0]=a1[0];f[0]=f1[0];

a[3]=a1[2];f[3]=f1[2];

a[1]=a[0]+0.382*(a[3]-a[0]);

a[2]=a[0]+0.618*(a[3]-a[0]);

f[1]=function(a[1]);

f[2]=function(a[2]);

for(i=0;;i++)

{

if(f[1]>=f[2])

{

a[0]=a[1];f[0]=f[1];

a[1]=a[2];f[1]=f[2];

a[2]=a[0]+0.618*(a[3]-a[0]);

f[2]=function(a[2]);

}

else{

a[3]=a[2]; f[3]=f[2];

a[2]=a[1];f[2]=f[1];

a[1]=a[0]+0.382*(a[3]-a[0]);

f[1]=function(a[1]);

}

if(a[3]-a[0]

{

aa=(a[1]+a[2])/2;*ff=function(aa);

break;

}

}

return(aa);

}

void main()

{

float xx, ff;

xx=gold(&ff);

printf("\nThe Optimal Design Result

Is:\n");

printf("\n\tx*=%f\n\tf*=%f",xx,ff); getch(); }

3)实验方法原理

在搜索区间[a,b]内适当插入两点x1和x2(x1F(x2)时,极小点在[x1,b]中;当F(x1)=

4)程序使用说明

a[0]——初始区间的下界值; e ——收敛精度;

t t ——一维搜索步长。 5)课本应用实例

01

.0,001.0,0,3728)(023===+--=tt e x x x x x f 取

程序运行结果:

6)测试题 ⅰ)

5

-0210

01.0,0,3610)(min ===+-=e tt x x x x F ,取

程序修改部分:

将y=8*pow(x,3)-2*pow(x,2)-7*x+3 改为:y=pow(x,2)-10*x+36 程序运行结果

ⅱ)

5

023410

01.0,0,60645)(min -===+---=ε,取tt x x x x x x F

程序修改部分:

将y=8*pow(x,3)-2*pow(x,2)-7*x+3 改为: y=pow(x,4)-5*pow(x,3)+4*pow(x,2)-6*x+60

程序运行结果:

ⅲ)

5

0210

01.0,0)2)(1()(min -===-+=ε,取tt x x x x F

程序修改部分:

将y=8*pow(x,3)-2*pow(x,2)-7*x+3 改为:y=(x+1)*pow(x-2, 2) 程序运行结果:

2.复合形法

1)程序框图

Y N

Y N

Y

N

Y N

Y

N

Y N

N

Y Y

N

Y Y Y N

N

Y 开始

输入αξε,,,k 选定一个初始定点)

1(X )1(X 可行? 随机产生初始顶点)1(X

1?q 随机产生其余(k-1)顶点 )(j X k j ,,3,2(?=) )(j X 可行? 1+?q q )

(j X

q

j X j ,,3,2()

(?=) )(j X k q j ,,1(?+=) ∑==q j j t X q X 1)()

(1

q=k? )(5.0)()()()(t j t j X X X X -+= )(j X 可行?

),,2,1(,)(0(n i x b x a S i i L i i ?=??∑

==k j j C X k X 1

)

()

(1计算各顶点的函数值)()(j X F 及所 有顶点点集中心的函数值)()(C X F ?})]()([1

{2

1

1

2

)()(ε≤-∑=k

j C j X F X F k )

()()

()

(L L X F X F X X ??** 结 束 ∑-=-=11

)()

(11k j j S X

k X ?

)(可行S X )()()()()

(H S R X X X X S -+?α 可行?)

(R x

2αα? ?)()()()(H R X F X F

)()(H G X X 代替用

1+?q q ?)()(S L X X ≤ )

(),(),(,,,)()()()()()(L G H L G H X F X F X F X X X 确定:

2)实验C语言程序

#include

#include

#include

#define E1 0.001

#define ep 0.00001

#define n 2

#define k 4

double af;

int i,j;

double X0[n],XX[n],X[k][n],FF[k]; double a[n],b[n];

double rm=2657863.0;

double F(double C[n])

{

double F;

F=pow(C[0]-3, 2)+pow(C[1]-4, 2);

return F;

}

int cons(double D[n])

{

if((D[0]>=0)&&(D[1]>=0)&&(D[0]<=6 )&&(D[1]<=8)&&((2.5-D[0]+D[1])>=0)&&( (5-D[0]-D[1])>=0))

return 1;

else

return 0;

}

void bou()

{

a[0]=0;b[0]=6;

a[1]=0;b[1]=8;

}

double r()

{

double r1,r2,r3,rr;

r1=pow(2, 35);r2=pow(2, 36);r3=pow(2, 37);rm=5*rm;

if(rm>=r3){rm=rm-r3;}

if(rm>=r2){rm=rm-r2;}

if(rm>=r1){rm=rm-r1;}

rr=rm/r1;

return rr;

}

void produce(double A[n],double B[n]) {

int jj;double S;

s1: for(i=0;i

{

S=r();

XX[i]=A[i]+S*(B[i]-A[i]);

}

if(cons(XX)==0)

{goto s1;}

for(i=0;i

{

X[0][i]=XX[i];

}

for(j=1;j

{

for(i=0;i

{

S=r();

X[j][i]=A[i]+S*(B[i]-A[i]);

}

}

for(j=1;j

{

for(i=0;i

{

X0[i]=0;

for(jj=1;jj

{

X0[i]+=X[jj][i];

}

X0[i]=(1/j)*(X0[i]);

}

if(cons(X0)==0)

{

goto s1;

}

for(i=0;i

{XX[i]=X[j][i];}

while(cons(XX)==0)

{

for(i=0;i

X[j][i]=X0[i]+0.5*(X[j][i]-X0[i]) ;

XX[i]=X[j][i];

}

}

}

}

main()

{

double

EE,Xc[n],Xh[n],Xg[n],Xl[n],Xr[n],Xs[n ],w;

int l,lp,lp1;

bou();

s111:produce(a,b);

s222:for(j=0;j

{

for(i=0;i

{

XX[i]=X[j][i];

}

FF[j]=F(XX);

}

for(l=0;l

{

for(lp=0;lp

{

lp1=lp+1;

if(FF[lp]

{

w=FF[lp];FF[lp]=FF[lp1];FF[lp1]=w; for(i=0;i

{

XX[i]=X[lp][i];X[lp][i]=X[lp1][i];X[l p1][i]=XX[i];

}

}

}

}

for(i=0;i

{

Xh[i]=X[0][i];Xg[i]=X[1][i];Xl[i]=X[k -1][i];

}

for(i=0;i

{

Xs[i]=0;

for(j=0;j

{

Xs[i]+=X[j][i];

