当前位置:文档之家› NASACR-1998-208708 Properties of PZT-Based Piezoelectric Ceramics Between –150 and 250 o C

NASACR-1998-208708 Properties of PZT-Based Piezoelectric Ceramics Between –150 and 250 o C

NASACR-1998-208708 Properties of PZT-Based Piezoelectric Ceramics Between –150 and 250 o C
NASACR-1998-208708 Properties of PZT-Based Piezoelectric Ceramics Between –150 and 250 o C

NASA/CR-1998-208708

Properties of PZT-Based Piezoelectric Ceramics Between –150 and 250o C Matthew W. Hooker

Lockheed Martin Engineering & Sciences Co., Hampton, Virginia September 1998

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

?TECHNICAL PUBLICATION. Reports of completed research or a major

significant phase of research that

present the results of NASA programs

and include extensive data or theoretical

analysis. Includes compilations of

significant scientific and technical data

and information deemed to be of

continuing reference value. NASA

counter-part of peer reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

?TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain

minimal annotation. Does not contain

extensive analysis.?CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored

contractors and grantees.

?CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored

or co-sponsored by NASA.

?SPECIAL PUBLICATION. Scientific, technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

?TECHNICAL TRANSLATION. English-language translations of foreign

scientific and technical material

pertinent to NASA’s mission.

Specialized services that help round out the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

?Access the NASA STI Program Home Page at https://www.doczj.com/doc/dd12557146.html,

?E-mail your question via the Internet to help@https://www.doczj.com/doc/dd12557146.html,

?Fax your question to the NASA Access Help Desk at (301) 621-0134

?Phone the NASA Access Help Desk at (301) 621-0390

?Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information 7121 Standard Drive

Hanover, MD 21076-1320

NASA/CR-1998-208708

Properties of PZT-Based Piezoelectric Ceramics Between –150 and 250o C

Matthew W. Hooker

Lockheed Martin Engineering & Sciences Co., Hampton, Virginia

National Aeronautics and

Space Administration

Langley Research Center Prepared for Langley Research Center Hampton, Virginia 23681-2199under Contract NAS1-96014 September 1998

Available from the following:

NASA Center for AeroSpace Information (CASI)National Technical Information Service (NTIS) 7121 Standard Drive5285 Port Royal Road

Hanover, MD 21076-1320Springfield, VA 22161-2171

(301) 621-0390(703) 487-4650

Abstract

The properties of three PZT-based piezoelectric ceramics and one PLZT electrostrictive ceramic were measured as a function of temperature. In this work, the dielectric, ferroelectric polarization versus electric field, and piezoelectric properties of PZT-4, PZT-5A, PZT-5H, and PLZT-9/65/35 were measured over a temperature range of -150 to 250o C. In addition to these measurements, the relative thermal expansion of each composition was measured from 25 to 600o C, and the modulus of rupture of each material was measured at room temperature. This report describes the experimental results and compares and contrasts the properties of these materials with respect to their applicability to intelligent aerospace systems.

Keywords: piezoelectric, PZT, PLZT, temperature

Introduction

The term piezoelectricity refers to the relationship between pressure and electricity that exists within a unique family of materials. Piezoelectrics are materials that either output a voltage when subjected to a mechanical stress or exhibit a dimensional change when an electric field is applied. These two behaviors are referred to as the direct and indirect modes of operation respectively [1-2]. Both modes of piezoelectric operation are currently being utilized in modern aerospace systems in such diverse applications as vibration cancellation and optical positioning [3-5]. Because these materials have the ability to sense and respond to changes in their environment, they are often referred to as “smart” or “intelligent” materials [6].

The primary applications of piezoelectric technologies in fixed-wing aircraft include the active control of boundary layers along leading edges [7], the suppression of internal cabin noise [8], and the elimination of panel flutter [9] and tail buffeting [10]. This technology is also being applied in helicopters to eliminate the vibrations present in rotor blades [11-13].

In addition to the aeronautical applications of intelligent structures, piezoelectric technologies are also being developed for use in spacecraft systems. In recent years, satellite systems have become smaller and lighter to reduce the cost of launching the payloads into orbit. As spacecraft masses have been reduced, however, the elimination of vibrational disturbances has become a critical design issue. Since many of the scientific instruments aboard these spacecraft require precision pointing to perform their intended functions, the spacecraft must be mechanically stable for the payloads to function as designed. As such, methods of incorporating intelligent structures to minimize jitter in spacecraft structures has become a critical area of research and development in the aerospace community [14-15].

Piezoelectric materials are typically incorporated into aerospace structures by either applying a patch-style device to the surface of the structure [16-17] or by embedding the device into a graphite-epoxy composite structure [18-20]. In each instance, distributed networks of sensors and actuators are used to sense and nullify vibrational disturbances. Similarly-controlled systems are also being developed for use in space-based instruments to actively position optical components [21]. These control systems typically include a position sensor that locates the optical component and a piezoelectric drive mechanism which positions the optic based on real-time feedback from the position sensor.

Because of the wide range of operating conditions for the systems under development, careful consideration must be given to the selection of piezoelectric materials. This is particularly important

when selecting materials for use in systems that will be exposed to a wide range of operating temperatures. To address these concerns, the dielectric, ferroelectric, and electro-mechanical properties

of four PZT-based materials were evaluated over a temperature range of -150 to 250o

C. Additionally, the

thermal expansion properties were measured from 25 to 600o

C, and the moduli of rupture were measured at room temperature. This report describes the experimental results and compares and contrasts the properties of the materials evaluated with respect to their applicability to intelligent aerospace systems.

Experimental Procedure

Materials Evaluated

The properties of three piezoelectric materials and one electrostrictive composition were measured between -150 and 250°C. The piezoelectric materials evaluated in this work were commercially-produced PZT-4, PZT-5A, and PZT-5H ceramics. The electrostrictive materials, PLZT-9/65/35, were produced by tape casting powders synthesized by the solid state reaction of PbO, La 2O 3, ZrO 2, and TiO 2.All of the ceramics used in this study were obtained in an unelectroded and unpoled condition and possessed density values that were at least 95% of theoretical density. Prior to testing, gold electrodes were sputtered onto the major surfaces of each specimen.