}

Xs[i]=1/(k+0.0)*Xs[i];

}

EE=0;

for(j=0;j

{

EE+=pow((FF[j]-F(Xs)),2);

}

EE=pow((1/(k+0.0)*EE),0.5);

if(EE<=E1)

{

goto s333;

}

for(i=0;i

{

Xc[i]=0;

for(j=1;j

{

Xc[i]+=X[j][i];

}

Xc[i]=1/(k-1.0)*Xc[i];

}

if(cons(Xc)==1)

{

af=1.3;

ss:for(i=0;i

{

Xr[i]=Xc[i]+af*(Xc[i]-Xh[i]); }

if(cons(Xr)==1)

{

if(F(Xr)>=F(Xh))

{

if(af<=ep)

{

for(i=0;i

{

Xh[i]=Xg[i];

}

af=1.3;goto ss;

}

else

{af=1/2.0*af;goto ss;}

}

else

{

for(i=0;i

{

X[0][i]=Xr[i];

}

goto s222;

}

}

else{

af=1/2.0*af;goto ss;}

}

else

{

for(i=0;i

{

if(Xl[i]

{a[i]=Xl[i];b[i]=Xc[i];}

else

{a[i]=Xc[i];b[i]=Xl[i];}

}

goto s111;

}

s333:printf("F(Xmin)=%f\n",F(Xl));

for(i=0;i

{

printf("\n The X%d is %f.",i,Xl[i]);

} }

3)实验方法原理

复合形法是在n维设计空间内由n+1<=k<=2n个顶点构成的多面体。复合形法就是在n维设计空间的可行域名内,对复合形的个顶点目标函数逐一进行比较,不断地去掉最坏点,代之以既能使目标函数值有所下降,又满足所有约束条件的新点,逐步调向最优点。

4)程序使用说明

E1——终止迭代收敛精度;

ep——复合形法中映射系数α给定的最小值δ,一般取5

10-

=

δ;

n——设计变量的维数;

k——复合形的顶点数;

af——初始映射系数α。

5)课本应用实例

3-

2

1

2

1

4

2

1

3

2

2

1

1

2

2

2

1

10

4

k

8]

[0

6]

[0

5

)

(

5.2

)

(

)

(

)

(

..

)4

(

)3

(

)

(

=

=

-

-

=

+

-

=

=

=

-

+

-

=

ε

x

x

x

x

X

g

x

x

X

g

x

X

g

x

X

g

t s

x

x

X

F

取:

程序运行结果:

6)测试题

ⅰ)

3-

2

1

2

1

4

2

1

2

2

2

2

2

1

10

4

k

8]

[-5

6]

[-5

2

)

(

)

(

..

)1

(

)2

(

)

(

min

=

=

-

-

=

-

=

-

+

-

=

ε

x

x

x

x

X

g

x

x

X

g

t s

x

x

X

F

取:

程序修改部分:

F=pow(C[0]-3, 2)+pow(C[1]-4,2)

if((D[0]>=0)&&(D[1]>=0)&&(D[0]<=6)&&(D[1]<=8)&&((2.5-D[0]+D[1])>=0)&&((5-D [0]-D[1])>=0)) a[0]=0;b[0]=6 a[1]=0;b[1]=8 改为:

F=pow(C[0]-2,2)+pow(C[1]-1,2)

if((D[1]-pow(D[0],2)>=0)&&(2-D[0]-D[1]>=0))

a[0]=-5;b[0]=6 a[1]=-5; b[1]=8 程序运行结果:

ⅱ)

3

-43212

12

124212

32

2342

121210 6k 10] [-10 10] [-10 10] [-10 10] [-10)4,3,2,1(1010.

.)

1()1(8.19])1()1[(10)1()(90)1()(100)(min ==∈∈∈∈=≤≤---+-+-+-+-+-+-=εx x x x i x t s x x x x x x x x x x X F i 取:程序修改部分: 将

#define n 2 #define k 4

F=pow(C[0]-3, 2)+pow(C[1]-4,2)

if((D[0]>=0)&&(D[1]>=0)&&(D[0]<=6)&&(D[1]<=8)&&((2.5-D[0]+D[1])>=0)&&((5-D [0]-D[1])>=0)) a[0]=0;b[0]=6 a[1]=0;b[1]=8 改为:

#define n 4 #define k 6

F=100*pow(C[1]-C[0],2)+pow(1-C[0],2)+90*pow(C[3]-pow(C[2],2),2)+pow(1-C[2],2)+10*(pow(C[0]-1,2)+pow(C[3]-1,2))+19.8*(C[

1]-1,2)*(C[3]-1)

if((D[0]>=-10)&&(D[1]>=-10)&&(D[2]>=-10)&&(D[3]>=-10)&&(D[0]<=10)&&(D[1]<=10)&&(D[2]<=10)&&(D[3]<=10)) a[0]=-10;b[0]=10; a[1]=-10;b[1]=10; a[2]=-10;b[2]=10; a[3]=-10;b[3]=10; 程序运行结果:

ⅲ)

3

-212413*********

22110 4k 8] [0 6] [00

8)(06)(0)(0)(.

.60410)(==∈∈≥-=≥-=≥=≥=+---+=εx x x X g x X g x X g x X g t s x x x x x x X F 取:

程序修改部分: 将

F=pow(C[0]-3, 2)+pow(C[1]-4,2)

if((D[0]>=0)&&(D[1]>=0)&&(D[0]<=6)&&(D[1]<=8)&&((2.5-D[0]+D[1])>=0)&&((5-D [0]-D[1])>=0)) a[0]=0;b[0]=6 a[1]=0;b[1]=8 改为:

F=pow(C[0],2)+pow(C[1],2)-C[0]*C[1]-10*C[0]-4*C[1]+60;

if((D[0]>=0)&&(D[1]>=0)&&(D[0]<=6)&&(D[1]<=8)) a[0]=0;b[0]=6 a[1]=0;b[1]=8 程序运行结果:

现代设计理论与方法

第一章 1现代设计理论与方法是一门基于思维科学、信息科学、系统工程、计算机技术等学科,研究产品设计规律、设计技术和工具、设计实施方法的工程技术科学。 2设计的概念,广义概念是指对发展过程的安排,包括发展的方向、程序、细节及达到的目标。狭义概念是指将客观需求转化为满足需求的技术系统(或技术过程)的活动。 3设计的含义:为了满足人类与社会的功能要求,将预定的目标通过人们创造性思维,经过一系列规划、分析和决策,产生载有相应的文字、数据、图形等信息的技术文件,以取得最满意的社会与经济效益,这就是设计。 4设计的特征:需求特征、创造性特征、程序特征、时代特征。 5设计的四个发展阶段:直觉设计阶段、经验设计阶段、半理论半经验设计阶、现代设计阶6现代设计与传统设计的区别: 传统设计:以经验总结为基础,运用力学和数学而形成的经验、公式、图表、设计手册等作为设计的依据,通过经验公式、近似系数或类比等方法进行设计。传统设计方法基本上是一种以静态分析、近似计算、经验设计、手工劳动为特征的设计方法。 现代设计:是一种基于知识的,以动态分析、精确计算、优化设计和CAD为特征的设计方法。 7现代设计方法与传统设计方法相比,主要完成了以下几方面的转变: 1)产品结构分析的定量化;2)产品工况分析的动态化;3)产品质量分析的可靠性化;4)产品设计结果的最优化;5)产品设计过程的高效化和自动化。 8现代产品设计按其创新程度可分为:开发性设计、适应性设计、变形设计三种类型。 第二章 1功能分析组合方法:求总功能(黑箱法)分功能求解方法(调查分析法、创造性方法、设计目录法)原理解组合(形态分析法) 第三章 1创造技法:(一)集体激智法:(专题会议法,德尔菲法,635法)通过多人的集体讨论和书面交流,互相启迪,并发灵感,进而引起创造性思维的连锁反应,形成综合创新思路的一种创新技法。(二)提问追溯法:(奥斯本提问法,阿诺尔特提问法,5W-1H提问法)是通过对问题进行分析和推理来扩展思路,或将复杂的问题加以分解,找到各种影响因素,从而扎到问题的解决方案的一种创造性技法。(三)联想类比法:(联想发明发,类比发明发,仿生法,综摄法)通过启发、联想、类比、综合等手段,创造出新的想法,这种创造技法就称联想类比法(四)组合创新法:(性能组合,原理组合,功能组合,结构组合)利用事物间的内在联系,用已有的知识和现有的成果进行新的组合。从而产生新的方案。

现代设计方法期末总结

1、设计是创造性的劳动,设计的本质是创新。 2、现代设计方法有六个特点,分别是:程式性、创造性、系统性、优化性、综合性、计算机辅助设计(CAD)。 3、传统的分析方法往往把事物分解为许多独立的互不相干的部分进行研究。由于是孤立、静止地分析问题,所得的结论往往是片面的、有局限性的。而系统工程的方法是把事物当作一个整体的系统来研究,从系统出发,分析各组成部分之间的有机联系及系统与外界环境的关系,是一种较全面的综合研究方法。 4、设计系统是一种信息处理系统。 5、系统工程的观点,设计系统是一个由时间维、逻辑维和方法维组成三维系统。时间维:反映按时间顺序的设计工作阶段;逻辑维:解决问题的逻辑步骤;方法维:设计过程中的各种思维方法和工作方法。 6、设计工作阶段—时间维一般工程设计可分为四个阶段: 1)产品规划(明确设计任务);2)原理方案设计;3)技术设计;4)施工设计。产品规划过程中的调查研究,包括:市场调研、技术调研、社会调研、环境调研。产品规划阶段形成的是可行性研究报告或设计任务书。 原理方案设计形成方案原理图。技术设计阶段形成零件草图等。 施工设计阶段形成零件图、部件装配图、全部生产图纸、设计说明书、工艺文件、使用说明书。 7、产品设计的三种类型 (1)开发型设计针对设计任务提出新的功能原理方案,完成从产品规划到施工设计的全过程的设计,此类设计是创新设计。 (2)适应型设计在原理方案基本保持不变的情况下,变化更换部分部件或结构,使产品更广泛地适应使用要求的设计。 (3)变参数型设计产品功能、原理方案、结构型式基本确定,通过改变尺寸与性能参数,满足不同的工作需要的设计。(测绘与仿制) 8、解决问题的合理逻辑步骤是:分析-综合-评价-决策。 评价是筛选的过程二、原理方案设计 1、系统功能分析法—系统化设计方法,它是将工程设计任务或机械产品看作技术系统,用系统工程方法进行分析和综合。 2、技术系统—以一定技术手段来实现社会特定需求的人造系统。 技术系统的功能就是将输入的能量、物料和讯号进行有目的的转换或变化后输出。技术系统是一个转换装置。随时间变化的能量、物料和讯号称为能量流、物料流和讯号流。 主要传递讯号流的技术系统—仪器。 主要传递能量流与物料流的技术系统—机器。 3、对输入和输出的变换所作的抽象描述称为系统。 技术系统的用途或所具有的特定能力称为系统的功能 4、分析系统的总功能常采用“黑箱法”。分析比较系统的输入和输出能量、物料和讯号,其差别和关系反映的就是系统的总功能。黑箱法要求设计者不要首先从产品结构着手,而应从系统功能出发设计产品。 5、功能分解分解到直接找到解法的分功能称为功能元。功能分析的结果用功能树的形式表达 完成分功能的技术实体是功能载体。 6、求系统原理解N=n1·n2······ni······nm 式中:m—功能元数;ni—第i 种功能元解的个数。 7、功能分析法的设计步骤

现代控制理论实验报告

实验报告 ( 2016-2017年度第二学期) 名称:《现代控制理论基础》 题目:状态空间模型分析 院系:控制科学与工程学院 班级: ___ 学号: __ 学生姓名: ______ 指导教师: _______ 成绩: 日期: 2017年 4月 15日

线控实验报告 一、实验目的: l.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验内容 1 第一题:已知某系统的传递函数为G (s) S23S2 求解下列问题: (1)用 matlab 表示系统传递函数 num=[1]; den=[1 3 2]; sys=tf(num,den); sys1=zpk([],[-1 -2],1); 结果: sys = 1 ------------- s^2 + 3 s + 2 sys1 = 1 ----------- (s+1) (s+2) (2)求该系统状态空间表达式: [A1,B1,C1,D1]=tf2ss(num,den); A = -3-2 10 B = 1 C = 0 1

第二题:已知某系统的状态空间表达式为: 321 A ,B,C 01:10 求解下列问题: (1)求该系统的传递函数矩阵: (2)该系统的能观性和能空性: (3)求该系统的对角标准型: (4)求该系统能控标准型: (5)求该系统能观标准型: (6)求该系统的单位阶跃状态响应以及零输入响应:解题过程: 程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0; [num,den]=ss2tf(A,B,C,D); co=ctrb(A,B); t1=rank(co); ob=obsv(A,C); t2=rank(ob); [At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' ); [Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' ); Ao=Ac'; Bo=Cc'; Co=Bc'; 结果: (1) num = 0 01 den = 1 32 (2)能控判别矩阵为: co = 1-3 0 1 能控判别矩阵的秩为: t1 = 2 故系统能控。 (3)能观判别矩阵为: ob = 0 1