Initially, the room temperature (25o

C) dielectric, ferroelectric, and piezoelectric properties of each composition were determined. Once the initial room temperature evaluations were complete, the properties of each composition were then measured between -150 and 250°C. The specific details of each measurement are described below.

During the thermal tests, each specimen was placed in an environmental chamber with a temperature sensor located in close proximity to the test article. Throughout this investigation, multiple specimens of each composition were tested at each condition, and the average value of each property was determined.

Dielectric and Ferroelectric Measurements

The dielectric constant (K), dissipation factor (tan δ), and electrical resistivity of each composition were measured at frequencies of 100 Hz, 1 kHz, 10 kHz, and 100 kHz using an HP 4284A LCR meter.From this data, the Curie point (T C ) of each specimen exhibiting a maximum dielectric constant between -150 and 250o

C was determined.

Next, the ferroelectric polarization versus electric field (P-E) properties of each composition were measured at 1 Hz using a Sawyer-Tower circuit. The P-E properties of the soft piezoelectric materials (i.e., PZT-5A and PZT-5H), as well as the electrostrictive specimens, were measured in an unpoled condition. However, because the hard piezoelectric ceramics (i.e., PZT-4) are not initially polarizable at room temperature, these specimens were poled at 100°C prior to testing. The properties of these materials were tested in the polarized state in order to accurately simulate the polarization state of the materials as they would be used in practice.

Piezoelectric Measurements

The piezoelectric coefficients of each composition were measured in accordance with published standards [22-23]. The various specimen geometries and electrode patterns necessary for determining the piezoelectric coefficients for radial, transverse, and longitudinal modes of operation are shown in Figure 1. The circular ceramics used in this work were 25.4 mm in diameter and 250 to 380 μm thick. The rectangular specimens had dimensions 2 mm x 2 mm x 7.5 mm.

Dimensional requirements

Used for

determination of

{

{k 33, K 3, D S 33, S 33d 33, g 33

T

D E k 31, K 3, D S 11, S 11d 31, g 31

T D E (a)

(b)

(c)

l 2.5 w, t ≥

d 10 t ≥l 3.5 w, t

≥k p , K 3, D Q T m

l

t

t

l

d

t

Figure 1. Specimen geometries and polarization directions associated with the measurement of radial, transverse,

and longitudinal piezoelectric properties.

The resonance properties of the poled piezoelectric specimens were measured using an HP 4194A Impedance Analyzer. The effective electromechanical coupling coefficient, k eff , of the radial test specimens was then calculated using the resonance/antiresonance method described by the relation [23]:

k eff =

?f f f n 2m 2

n 2

(1)where f m and f n refer to the frequencies of minimum and maximum impedance, respectively. In addition to the k eff values, the planar coupling coefficient, k p , for each composition was determined using the procedures described in references 22 and 23.

The piezoelectric coefficients for the transverse (k 31, d 31, and g 31) and longitudinal (k 33, d 33, and g 33)modes of operation were determined by measuring the resonance properties of the thickness-poled and length-poled ceramics, respectively. The coefficients describing the transverse mode of operation were calculated using the following relations:

k A

1+A

31=

(2)where ()A =

?ππ22f f f f f m n n m m

tan (3)S 11

E =1422

ρf l m (4)

d k K S 31313=ε011E

(5)

g d K 3131

3

=

ε0 (6)The coefficients for the longitudinal mode of operation were calculated using the relations:

()k 33=

?ππ22f f f f f m n n m n

tan (7)S 33D =

1

422

ρf l n (8)

S S 1-k 33

E 33D

33

2= (9)d k K S 33333E

=ε033 (10)

g d K 33

33

3

=ε0 (11)All of the symbols used in equations 1-11 are defined in Table 1.

Table 1. Definition of symbols used in the determination of piezoelectric coefficients.

Symbol Definition Units d

31

Transverse strain constant m/V

d

33

Extensional strain constant m/V

D (superscript)At constant electric displacement

E (superscript)At constant electric field

f

m

Frequency of minimum impedance Hz

f

n

Frequency of maximum impedance Hz

g

31

Transverse voltage constant V m/N

g

33

Extensional voltage constant V m/N

k

31

Transverse coupling coefficient

k

33

Extensional coupling coefficient

k

eff

Effective electro-mechanical coupling coefficient

k

p

Planar coupling coefficient

K

3

Dielectric constant

l Specimen length m

S 11, S

33

Elastic compliance constants m2/N

ε

Permittivity of free space, 8.85 x 10-12F/m ρDensity kg/m3

Thermal Expansion Measurements

The thermal expansion properties of unelectroded, unpoled specimens with dimensions 25 mm x 4mm x 3 mm were measured from 25 to 600°C using a Linseis model L75 dilatometer. All of these tests were performed in an argon atmosphere using a heating rate of 2°C/min. Once the measurements were complete, the relative change in length, ?l/l 0, for each material was calculated.

Mechanical Testing

The flexural strength of each composition was measured at room temperature using a four-point bend test. In this work, unelectroded and unpoled ceramics with dimensions of 38 mm x 6 mm x 4 mm were tested to failure. All of the mechanical testing was performed using a load rate of 0.25 mm/min and inner and outer span lengths of 17 and 34 mm, respectively. Once all of the tests were complete, the Modulus of Rupture (MOR) of each specimen was calculated using the relation [24]:

MOR =

3P(L ?a )

2bd 2

(12)

where P is the mechanical load required to break the specimen, L is the outer span distance, a is the inner span distance, b is the width of the bar, and d is the depth of the bar. Between five and ten specimens of each composition were tested, and an average MOR value was calculated for each composition.

Experimental Results

Room Temperature Properties

As shown in Table 2, all of the materials evaluated in this work possessed room-temperature dielectric constants ranging from 1100 to 5000. Additionally, each of the piezoelectric compositions exhibited E C

and P R values in excess of 5.5 kV/cm and 12.9 μC/cm 2

, whereas the electrostrictive possessed E C and P R

values of 2.5 kV/cm and 1.1 μC/cm 2

, respectively.

After the initial dielectric and ferroelectric measurements were performed, additional materials of each composition were poled and tested. The piezoelectric specimens exhibited k eff values ranging from 0.49to 0.53, with the highest values exhibited by the PZT-5H ceramics. The PZT-5H ceramics also exhibited the highest d 31 and d 33 values followed by the PZT-5A and PZT-4 compositions, respectively. Because of the cubic nature of the PLZT-9/65/35 crystal structure, these materials do not exhibit strong resonance properties, and therefore, the calculation of piezoelectric coefficients for these materials yields negligible values.

Table 2. Room temperature (25o C) dielectric, ferroelectric, and piezoelectric properties of PZT-based ceramics.Property Units PZT-4PZT-5A PZT-5H PLZT-9/65/35

K (1 kHz)---1400160034005000tan δ (1kHz)---0.050.020.020.06

E C kV/cm

14.411.8 5.5 2.5P R μC/cm

2

31.023.012.9 1.1P SAT μC/cm 2

40.127.719.520.8k eff ---0.490.500.53---k p

---0.540.560.59---d 33 (x10-12)m/V 225350585---g 33 (x10-3)Vm/N 8.516.612.5---k 33

---0.350.530.59---d 31 (x10-12)m/V -85-190-265---g 31 (x10-3)Vm/N -7.5-13.7-8.5---k 31

---0.220.400.36---Density

g/cm 3

7.6

7.7

7.4

7.3

Dielectric and Resistive Properties

As shown in Figure 2, all of the materials evaluated in this work exhibited their lowest dielectric constant values at -150°C, and as the temperature was increased the dielectric constant of each composition also increased. The dielectric constants of the PZT-4 and PZT-5A ceramics increased steadily as a function of temperature with neither possessing a Curie point in the temperature range evaluated in this study. The other two materials evaluated, PZT-5H and PLZT-9/65/35, exhibited Curie points within the -150 to 250°C range. The PZT-5H ceramics possessed a T c value of 180°C at each frequency, whereas the PLZT-9/65/35 materials exhibited T c properties typical of a relaxor ferroelectric (i.e., varying with frequency). In this instance, the temperature at which the maximum dielectric constant was observed increased from 72 to 91°C as the measurement frequency increased from 100 Hz to 100kHz.

The dissipation factors for each material were also found to be dependent upon both the temperature and measurement frequency. As shown in Figure 3, the tan δ values for PZT-4 were approximately 0.05over the entire temperature range when measured at 10 and 100 kHz. At 100 Hz and 1 kHz, however, the

dissipation factor began to increase at 125 and 150o

C, respectively. The tan δ values for PZT-5A were also found to be relatively constant when measured at frequencies of 100 Hz, 1 kHz, and 10 kHz.However, at 100 kHz the dielectric loss was significantly higher over the entire temperature range.Unlike the previous two materials discussed, the PZT-5H and PLZT-9/65/35 ceramics exhibited maximum tan δ values at each measurement frequency which correspond to their respective Curie points.In both instances, the dissipation factors were found to increase with increasing measurement frequency as seen in Figures 3 (c) and 3 (d).

(a) PZT-4

01000

200030004000-200

-100

010*******Temperature (C)

D i e l e c t r i c C o n s t a n t

100 Hz 1 kHz 10 kHz 100 kHz

(b) PZT-5A

1000

200030004000

-200-1000100200300

Temperature (C)

D i e l e c t r i c C o n s t a n t

100 Hz 1 kHz 10 kHz 100 kHz

(c) PZT-5H

02000400060008000100001200014000

16000

-200

-100

010*******Temperature (C)D i e l e c t r i c C o n s t a n t

100 Hz 1 kHz 10 kHz 100 kHz

(d) PLZT-9/65/35

2000

4000600080001000012000

-200-1000100200300

Temperature (C)

D i e l e c t r i c C o n s t a n t

100 Hz 1 kHz 10 kHz 100 kHz

Figure 2. Dielectric constant versus temperature data for (a) PZT-4, (b) PZT-5A, PZT-5H, and (d) PLZT-9/65/35.

(a) PZT-4

00.5

1

1.5-200

-100

100

200

300

Temperature (C)

t a n δ

100 Hz

1 kHz

10 kHz 100 kHz

(b) PZT-5A

0.010.020.030.04

0.05

-200-1000100200300

Temperature (C)

t a n δ

100 Hz

1 kHz

10 kHz

100 kHz

(c) PZT-5H

00.050.10.15

0.2

-200

-100

0100

200

300

Temperature (C)t a n δ

100 Hz

1 kHz

10 kHz 100 kHz

(d) PLZT-9/65/35

0.050.10.15

0.2

-200-1000100200300

Temperature (C)

t a n δ

100 Hz

1 kHz 10 kHz 100 kHz

Figure 3. Dissipation factor (tan δ) versus temperature data for (a) PZT-4, (b) PZT-5A, PZT-5H, and (d) PLZT-9/65/35.

As shown in Figure 4, the resistivity of the PZT-4 ceramics remained relatively constant between -150

and 50o

C. However, as the temperature was further increased the resistivity was found to decrease

significantly. For example, the resistivity measured at 100 Hz decreased from 109 ?-cm at 50o

C to less

than 107 ?-cm at 250o

C. The PZT-5A ceramics were also found to possess a resistivity on the order of 109 ?-cm at -150o

C when measured at 100 Hz. Although the resistivity of the PZT-5A specimens was found to decrease with increasing temperature, these materials did not exhibit the sharp decrease in

resistivity exhibited by the PZT-4 ceramics as the measurement temperature exceeded 50o

C.

The resistivity of the PZT-5H materials was also found to decrease with increasing temperature. In this instance, however, the resistance reached a minimum value at the Curie point and increased as the

test specimen was heated to 250o

C. A resistance minimum corresponding to the Curie temperature was also observed for the PLZT-9/65/35 ceramics. As previously noted, this material is a relaxor ferroelectric

and therefore the temperature of minimum resistance was found to increase from 72 to 91o

C as the measurement frequency increased from 100 Hz to 100 kHz.