现代设计黄金分割法复合形法实验报告word文档良心出品

《现代设计理论与方法》实验报告 、实验目的 机械优化设计是一门实践性较强的课程,学生通过实际上机计算可以达到以 下目的: 1. 加深对机械优化设计方法的基本理论和算法步骤的理解; 2. 培养学生独立编制或调试计算机程序的能力; 3. 掌握常用优化方法程序的使用方法; 4 .培养学生灵活运用优化设计方法解决工程实际问题的能力。 、实验项目、学时分配及对每个实验项目的要求 1.明确黄金分割法基本原理、计算步骤及程序框图; 吐 入「土 2?编制或调试黄金分割法应用程序; 1 黄金分割法 2 八' " 3 ?用测试题对所编程序进行测试; 4?撰写实验报告。 1.明确复合形法基本原理、计算步骤及程序框图 等; 2 复合形法 4 2?编制或调试复合形法应用程序; 3 ?用测试题对所编程序进行测试; 4?撰写实验报告。 二、测试题 1. 黄金分割法程序测试题 1 )rn"何二?-10r+36,取坷=0 ,卜皿1, 沪 程序如下: #in clude #in clude #in clude #defi ne e 0.00001 序实验项目 学时 号 实验要求

#define tt 0.01 float function(float x) float y=pow(x,2)-10*x+36;// return(y); void finding(float a[3],float f[3]) float t=tt,a1,f1,ia; int i; f[0]=function(a[0]); for(i=0;;i++) a[1]=a[0]+t;f[1]=function(a[1]); if(f[1]=e) t=-t;a[0]=a[1];f[0]=f[1]; else{ if(ia==1) return; t=t/2;ia=1; for(i=0;;i++) a[2]=a[1]+t;f[2]=function(a[2]); if(f[2]>f[1]) break; t=2*t; a[0]=0;/ / 初始区间的下界值 求解的一维函数

现代设计方法-有限元分析报告

中国地质大学研究生课程论文封面 课程名称现代设计方法 教师姓名 研究生姓名 研究生学号 研究生专业机械工程 所在院系机电学院 日期: 2013 年 1 月 8 日

评语 注:1、无评阅人签名成绩无效; 2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效; 3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

有限元分析简介 摘要: ANSYS 软件具有建模简单、快速、方便的特点, 因而成为大型通用有限元程序的代表。对有限元作了一个总体的介绍, 并着重介绍了ANSYS 软件, 简要地叙述了ANSYS 软件的主要技术特点和各部分构成以及其主要的分析功能,从其构成及功能中可以看到,ANSYS 软件的确是工程应用分析的有效工具。 1、有限元分析的基本概念和计算步骤 1.1、有限元分析的基本概念 有人将CAE技术称为当今“科学与技术的完美结合”。这句话说得比较夸张,但不可否认,CAE技术的确是现代产品研发的重要基础技术,其理论性和需要的学科知识厚重而宽广。有限元软件是目前CAE的主流分析软件之一,在全球拥有最大的用户群。有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。

现代控制理论实验

华北电力大学 实验报告| | 实验名称状态空间模型分析 课程名称现代控制理论 | | 专业班级:自动化1201 学生姓名:马铭远 学号:2 成绩: 指导教师:刘鑫屏实验日期:4月25日

状态空间模型分析 一、实验目的 1.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验仪器与软件 1. MATLAB7.6 环境 三、实验内容 1 、模型转换 图 1、模型转换示意图及所用命令 传递函数一般形式: MATLAB 表示为: G=tf(num,den),,其中 num,den 分别是上式中分子,分母系数矩阵。 零极点形式: MATLAB 表示为:G=zpk(Z,P,K) ,其中 Z,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。 传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN); 状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu 表示对系统的第 iu 个输入量求传递函数;对单输入 iu 为 1。

例1:已知系统的传递函数为G(S)= 2 2 3 24 11611 s s s s s ++ +++ ,利用matlab将传递函数 和状态空间相互转换。 解:1.传递函数转换为状态空间模型: NUM=[1 2 4];DEN=[1 11 6 11]; [A,B,C,D] = tf2ss(NUM,DEN) 2.状态空间模型转换为传递函数: A=[-11 -6 -11;1 0 0;0 1 0];B=[1;0;0];C=[1 2 4];D=[0];iu=1; [NUM,DEN] = ss2tf(A,B,C,D,iu); G=tf(NUM,DEN) 2 、状态方程状态解和输出解 单位阶跃输入作用下的状态响应: G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应 [y,t,x]=initial(G,x0)其中,x0 为状态初值。

机电产品设计实验报告

课程名称:机电产品现代设计方法上课时间:2015年春季 机电产品现代设计方法实验报告 姓名: 学号: 班级: 所在学院:机电工程学院 任课教师:张旭堂

一、实验项目与实验目的 实验项目: 典型机电产品多学科协同优化设计。 试验目的: (1) 掌握典型机电产品多学科协同优化设计软件环境组成,包括建模软件、分析软件、协同平台。 (2)自主设计产品模型、分析过程、优化目标。 (3) 对得到的优化结果进行定性分析,解释结果的合理性,编写上机实验报告。 二、实验环境 网络协同设计环境,如下图所示:包括产品CAD建模、有限元分析FEM、动力学仿真ADAMS和控制仿真MATLAB。计算机网络硬件环境和相应软件环境。图形工作站和路由器,安装协同设计仿真软件。

型 协同设计仿真平台组成 三、实验原理 典型机电产品协同设计仿真工作流程如下图所示。 1)利用CAD建模工具,建立产品模型; 2)利用ADAMS建立产品运动学模型; 3)根据CAD和ADAMS传过来的结构模型和边界条件分析零件应力场和应变场; 4)用ADAMS分析得到的运动参数(位移、速度)。

协同设计仿真平台组成 四、实验内容与步骤 (1)总体方案设计 SysML语言是UML语言(Unified Modeling Language,统一建模语言,一种面向对象的标准建模语言,用于软件系统的可视化建模)在系统工程应用领域的延续和扩展,是近年提出的用于系统体系结构设计的多用途建模语言,用于对由软硬件、数据和人综合而成的复杂系统的集成体系结构进行可视化的说明、分析、设计及校验。 在这里我们绘制参数图如下。在下面的参数图中,我们确定了系统中各部件的相互约束情况。