(a) PZT-4

1.E+04

1.E+061.E+08

1.E+10

-200

-100

100

200

300

Temperature (C)

R e s i s t i v i t y (?-c m )

100 Hz

1 kHz 10 kHz 100 kHz

(b) PZT-5A

1.E+04

1.E+06

1.E+08

1.E+10

-200

-100

100

200

300

Temperature (C)

R e s i s t i v i t y (?-c m )

100 Hz 1 kHz 10 kHz 100 kHz

(c) PZT-5H

1.E+02

1.E+041.E+061.E+08

1.E+10

-200

-1000100200300Temperature (C)R e s i s t i v i t y (?-c m )

100 Hz

1 kHz 10 kHz 100 kHz

(d) PLZT-9/65/35

1.E+02

1.E+041.E+061.E+08

1.E+10

-200

-100

100

200

300

Temperature (C)

R e s i s t i v i t y (?-c m )

100 Hz 1 kHz 10 kHz 100 kHz

Figure 4. Resistivity versus temperature data for (a) PZT-4, (b) PZT-5A, (c) PZT-5H, and (d) PLZT-9/65/35.

Ferroelectric Polarization versus Electric Field Properties

As shown in Figures 5 (a) to 5 (c), all of the piezoelectric ceramics evaluated in this work possessed

maximum remanent polarization values between 0 and 50o

C, indicating that the highest induced polarization states occur near room temperature. For each composition tested, the P R values were lowest

at -150o

C and increased until a maximum value was reached. As the temperature was further increased beyond the temperature at which the maximum value was observed, the P R values of each composition decreased steadily over the balance of the temperature range.

As previously mentioned, the resistivity of the PZT-4 materials decreased as the materials were heated

beyond 50o

C. Because of this decrease in resistance, calculation of the P R values at temperatures above

120o

C indicates an increase that is due to the conductive nature of these materials at high temperatures.

The increase in the P R and P SAT values above 120o

C is illustrated in Figure 5 (a). As the temperature was further increased, the application of high electric fields ultimately led to the breakdown of these

specimens. Therefore, P-E data for this material was not collected above 160o

C.

Unlike the PZT-4 specimens, the PZT-5A ceramics were polarizable over the entire temperature

range. As shown in Figure 5 (b), the P R values for this composition increased from 2 μC/cm 2 at -150o

C to

a maximum value of 25 μC/cm 2 at 25o C. As the temperature was further increased to 250o

C, the P R values

decreased to 20 μC/cm 2

.

As shown in Figures 5 (c) and 5 (d), the P R values for both PZT-5H and PLZT-9/65/35 reached

maximum values near 25o

C and then decreased steadily with increasing temperature until the material no longer exhibited a ferroelectric hysteresis. Each of these latter compositions exhibited paraelectric P-E behaviors at each measurement temperature above their respective T c values.

The coercive field values for each composition were also found to exhibit a maximum value and then decrease with increasing temperature. As seen in Figures 5 (a) to 5 (d), the maximum coercive field

values were found to occur between -100 and -50o

C. As was noted in the P R behaviors, the E C values for the PZT-5H and PLZT-9/65/35 materials decreased to zero at their respective Curie points, indicating that the ferroelectric domains are not spontaneously reversible and that a remanent polarization state can not be induced above that temperature.

(a) PZT-40

510152025

-200-150-100-50

050100150200250300

Temperature (o

C)

E C (k V /c m )

102030405060

P (μC/cm 2)

P SAT P R

E C

P R and P SAT increases above 120o

C due to decrease in resistivity

Figure 5. Coercive field (E C ), remanent polarization (P R ), and saturation polarization (P SAT ) versus temperature

properties of (a) PZT-4, (b) PZT-5A, (c ) PZT-5H, and (d) PLZT-9/65/35.

(b) PZT-5A

5101520

-200-150-100-50

050100150200250300

Temperature (o

C)

E C (k V /c m )

05101520253035P (μC/cm 2)

P SAT P R

E C

(c) PZT-5H 0

510

1520

-200-150-100-50

050100150200250300

Temperature (o

C)

E C (k V /c m )

510152025P (μC/cm 2)P SAT

P R

E C

(d) PLZT-9/65/35

5101520-200-150-100-50

050100150200250300

Temperature (o

C)

E C (k V /c m )

510152025

P (μC/cm 2)P SAT

P R

E C

Figure 5 (continued). Coercive field (E C ), remanent polarization (P R ), and saturation polarization (P SAT ) versus

temperature properties of (a) PZT-4, (b) PZT-5A, (c ) PZT-5H, and (d) PLZT-9/65/35.

In addition to the graphs summarizing the ferroelectric hysteresis properties of each composition from

-150 to 250o

C, typical examples of the P-E behaviors of each composition at -150, -75, 0, 25, 100, and

250o

C are shown in Figures 6 to 9. As previously discussed, each composition exhibits a very low

polarization of -150o

C, and as the temperature increases, the hysteresis loops of the three piezoelectric compositions exhibit typical square (PZT-4 and PZT-5A) or rounded (PZT-5H) ferroelectric hysteresis behavior near room temperature.

As shown in Figures 6 (a) and 6 (b), the PZT-4 ceramics exhibited somewhat asymmetric hysteresis

behavior below -50o

C. However, all of the P-E loops collected above this temperature were symmetric about each axis. Symmetric hysteresis loops were obtained at every temperature for the soft piezoelectric ceramics evaluated herein.

The PLZT-9/65/35 ceramics also exhibited low polarization properties at -150o

C. However, as previously observed in Figure 5 (d), the maximum E C and P SAT values for this composition were obtained

near -50o

C. At this temperature, these materials exhibit a P-E behavior that is very similar to those of the

piezoelectric ceramics near room temperature. As these specimens were further heated to 25o

C, the remanent polarization and coercive field values decreased significantly, and a slim-loop ferroelectric behavior was observed at room temperature (see Figure 9 (d)).

-40

-30-20-1001020

3040-30

-20

-10

10

20

30

E (kV/cm)P (μC/cm 2

)

(a) -150o

C

-40

-30-20-1001020

3040-30

-20

-10

10

20

30

E (kV/cm)P (μC/cm 2

)

(b) -75o

C

-40

-30-20-1001020

3040-30

-20

-10

10

20

30

E (kV/cm)P (μC/cm 2

)

(c) 0o

C

-40

-30-20-1001020

3040-30

-20

-10

10

20

30

E (kV/cm)P (μC/cm 2

)

(d) 25o

C

-40

-30-20-1001020

3040-30

-20

-10

10

20

30

E (kV/cm)P (μC/cm 2

)

(e) 100o

C

Figure 6. Typical ferroelectric polarization versus electric field (P-E) properties of PZT-4 ceramics at (a) -150o C,

(b) -75o C, (c) 0o C, (d) 25o C, (e) 100o C, and (f) 150o C.

-35

-25-15-5515

2535-20

-10

010

20

E (kV/cm)P (μC/cm 2

)

(a) -150o

C

-35

-25-15-5515

2535-20

-10

010

20

E (kV/cm)P (μC/cm 2

)

(b) -75o

C

-35

-25-15-5515

2535-20

-10

010

20

E (kV/cm)P (μC/cm 2

)

(c) 0o

C

-35

-25-15-5515

2535-20

-10

010

20

E (kV/cm)P (μC/cm 2

)

(d) 25o

C

-35

-25-15-5515

2535-20

-10

010

20

E (kV/cm)P (μC/cm 2

)

(e) 100o

C

-35

-25-15-5515

2535-20

-10

010

20

E (kV/cm)P (μC/cm 2

)

(f) 250o

C

Figure 7. Typical ferroelectric polarization versus electric field (P-E) properties of PZT-5A ceramics at (a) -150o C,

(b) -75o C, (c) 0o C, (d) 25o C, (e) 100o C, and (f) 250o C.

-20

-15-10-50510

1520-15

-10

-5

5

10

15

E (kV/cm)P (μC/cm 2

)

(a) -150o

C

-20

-15-10-50510

1520-15

-10

-5

5

10

15

E (kV/cm)P (μC/cm 2

)

(b) -75o

C

-20

-15-10-50510

1520-15

-10

-5

5

10

15

E (kV/cm)P (μC/cm 2

)

(c) 0o

C

-20

-15-10-50510

1520-15

-10

-5

5

10

15

E (kV/cm)P (μC/cm 2

)

(d) 25o

C

-20

-15-10-50510

1520-15

-10

-5

5

10

15

E (kV/cm)P (μC/cm 2

)

(e) 100o

C

-20

-15-10-50510

1520-15

-10

-5

5

10

15

E (kV/cm)P (μC/cm 2

)

(f) 250o

C

Figure 8. Typical ferroelectric polarization versus electric field (P-E) properties of PZT-5H ceramics at (a) -150o C,

(b) -75o C, (c) 0o C, (d) 25o C, (e) 100o C, and (f) 250o C.

[计算机]软件安装及使用说明

光盘内包含及说明: 河北德恒光电科技DH系列舞动卡软件 NTE环境新:控制卡软件所需要的计算机运行环境,必备。动画库:通用的动画库,含部分行业GIF动画。 文字动画:第三方软件,用于制作简单的文字GIF动画用。软件安装及使用说明:软件安装及控制卡应用说明。 第一步、软件安装说明 1、了解自己使用控制卡型号,安装控制卡程序; 2、安装后桌面控制卡软件对应图标; 3、双击桌面软件图标。

①出现,或者无反应,请安装光盘内“NTE环境新”后启动软件; ②软件正常启动后及安装完成; 4、软件启动正常后即可按以下步骤操作。 第二步、控制卡与显示屏连接检测 1、将显示屏连接后,与控制卡连接,注意电源线的正负,切勿接反; 2显示屏上电后,按控制卡上测试按键: ①显示屏会出现测试状态,如斜扫、全红等,此时控制卡与显示屏连接成功; ②显示屏出现黑屏或者全亮,将和控制卡连接的排线全部拔掉,从最上面一排开始插排线,全黑排线则是插反,检查控制卡和单元板上面排线的红线是否朝向一致,一次类推其他排线。 3、显示屏测试正常后,按照以下步骤继续。

第三步、计算机软件设置及与控制卡连接1、打开软件,界面如下。(串口卡步骤1-10,U盘卡步骤11-)

2、点击菜单栏“文件”,“新建”,写好项目名称后,保存即可。 3、点击菜单栏里“设置”按钮,在下拉的菜单里选择“屏设置”,打开屏参设置对话框,如下图所示:

4、在控制卡选项中,选择对应控制卡DH-F01; 显示屏列表区可增加,便于多屏调试

5、使用串口时请将串口线连接好(勿带电插拔串口)请首先设置串口号(串口号在计算机设备管理器中查找),点击通讯检测。 在硬件连接正常,并且确保硬件没有问题的情况下,会出现“连接成功”,连接不通会出现“连接失败”。 6、在屏参设置下面选择单元板,设置显示屏的宽、高,此处为单元板的块数(非点数),然后点击“确定”。 7、点击“字幕”或者“文本”“图片”“动画”,添加节目元素。(字幕为单行显示,文本为多行显示) 通过屏显示框下部的按钮对节目元素进行预览、大小、位置的编辑,或手动拉送黄色边框进行编辑。 8、双击绿色的区域;

成套配电柜、控制柜和动力、照明配电箱安装及验收规范

成套配电柜、控制柜(屏、台)和动力、照明配电箱(盘)安装主控项目 柜、屏、台、箱、盘的金属框架及基础型钢必须接地(PE)或接零(PEN)可靠; 装有电器的可开启门,门和框架的接地端子间应用裸编织铜线连接,且有标识。 低压成套配电柜、控制柜(屏、台)和动力、照明配电箱(盘)应有可靠的电击保 护。柜(屏、台、箱、盘)内保护导体应有裸露的连接外部保护导体的端子,当设计无要求时,柜(屏、台、箱、盘)内保护导体最小截面积S p 不应小于表的规定。 表保护导体的截面积 相线的截面积S(mm) 相应保护导体的最小截面积S(mm) S≤16 16<S≤35 35<S≤400 400<S≤800 S>800 S 16 S/2 200 S/4 注:S 指柜(屏、台、箱、盘)电源进线相线截面积,且两者(S、S)材质相同。手车、抽出式成套配电柜推拉应灵活,无卡阻碰撞现象。动触头与静触头的 中心线应一致,且触头接触紧密,投入时,接地触头先于主触头接触;退出时,接 地触头后于主触头脱开。 高压成套配电柜必须按本规范第条的规定交接试验合格,且应符合下列 规定: 1 继电保护元器件、逻辑元件、变送器和控制用计算机等单体校验合格,整组 试验动作正确,整定参数符合设计要求; 2 凡经法定程序批准,进入市场投入使用的新高压电气设备和继电保护装置, 按产品技术文件要求交接试验。