学习“现代设计方法”课程感想

学习“现代设计方法”课程感想 11材料2班夏万林学号20110410210234 现代设计方法,用英文取名为“Modern Design Technique”,是当今时代为产品制造或工程项目完成到实体化全过程而制订的技术上的方案、图样与程序。“现代设计方法”是对应于传统设计方法而提出与发展的,为一种大概念,有大的范畴,其下位可有现代机械设计方法、现代模具设计方法等。 进入大三,迎接我们的是真正的专业课,不再是以前的公共课或者是专业基础课,而《优化设计导论》作为专业课中的必修课,即是非常重要的一门课,同时也是一门结合机械类各科目知识的一门综合性课程。在近一学期的学习中,我不仅仅是学到了比较多的综合性设计方法同时也很好的认识了我们的好老师-卢老师。卢老师的课堂教学非常幽默且具有非常强的科学性。卢老师基本上是每节课都会要求同学自己动手画画做做,不要总是这样听着而什么是事都不做,尽量调动大家学习的积极性,让大家多学点,让同学愿意听,想去学。 这门课程给我们讲解了有限元设计、优化设计、机电一体化设计、计算机辅助设计、创新设计、生命周期设计、虚拟设计、稳健设计、并行设计、智能设计等十种现代设计方法。其中前面四种为较成熟应用正普及类,后面六种为较新颖内容正发展类,可以说是设计学的一个大综合。广义最优化方法有解析法、数值法、图解法、实验法、情况研究法等,工程技术问题中的最优化方法主要是指解析法和数值法,且以数值法为最典型、最具代表性,因此、本书主要讲述数值法。

纵观世界机械类设计发展历史,从19世纪中叶英国工业革命至今,机械工业不断革新其要求也不断改变,现今对各个设计员的要求不断提升,由以前的单一机械结构设计到后来的机电一体化再到如今的机、电、计算机三位一体的设计要求,这样对于我们大学生尤其是三本院校的大学生,本身基础较薄弱,学习现代设计要求也不断提高、相应的难度也在提升。 通过这半个学期的学习,自己对现代设计方法有了一定的认知和掌握。我觉得开设本课程要达到的主要目的是:通过对经典解析法、线性规划与非线性规划法、数值法中的基本概念、理论和方法的学习,对工程设计实例分析的了解和熟悉,我们可以拓宽视野,增强创新设计意识,掌握现代设计方法的基本思想和基本方法,初步具有解决机械优化设计和分析问题的能力。学校的图书馆也有许多相关的书籍期刊,通过课本的学习和课外知识的学习以及《机械设计》课程学习的基础,我对设计过程的复杂性和相关基础过程有了一定的认识,其过程主要为首先是任务的提出,确定需求和潜在的需求;然后是可理解的形成,即概念设计,包括扫描技术可能和产生矛盾统一设想;最后是对可能解的评估、优选和确认,并产生最终解。通过这门课程的学习我还解决了另一个问题,对机械设计的现代设计方法的相关类型有了一定的认识。通过课程中的优化设计、解析法、数值法等方面的学习我深刻的认识到现代设计方法主要基于以下四个类型开展设计方案的。主要是结构模块化设计方法、基于产品特征知识的设计方法、系统化设计方法、智能化设计方法四个方面的设计方法,我的学习提

现代控制理论实验报告

现代控制理论实验报告

实验一系统能控性与能观性分析 一、实验目的 1.理解系统的能控和可观性。 二、实验设备 1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台; 三、实验容 二阶系统能控性和能观性的分析 四、实验原理 系统的能控性是指输入信号u对各状态变量x的控制能力,如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间把系统所有的状态引向状态空间的坐标原点,则称系统是能控的。 对于图21-1所示的电路系统,设iL和uc分别为系统的两个状态变量,如果电桥中 则输入电压ur能控制iL和uc状态变量的变化,此时,状态是能控的。反之,当 时,电桥中的A点和B点的电位始终相等,因而uc不受输入ur的控制,ur只能改变iL的大小,故系统不能控。 系统的能观性是指由系统的输出量确定所有初始状态的能力,如果在有限的时间根据系统的输出能唯一地确定系统的初始状态,则称系统能观。为了说明图21-1所示电路的能观性,分别列出电桥不平衡和平衡时的状态空间表达式: 平衡时:

由式(2)可知,状态变量iL和uc没有耦合关系,外施信号u只能控制iL的变化,不会改变uc的大小,所以uc不能控。基于输出是uc,而uc与iL无关连,即输出uc中不含有iL的信息,因此对uc的检测不能确定iL。反之式(1)中iL与uc有耦合关系,即ur的改变将同时控制iL和uc的大小。由于iL与uc的耦合关系,因而输出uc的检测,能得到iL 的信息,即根据uc的观测能确定iL(ω) 五、实验步骤 1.用2号导线将该单元中的一端接到阶跃信号发生器中输出2上,另一端接到地上。将阶跃信号发生器选择负输出。 2.将短路帽接到2K处,调节RP2,将Uab和Ucd的数据填在下面的表格中。然后将阶跃信号发生器选择正输出使调节RP1,记录Uab和Ucd。此时为非能控系统,Uab和Ucd没有关系(Ucd始终为0)。 3.将短路帽分别接到1K、3K处,重复上面的实验。 六、实验结果 表20-1Uab与Ucd的关系 Uab Ucd

机电产品现代设计方法实验报告

课程名称:机电产品现代设计方法 上课时间:2014年春季 机电产品现代设计方法实验报告 姓名: 学号: 班级: 所在学院:机电工程学院 任课教师:金天国张旭堂

实验名称机电产品现代设计方法 姓名学号班级 实验地点实验日期评分 指导教师张旭堂同组成员其他 1 静态存储器扩展实验 1.1 实验目的 (1)掌握典型机电产品多学科协同优化设计软件环境组成,包括建模软件、分析软件、协同平台; (2)自主设计产品模型、分析过程、优化目标; (3)对得到的优化结果进行定性分析,解释结果的合理性,编写上机实验报告。 1.2 实验内容 (1) 轴的有限元分析 (2) 基于Adams的运动学分析与仿真 1.3实验相关情况介绍(包含使用软件或实验设备等情况) 1.3.1使用软件 本实验使用软件为Adams及abaqus,利用Adams进行运动学仿真分析,利用abaqus进行有限元分析。 1.3.2实验设备 计算机。 1.4实验结果 1.4.1基于ADAMS 的运动学仿真 (1)构造ADAMS样机机械模型 根据指导书建立铲车的三维模型。三维模型可以通过专门三维建模软件进行建模,然后导入ADAMS,也可以直接用ADAMS建模。利用ADAMS建模过程在《adams 运动仿真例子》中有详述,直接给出建模后的模型,如图1所示:

图1 铲车模型 (2)构建约束 根据要求构造四个约束:基座和座架之间的创建转动副,轴肩与座架间构建转动副,铲斗与悬臂间构建转动副,悬臂与轴肩之间构建平动副。构建后的模型如图2所示: 图2 添加约束铲车模型 (3)添加运动 根据题意分别对四个运动副添加运动函数: (a)基座和座架之间的创建转动副:360d*time;

现代设计方法实验报告

《现代机械设计方法学》实验报告 班级: 学号: 姓名: 成绩:

实验一、有限元分析 (一)目的: 1、初步掌握有限元软件分析力学问题的过程,包括几何建模、网格划分等前处理功能,掌握各种计算结果的阅读。 2、掌握材料数据、载荷、约束的添加方法。 (二)要求:学生独立完成一个算例的有限元分析,并阅读其计算结果,提交一个算例的分析报告。 (三)计算实例 1、问题的描述 为了考察铆钉在冲压时,发生多大的变形,对铆钉进行分析。 铆钉圆柱高:10mm 铆钉圆柱外径:6mm 铆钉下端球径:15mm 弹性模量:2.06E11 泊松比:0.3 铆钉材料的应力应变关系如下: 应变0.003 0.005 0.007 0.009 0.011 0.02 0.2 618 1128 1317 1466 1510 1600 1610 应力 /Mpa

1、有限元模型。

3、应力云图,可选主应力或σx、σy、τxy、V on Mises应力、Tresca应力之一输出结果图片,指明你所选的应力的最大值及其位置。 (三)思考题: 1、如果要提高边界处计算精度,一般应如何处理? 答:在边界处划分网格 2、有限元网格划分时应注意哪些问题? 答:选取的时候要将编号显示出来,这样就可以更好的选择,网格尽可能的小,这样结果就越准确。

实验二、优化实验 (一)目的: 初步掌握利用ANSYS软件或MATLAB软件对问题进行分析。 (二)要求: 学生独立完成一个算例的分析,并给出算例的计算结果。。 (三)算例 1.实际问题 梁的形状优化,优化目的是使梁的体积最小,同时要求梁上的最大应力不 超过30000psi,梁的最大挠度不大于0.5in,沿长度方向梁的厚度可以变化,但梁端头的厚度为定值t,采用对称建模。 使用两种方法进行优化,两种方法优化结果。 子问题近视法目标ANSYS 百分比(TVOL)体积in3 3.60 3.62 1.004 (DEFL)挠度max in 0.500 0.499 0.998 (STRS)应力max,psi 30000 29740 0.991 第一阶法目标ANSYS 百分比(TVOL)体积in3 3.6 3.61 1.003 (DEFL)挠度max in 0.5 0.5 1.001 STRS)应力max,psi 30000 29768 0.992

现代设计理论与方法重点

绪论 1、设计的的本质是由功能到结构的映射过程,是技术人员根据需要进行构思、计划并把计划变为现实可行的机械系统的过程。 2、计划具有个性化、抽象化、多解性的基本特征。 3、现代设计方法: 计算机辅助设计概念:计算机辅助设计是利用计算机及其图形设备辅助人们进行设计。优化设计是从多种设计方案中选择最佳方案的方法,它以数学中的最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,寻求最优的设计方案。 有限元设计就是利用假想的线和面将连续的介质内部和边界分割成有限大小、有限数目、离散的单位来研究。 稳健设计通过质量工程方法在产品设计阶段就要求把产品设计完美、健全,不受或尽量减少生产线波动带来的影响,以保证产品达到预期的质量效果。 虚拟设计是一种新技术,它可以在虚拟环境中用交互手段对在计算机内建立的模型进行修改,缩短了产品开发周期,提高了产品设计质量和一次设计成功率。 创新设计、智能设计、表面设计、绿色设计、动态设计、摩擦设计、协同设计、工业设计等。一 1、计算机辅助设计(简称CAD):是计算机科学领域的一门重要技术,是集计算、设计绘图、工程信息管理、网络通信等领域知识于一体的高新技术,是先进制造技术的重要组成部分。 2、CAD:(computer aided design):即计算机辅助设计CAE(computer aided engineering):即计算机辅助分析,CAM(computer aided manufacture):即计算机辅助制造,CAPP(computer aided process planning):即计算机辅助工艺设计,CIMS(computer integrated manufacturing system):即计算机集成制造系统, 8、CAD的特点:1)规范化、高质量规范设计流程,统一文档格式,提高设计质量。9、CAD发展方向:脱离图版,实现全自动无纸化设计、生产和制造,是CAD发展的最终目标。 10.CAD的基本功能及优点:1)人机交互 2)几何造型 3)计算分析 4)系统仿真 5)工程绘图 6)数据管理 11、CAD系统组成:CAD系统的硬件结构:计算机、图形输入设备、输出设备 CAD系统的软件:软件系统、支撑软件、应用软件。 二 1、优化设计:是从多种方案中选择最佳方案的设计方法。它以数学中最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,寻求最优的设计方案。 2、P49页:例2-1 黄金分割法求函数,3无约束优化方法:坐标轮换法、牛顿法、 约束优化方法:遗传算法、惩罚函数法、复合形法多目标优化方法:多目标优化问题、主要目标法、统一目标法 三 1、有限元法的概念:把复杂的结构看成由有限个单元组成的整体的一种设计方法 2、有限元法的基本思想:化整为零,积零其整,把复杂的结构看成由有限个单元组成的整体 3、弹性力学中的基本假设:连续性假设,完全弹性假设,各向同性假设,均匀性假设,微小性假设,无初应力假设 2、弹性力学的基本方程:平衡方程、几何方程、物理方程、边界条件

现代设计方法及理论

2009-2010学年第二学期研究生课程考核 (读书报告、研究报告) 考核科目:现代设计方法及理论 学生所在院(系):机电学院 学生所在学科:机械制造及其自动化 题目:机械产品方案的现代设计方法及发展趋势 第 1 页(共 6 页)机械产品方案的现代设计方法及发展趋势