低压成套配电柜交接试验,必须符合本规范第条的规定。 柜、屏、台、箱、盘间线路的线间和线对地间绝缘电阻值,馈电线路必须大 于Ω;二次回路必须大于1MΩ。 柜、屏、台、箱、盘间二次回路交流工频耐压试验,当绝缘电阻值大于10M Ω时,用2500V 兆欧表摇测1min,应无闪络击穿现象;当绝缘电阻值在1~10MΩ时,做1000V 交流工频耐压试验,时间1min,应无闪络击穿现象。 直流屏试验,应将屏内电子器件从线路上退出,检测主回路线间和线对地间 绝缘电阻值应大于Ω,直流屏所附蓄电池组的充、放电应符合产品技术文件要 求;整流器的控制调整和输出特性试验应符合产品技术文件要求。 照明配电箱(盘)安装应符合下列规定: 1 箱(盘)内配线整齐,无绞接现象。导线连接紧密,不伤芯线,不断股。垫圈 下螺丝两侧压的导线截面积相同,同一端子上导线连接不多于2 根,防松垫圈等零件齐全; 2 箱(盘)内开关动作灵活可靠,带有漏电保护的回路,漏电保护装置动作电流 不大于30mA,动作时间不大于。 3 照明箱(盘)内,分别设置零线(N)和保护地线(PE 线)汇流排,零线和保护地线 经汇流排配出。 一般项目 基础型钢安装应符合表的规定。 表基础型钢安装允许偏差 允许偏差 项目 (mm/m) (mm/全长) 不直度1 5 水平度1 5 不平行度/ 5 柜、屏、台、箱、盘相互间或与基础型钢应用镀锌螺栓连接,且防松零件齐 全。 柜、屏、台、箱、盘安装垂直度允许偏差为‰,相互间接缝不应大于2mm,

通用化工电解安装使用说明书

出厂文件注意保存 西安中电变压整流器厂技术资料 全数字晶闸管电解整流装置 通用化工电解安装使用说明书 西安中电变压整流器厂 2008.06.18

KHS-()KA/()V全数字晶闸管电解整流装置 安装使用说明书 目录 1 概述————————————————————————------3 1.1.用途与特点 1.2.引用技术标准 1.3.装置型号意义 1.4.主要技术规格 1.5.使用条件 2.安装使用要求----------------------------------------------5 3.系统组成原理----------------------------------------------6 3.1.整流主电路工作原理 3.2.自动调节控制系统概况 3.3.稳流触发系统工作原理 3.4.PLC控制系统工作原理 3.5.整流机组保护工作原理 3.6.整流系统的仪表显示界面与按钮 3.7.控制电源分配 3.8.电量检测电路 4.电流控制方式---------------------------------------------16 4.1.触摸屏电流给定 1)电流给定状态设置 2)本地电流自动给定 3)本地电流手动给定 4)本地有载档位升降 4.2.上级计算机给定 4.3.开关量给定 5.本控触摸屏操作-------------------------------------------17 1)首页 2)管理 3)操作 4)状态 5)显示 6)报警

6.上级计算机操作-------------------------------------------21 6.1.开机与关机 6.2.操作显示界面 6.3.安装和接线 6.4.注意事项和日常维护 7.装置调试------------------------------------------------24 7.1.概述 7.2.一般检查 1)外观检查 2)绝缘检查 3)水路检查 7.3.通电检查 7.4.系统调试 1)检查 2)轻载试验 3)重载试验 4)负载试验 5)正常运行 8.维护使用-------------------------------------------------26 8.1.操作程序 8.2.一般维护 8.3.PLC的维护和诊断 8.4.故障停机后的检查与处理 9.包装运输-------------------------------------------------27 10.技术资料-------------------------------------------------27 11.备品备件-------------------------------------------------27 12.附录-----------------------------------------------------27 附录1 全数字电解电源触发调节控制系统应用与特点----------------------28 附录2 附图--------------------------------------------------39 附录3 全数字软件触发器操作手册

小型照明配电箱规格尺寸

小型照明配电箱规格尺 寸 The manuscript was revised on the evening of 2021

PZ30配电箱规格尺寸 型号规格(回 路) 回路 排数 钢板厚度面板尺寸暗装箱体尺寸明装箱体尺寸 面板壳体 A B A B C A B C PZ30-04 ? 175 157 140 125 80 175 157 80 PZ30-06 ? 单 ? ? 排 230 200 200 168 90 230 200 80 PZ30-08 230 236 200 204 90 230 236 90 PZ30-10 ? ? ? ? 280 272 250 240 90 280 272 90 PZ30-12 280 308 250 276 90 280 308 90 PZ30-14 280 344 250 312 90 280 344 90 PZ30-15 280 362 250 330 90 280 362 90 PZ30-16 280 380 250 348 90 280 380 90 PZ30-18 280 416 250 384 90 280 416 90 PZ30-20 280 452 250 420 90 280 452 90 PZ30-22 280 488 250 456 90 280 488 90 PZ30-20 ? 双 ? 排 ? ? ? ? ? ? ? ? 480 272 450 240 90 480 272 90 PZ30-24 480 308 450 276 90 480 308 90 PZ30-28 480 344 450 312 90 480 344 90 PZ30-30 480 362 450 330 90 480 362 90 PZ30-32 480 380 450 348 90 480 380 90 PZ30-36 480 416 450 384 90 480 416 90 PZ30-40 480 452 450 420 90 480 452 90 PZ30-44 480 488 450 456 90 480 488 90 PZ30-42 ? 三 排 665 344 625 312 90 665 344 90 PZ30-45 665 362 625 330 90 665 362 90 PZ30-48 665 380 625 348 90 665 380 90 PZ30-54 665 416 625 384 90 665 416 90 PZ30-60 665 452 625 420 90 665 452 90 PZ30-66 665 488 625 456 90 665 488 90 PZ30-72 四850 416 810 384 90 850 416 90 PZ30-80 850 452 810 420 90 850 452 90

智能化系统建设方案

精品文档 一.背景描述: 江南海岸总体规划和设计均体现了传统中国居家理想和现代生 活方式的有机融合,是依照21世纪人居标准精心打造的高级住宅小区。 整个小区无不营造一个舒适休闲的生活空间,是一所环境优雅,闹中 取静的花园式住宅小区,满足住户对高品质生活的追求。 二.工程说明: 江南海岸位于三明市列东区,由14栋高层住宅小区组成,总建 筑面积29.7627万平方米,其中包括4栋27层,6栋25层,4栋29 层,会所1间,负一层,一层。住户总数为1182户。 项目要求: 江南海岸,是集住宅、花园、会所于一体的高级住宅小区。小区智能化系统的工程建设具有投资大、工程复杂、专业性强等特点。小区要求建设成具有国内先进水平的,既具有自身特点,又具有时代潮流特色的高尚住宅楼宇。 整个工程规划、设计、实施上要求充分体现技术的先进性、系统的复杂性、严密的安防集控管理。注重整体功能强大,中心设备完善,系统配置科学合 理,真正体现高技术、高标准、高水平的现代化智能小区。 四.需求分析: 4.1分析与评估:

本方案以江南海岸小区住宅智能化管理及安全防范为设计目标为将力求建设成为高水平、高质量、高标准的信息化智能小区。我方提出以下见解,请发包方领导参考。 ①小区建设要求基于系统可靠、稳定、先进的基础上,既能满足用户住宅 的实际需求,同时又力求经济、实用、合理。 ②整个系统的结构要求清晰合理,小区实现全封闭管理,各个子系统既 相互关联又相对独立,形成一个全方位智能安防管理系统。 ③要求考虑未来系统扩展的需求,为小区以后系统功能的增加、升级,提 供良好的环境空间。 因此,考虑江南海岸属于大型的综合住宅小区,建筑规模庞大、结构复杂,小区各项功能模块齐备,因此在智能化建设方面,产品的集成度、统一化、高效管理方面尤为重要,同时,还必须考虑小区规模的不断扩大,智能化产品必须具备高度的扩展及冗余,顺应小区的发展。 我方进行多项分析与评估,结合小区建筑结构的分布特点、规模发展,以及对小区各功能模块的深层了解,建议江南海岸智能化系统工

的安装使用说明书样本

IIS的安装使用说明书 当前很多服务器都采用Windows NT、 Windows 、 Windows XP 服务器版, 这些操作系统中都必须安装IIS( Internet Information Server) 因特网信息服务器。 在自己电脑中安装IIS, 在没有网络空间的时候, 您能够将自己的电脑当作服务器, 只需要将自己的IP告知她人, 大家就能访问您的网页。同时当我们开始学习使用Macromedia Dreamweaver 8实现各种表单处理、注册页面、等动态功能的时候就必须使用IIS功能来调试。 在这一小节中, 我们以Windows XP为例一起讨论如何安装和设置IIS。 ?在Windows XP 中选择【开始】-【控制面板】, 打开【控制面板】 ?单击【性能和维护】打开【性能维护】 ?单击打开【管理工具】窗口, 查看是否有图标。 安装IIS( 因特网信息服务) ( Windows Server安装方法相同, 如果是Windows98请安装ADD-ONS目录下的PWS) 1、打开 Windows XP 【控制面板】中的【添加和删除程序】 然后选择【添加/删除Windows组件】会弹出一个【Windows组件向导】对话框, 如下图:

点击”下一步”, 选择完毕, 按下”确定”按钮, IIS将自动安装在系统中, 至此IIS安装大功告成。 IIS基本设置: 1、双击打开【管理工具】窗口 2、双击上图中的【Internet信息服务】图标, 打开【Internet信息服务】窗口:

3、用鼠标右键点击【默认网站】在下拉菜单中选择【属性】, 打开【默认网站属性对话框】如下图: 上图【网站标识】中 ?【描述】文本框能够输入站点名称或者作者的描述, 例如能够改为【惟零网站系统】 ?【IP地址】文本框输入该服务器在网络中的IP地址, 使用下拉箭头, 能够看到和选用该服务器正在使用的IP地址, 这个IP地址是供访问者浏览网页用的。

Dl1通用型使用说明书

DL1 电梯应急装置安装、调试、使用说明书 广东省佛山市顺德区陈村镇鼎力电源设备厂 2004.06.12 地址:广东省佛山市顺德区陈村镇永兴工业区 电话:(0757)23350222 (0757)23331533转801 传真:(0757)23331533转808 E-mail:sddldy@https://www.doczj.com/doc/dd12557146.html,

安装前注意事项 ● 1.为了正确安装、调试和使用DL1型电梯应急装置,请您务必先认真阅读本产品说明书。 ● 2.为了避免造成人员及设备事故,本产品的安装、调试及维修等必须采取以下安全措施:(1).在进行本产品的安装、连接工作之前,心须切断电梯总电源。 (2).电梯设备应接地良好。 (3).请按本说明书中提示或警告小心行事,以防对安装或维修人员造成伤害,同时避免损坏电梯设备。 (4).在接通电源调试之前,心须确保电梯应急装置与电梯电气系统之间连接正确。(5).由于电梯系统中有移动部件,对人员和设备等都会产生危险,因此要求本产品的安装、连接及维修等工作均应该由懂得电梯操作、电梯性能和有关现行电梯行业安全规程的专业人员进行,以便能识别和避免可能发生的危险。 ● 3.本说明书陈述了DL1型电梯应急装置的安装和连接步骤,信号端子说明,调试和使用、 以及出现的故障和排除方法等。对电梯应急装置的安全操作,必须仔细阅读本说明书,才能防止由于方法不当而造成对人员伤害和电梯系统的损坏。 ● 4.若须技术咨询请电话或传真与本厂技术部联系。 电话:(0757)23331533-803 传真:(0757)23331533-808 ● 5.本着遵循企业不断发展的原则,本厂可能未作通知而对产品进行修改。