科学技术的飞速发展,产品功能要求的日益增多,复杂性增加,寿命期缩短,更新换代速度加快。然而,产品的设计,尤其是机械产品方案的设计手段,则显得力不从心,跟不上时代发展的需要。目前,计算机辅助产品的设计绘图、设计计算、加工制造、生产规划已得到了比较广泛和深入的研究,并初见成效,而产品开发初期方案的计算机辅助设计却远远不能满足设计的需要。为此,作者在阅读了大量文献的基础上,概括总结了国内外设计学者进行方案设计时采用的方法,并讨论了各种方法之间的有机联系和机械产品方案设计计算机实现的发展趋势。 根据目前国内外设计学者进行机械产品方案设计所用方法的主要特征,可以将方案的现代设计方法概括为下述四大类型。 1、系统化设计方法 系统化设计方法的主要特点是:将设计看成由若干个设计要素组成的一个系统,每个设计要素具有独立性,各个要素间存在着有机的联系,并具有层次性,所有的设计要素结合后,即可实现设计系统所需完成的任务。 系统化设计思想于70年代由德国学者Pahl和Beitz教授提出,他们以系统理论为基础,制订了设计的一般模式,倡导设计工作应具备条理性。德国工程师协会在这一设计思想的基础上,制订出标准VDI2221“技术系统和产品的开发设计方法。 制定的机械产品方案设计进程模式,基本上沿用了德国标准VDI2221的设计方式。除此之外,我国许多设计学者在进行产品方案设计时还借鉴和引用了其他发达国家的系统化设计思想,其中具有代表性的是: (1)将用户需求作为产品功能特征构思、结构设计和零件设计、工艺规划、作业控制等的基础,从产品开发的宏观过程出发,利用质量功能布置方法,系统地将用户需求信息合理而有效地转换为产品开发各阶段的技术目标和作业控制规程的方法。 (2)将产品看作有机体层次上的生命系统,并借助于生命系统理论,把产品的设计过程划分成功能需求层次、实现功能要求的概念层次和产品的具体设计层次。同时采用了生命系统图符抽象地表达产品的功能要求,形成产品功能系统结构。 (3)将机械设计中系统科学的应用归纳为两个基本问题:一是把要设计的产品作为一个系统处理,最佳地确定其组成部分(单元)及其相互关系;二是将产品设计过程看成一个系统,根据设计目标,正确、合理地确定设计中各个方面的工作和各个不同的设计阶段。

现代控制理论实验报告河南工业大学

河南工业大学 现代控制理论实验报告姓名:朱建勇 班级:自动1306 学号:201323020601

现代控制理论 实验报告 专业: 自动化 班级: 自动1306 姓名: 朱建勇 学号: 201323020601 成绩评定: 一、实验题目: 线性系统状态空间表达式的建立以及线性变换 二、实验目的 1. 掌握线性定常系统的状态空间表达式。学会在MATLAB 中建立状态空间模型的方法。 2. 掌握传递函数与状态空间表达式之间相互转换的方法。学会用MATLAB 实现不同模型之 间的相互转换。 3. 熟悉系统的连接。学会用MATLAB 确定整个系统的状态空间表达式和传递函数。 4. 掌握状态空间表达式的相似变换。掌握将状态空间表达式转换为对角标准型、约当标准 型、能控标准型和能观测标准型的方法。学会用MATLAB 进行线性变换。 三、实验仪器 个人笔记本电脑 Matlab R2014a 软件 四、实验内容 1. 已知系统的传递函数 (a) ) 3()1(4)(2++=s s s s G

(b) 3486)(22++++=s s s s s G

(c) 6 1161)(232+++++=z z z z z z G (1)建立系统的TF 或ZPK 模型。 (2)将给定传递函数用函数ss( )转换为状态空间表达式。再将得到的状态空间表达式用函 数tf( )转换为传递函数,并与原传递函数进行比较。 (3)将给定传递函数用函数jordants( )转换为对角标准型或约当标准型。再将得到的对角 标准型或约当标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。 (4)将给定传递函数用函数ctrlts( )转换为能控标准型和能观测标准型。再将得到的能控标 准型和能观测标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。

物体运动的方式实验报告

物体运动的方式实验报告 (文章一):实验报告四年级4课.小吊车活动1:做小吊车(分组实验)制作目的:做小吊车并研究小吊车原理制作材料及工具:小纸盒吊车臂吊臂支架线绳两个铁丝钩一个剪刀锥子胶水钩码制作过程: 1.小组分工合作 2.观察小吊车模型组装各部分①四个点要对称,固定牢固;②绳子要从前往后穿,不要穿反了; 3.调试小吊车分别拉动两根线,看看小吊车的臂能否灵活运动. 实验现象:小吊车能提起或放下钩码实验结论:放松上牵引绳,拉紧下牵引绳,吊臂向下运动;拉紧上牵引绳,放松下牵引绳,吊臂向上运动。活动2:收与放实验目的:推断动物与人的肢体运动原理(分组实验) 实验过程: 1. 弯曲手臂,感受上臂上下肌肉的长短松紧变化。 2.伸直手臂,感受上臂上下肌肉的长短松紧变化。 3.反复几次体会与小吊车的原理的联系。实验现象:手臂骨骼就像小吊车的吊臂,肌肉就像绳子,手臂运动时,当肱二头肌收缩,肱三头肌舒张时,肱二头肌牵动前臂向内收缩;当肱三头肌收缩,肱二头肌舒张时,肱三头肌牵动前臂向外伸展. 实验结论:前臂收缩类似小吊车抬起重物。前臂伸展类似小吊车放下重物。6课.做沙盘(分组实验)制作目的:通过制作校园沙盘模型培养学生的设计制作能力。制作材

料:硬纸板学校平面图橡皮泥潮湿的沙土废旧泡沫包装纸小木棍颜料盒剪刀制作步骤:对校园建筑的布局进行观测2.用大的硬纸板做底座。在纸板上画好学校平面图。(明确建筑物.树木等的位置) 3.用橡皮泥旧泡沫等材料做出立体的楼房等校园建筑物,根据平面图摆放好位置。(可以用长方体或正方体的泡沫做楼房,硬纸板做围墙,小木棍做旗杆等)。4.要注意建筑物的比例。(四年级的学生还不能很精确地计算出比例尺,教师适当指导。)8课.快与慢实验目的:研究小车运动的快慢(分组实验) 实验材料:秒表(或电子手表)、长尺、玩具车(学生自带),橡皮泥,马达、电池等(学生自带)实验过程: 1.小组做好分工:赛车手、计时员、测量员、记录员。 2.找好起点(必要时确定好终点); 3.秒表做好归零; 4.在相同时间内必须进行多次测量(不少于3次),并做好记录 5. .在相同距离内必须进行多次测量(不少于3次),并做好记录实验结论:1:相同时间内经过的距离越长,物体运动的速度越快2:相同距离下所用的时间越短,物体运动的速度越快活动2:玩小车实验目的:研究小车运动的快慢与载重物及路面光滑程度是否有关?(对比试验) 实验材料:秒表(或电子手表), 木板, 玩具车(学生自带),钩码, 毛巾. 实验方法:1做好小组分工:赛车手、计时员、记录员; 2先测量空车时小车在木板上运动时间; 3别的条件不变,向小车上加钩

现代设计方法论文

武汉轻工大学 《现代设计方法》课程结业论文题目:现代设计方法在汽车设计中的应用 姓名 学号 班级 专业 院(系) 2017 年5月21 日

现代设计方法在汽车设计中的应用 宋家鹏 (武汉轻工大学机械工程学院,湖北武汉430070) 摘要:本文在分析汽丰设计方法发展的基础上,重点介绍了汽车设计中有待进一步推广应用的几种现代设计方法和技术。 关键词:现代设计方法;系统工程;模糊分析设计;计算机辅助设计(CAD) 0 引言 现代科学技术的发展对汽车的性能、可靠性、经济性等提出更高的要求同时也为汽车的设计、制造提供了改进和创新的设计方法。据统计,一般汽车的质量和性能有60%-70%取决于汽车设计。因此,在设计新产品时应研究和采用新的设计方法和技术,以适应现代汽车发展的要求。为了寻求保证设计质量、加快设计速度、避免和减少设计失误的方法和措施,引发了“汽车现代设计方法”的研究。 1现代设计和传统设计的比较 传统的设计方法是以经验总结为基础,运用力学和数学而形成的经验、公式、图表、设计手册等作为设计的依据,通过经验公式、近似系数或类比等方法进行设计。而现代设计方法则是强调创造性,在注重产品整体功能基础上以现代设计方法和计算机设计为工具的系统设计。这种设计不但可以大大提高设计的质量、精度和效率,而且可以将产品的适应性、经济性、可靠性统一起来,从而高效地设计出性能优良、经济效益显著的新型产品。目前,设计方法和技术正处于不断改善、不断创造的历史时期。可以预见,新的汽车产品将随着现代设计方法、技术和设计科学体系的完善而有新的突破。 2现代设计法的主要内容 现代设计法是在总结传统设计的经验与教训、吸收国外各设计流派的先进内容的基础上,以形态学为分类手段,以方法学为思想指导,具体形成以下十一论: 功能论:现代设计法的宗旨。是保证设计要求功能实现的方法论。 突变论:现代设计法的基石。是设计创新的基础,如创造性设计。 系统论:现代设计工作的前提。进行系统辩识、系统分析,如系统分析法、人机工程等。 信息论:现代设计的依据。进行信号处理,如信息分析法、技术预测法等。 对应论:现代设计的捷径。采用相似、模拟,如相似设计等。 优化论:现代设计的目标。如优化设计等。 智能论;现代设计的核心。发挥人的主动性,使用人工智能,促进设计自动化,如CAD等。 离散论:现代设计的细解。连续体离散求数值解,如有限元和边界元方法。 控制论:现代设计的深化。如动态分析设计法等。 模糊论:现代设计的发展。模糊性定量描述,如模糊综合评判和决策等。 艺术论:现代设计的美感。如造型设计等。

现代控制理论课程报告

现代控制理论课程总结 学习心得 从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。现代控制论是用状态空间方法表示,概念抽象,不易掌握。对于《现代控制理论》这门课程,在刚拿到课本的时候,没上张老师的课之前,咋一看,会认为开课的内容会是上学期学的控制理论基础的累赘或者简单的重复,更甚至我还以为是线性代数的复现呢!根本没有和现代控制论联系到一起。但后面随着老师讲课的风格的深入浅出,循循善诱,发现和自己想象的恰恰相反,张老师以她特有的讲课风格,精心准备的ppt 课件,向我们展示了现代控制理论发展过程,以及该掌握内容的方方面面,个人觉得,我们不仅掌握了现代控制理论的理论知识,更重要的是学会了掌握这门知识的严谨的逻辑思维和科学的学习方法,对以后学习其他知识及在工作上的需要大有裨益,总之学习了这门课让我受益匪浅。 由于我们学习这门课的课时不是很多,并结合我们学生学习的需求及所要掌握的课程深入程度,张老师根据我们教学安排需要,我们这学期学习的内容主要有:1.绪论;2.控制系统的状态表达式;3.控制系统状态表达式的解;4.线性系统的能空性和能观性;5.线性定常系统的综合。而状态变量和状态空间表达式、状态转移矩阵、系统的能控性与能观性以及线性定常系统的综合是本门课程的主要学习内容。当然学习的内容还包括老师根据多年教学经验及对该学科的研究的一些深入见解。 在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合,各学科之间相互交叉、相互渗透,出现了横向科学。作为跨接于自然科学和社会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的必修课。 经典控制理论的特点 经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。通常是采用反馈控制,构成所谓闭环控制系统。经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。 1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;2.经典控制理论采用试探法设计系统。即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。虽然这种设计方法具有实用等很多完整,从而促使现代控制理论的发展:对经典理论的精确化、数学化及理论化。优点,但是,在推理上却是不能令人满意的,效果也

哈工大机电产品现代设计方法实验报告

1 实验目的 (1)掌握典型机电产品多学科协同优化设计软件环境组成,包括建模软件、分析软件、协同平台; (2)自主设计产品模型、分析过程、优化目标; (3) 对得到的优化结果进行定性分析,解释结果的合理性,编写上机实验报告。 2 实验内容 (1) 轴或负载台的有限元分析 (2) 基于Adams的运动学分析与仿真 3实验相关情况介绍(包含使用软件或实验设备等情况) 网络协同设计环境,如图1所示:包括产品CAD建模、有限元分析FEM、动力学仿真ADAMS和控制仿真MATLAB。计算机网络硬件环境和相应软件环境。图形工作站和路由器,安装协同设计仿真软件。 型 图1 协同设计仿真平台组成

典型机电产品协同设计仿真工作流程如下图2所示。 1)利用CAD建模工具,建立产品模型; 2)利用ADAMS建立产品运动学模型; 3)根据CAD和ADAMS传过来的结构模型和边界条件分析零件应力场和应变场;4)用ADAMS分析得到的运动参数(位移、速度)。 CAD模型 (STEP / IGES格式) 1.产品CAD建模 (CATIA) 3.CAE有限元分 析 (CATIA) FEM 分析结果 (应力、应变、模态) 2.动力学分析 (ADAMS) 驱动力、反应 时间 有限元输入载荷 4.控制仿真 (MATLAB) 运动参数:位 移、速度 动力参数:惯 量、载荷 图2 协同设计仿真平台组成 SysML语言是UML语言(Unified Modeling Language,统一建模语言,一种面向对象的标准建模语言,用于软件系统的可视化建模)在系统工程应用领域的延续和扩展,是近年提出的用于系统体系结构设计的多用途建模语言,用于对由软硬件、数据和人综合而成的复杂系统的集成体系结构进行可视化的说明、分析、设计及校验。 在这里我们绘制参数图如下。在下面的参数图中,我们确定了系统中各部件的相互约束情况。

相关主题
文本预览
相关文档 最新文档