智能化系统配置项目及要求

智能化系统初步配置方案 一、设计原则 1、智能化系统设计,应综合考虑项目投资额度的可控性、设备选型的灵活性、工程施工的可行性、系统功能的可扩展性、系统运行维护的便利性和物业管理 的规范性等要求。 2、智能化系统的设计应参照本要求,其配置标准不得低于”初步配置方案” 的要求,同时应有一定的升级和扩展能力,并预留相应的接口。 3、智能化系统设计除了满足国家标准与规范的相关规定,以及本标准基本配 置要求外,还应满足建筑、结构以及与智能化系统存在设计相关联的其他专业 的设计规范和要求,特别需要注意符合项目当地现行有关标准和规范的特殊要求。 4、智能化系统设计与工程项目建设地点的实际情况相适应。 5、智能化系统所采用的设备及线路材料等均应符合国家现行的规定,并具有 产品合格证、质量检验证书和产品须通过国家的CCC认证。 二、智能化系统基本配置要求 1、安全防范系统 a、安全防范系统包括闭路电视监控、防盗报警系统、门禁系统、电子巡更系统及无线对讲系统。 b、闭路电视监控系统主要设置重要出入口,如公共场所、重要房间、楼梯通道、楼层电梯通道、电梯轿厢、室外主干道及交叉路口等处,电梯轿厢安装电 梯专用监控镜头并加装抗干扰器,户外监控镜头须带有红外夜视功能。所有的 监控镜头全部采用网络彩色摄像机,采用矩阵主机切换至电视墙,录像以全天 实时高清图像质量保存至少30天(具体保存时间可按照当地派出所要求确定)。 c、防盗报警系统主要设置在财务室、档案室等重要房间,并设置手动报警开关或脚挑报警开关,要求闭路电视监控系统同时显示出报警地点画面。 d、重要设备机房、财务室、档案室等重要房间设置门禁系统。 e、电子巡更系统要求采用离线式,设置于重要机房、楼层楼梯口、电梯厅。 f、无线对讲系统要求具有可进行信道改写和信道加密功能,满足内部通讯需要。 g、各系统设备品牌须选用技术成熟,性能稳定可靠的产品。 2、通讯网络系统

使用及维护说明书(电子版)

电动推杆安装、使用、维护说明书 北京金达凯诺传动设备有限公司 前言 本说明书与产品密不可分,内含有关推杆正确安装,使用以及维护的基本知识。 对于未按照技术目录上的说明对推杆进行的不正确操作而导致的直接或间接后果金达凯诺公司不承担任何责任。 不按照说明书的说明进行使用维护操作违反保修的条款,由此而引发的可能的人员伤亡或产品的损坏,金达凯诺公司不承担任何责任。 在产品选形以及产品设计过程中,金达凯诺公司以及它制定的代理商随时为您服务,并为你正确应用推杆提供所有的技术支持。 金达凯诺公司有权在不做任何通知的情况下,对产品及说明书进行完善和修改。 ?安装前详细阅读操作说明书 ?遵守相关的安全指示说明,说明如下: 总论 电动推杆是将电能转换为机械能,由电动机的旋转运动转换为直线推拉运动的一种电动执行机构。其工作情况类同于广泛应用的液压、气动执行机构。 电动推杆结构紧凑,性能可靠,体积小,重量轻,噪音低,安装调试、使用维修方便,还可以加装手动机构,便于安装调试。

电动推杆具有额定推力过载保护装置和行程调节机构。用户可在额定行程范围内任意调节工作行程。 一、电动推杆的形式 金达凯诺公司为用户提供了如下形式电动推杆 1、FD系列小型电动推杆 2、DL系列电动推杆 3、DG系列重型电动推杆 二、电动推杆的选择 1、电动推杆结构形式的选择 根据用户使用设备具体结构,由用户自行确定,或与厂商办事处协商。 2、电动推杆安装形式的选择 根据用户使用设备具体结构,由用户自行确定,或与厂商办事处协商。 3、电动推杆额定推力的选择 根据用户使用设备具体结构,由用户自行确定,或与厂商办事处协商。 4、电动推杆额定行程的选择 根据用户使用设备具体结构,由用户自行确定,或与厂商办事处协商。 5、电动推杆额定速度的选择 根据用户使用设备具体结构,由用户自行确定,或与厂商办事处协商。 三、电动推杆电器原理及接线图 1、接线盒中的接线 ——三相电机的接线方式参见厂家接线盒中的标示决定三角形或星形接法。检查运转方向,如果不对,调换V1和W1的接线。 ——单相电机的接线方式参见厂家接线盒中的标示决定接法方式。检查运转方向,如果不对,调换V1和W1的接线。 ——制动电机的接线方式参见厂家接线盒中的标示决定接法方式,或咨询金达凯诺技术部门。 2、电气线路的连接 下图为三相电机、单相电机和直流电机的电气线路连接:(参见图004、005、006) 三相交流电机的电气线路连接、单相交流电机的电气线路连接、直流电机的电气线路连接

通用桥式起重机安装使用说明书

通用桥式起重机 安 装 使 用 说 明 书

河南起重机械有限公司 1 目录 一、用途---------------------------------------------------3 二、技术特性和主要参数----------------------------3 三、结构概述--------------------------------------------3 四、电气系统--------------------------------------------5 五、安装、调试和运行-------------------------------6 六、起重机的维护保养与润滑---------------------7 七、起重机常见故障及处理------------------------16

八、起重机的使用须知------------------------------23 2 一、用途 通用桥式起重机最为普遍地用于车间内和仓库中吊运工件和货物之用。它是依靠沿厂房轨道方向的纵向移动、小车的横向移动和吊钩的升降运动来进行工作的。本说明书所指的是一般用途通用桥式起重机和冶金用通用桥式起重机,前者主要适用于机械加工与装配车间、金属结构车间、机械维修车间、各类仓库、冶金和铸造车间的辅助吊运工作等,后者主要用于吊运赤热或熔态金属。 一般用途起重机不推荐用于高温(>+40°C)和低温(<-20°C)的场所、吊运赤热金属或熔态金属及具有强烈腐蚀性化学气体的工作场所。 二、技术特征和主要参数 本系列桥式起重机的主要参数如下: (一)起重量: 5T 10T 16/3.2T 20/5T 32/5T 50/10T六种规格 (二)跨度: 10.5M 13.5M 16.5M 19.5M 22.5M 25.5M 28.5M 31.5M等八种规格 (三)工作制度: A5(用于工作不太频繁,例如一般机械加工和装配车间)。 A6(用于工作较为频繁,例如冶金和铸造车间的辅助吊运)。 A7(用于繁忙使用及熔融、炽热金属的吊运)。 按确定的起重量、跨度和工作制度,可查阅随机附加的桥式起重机总图和小车图纸中的技术特性表和需要的外形尺寸参数。 起重量用分数表示时,分子表示主起升重量,分母表示副起升重量。 三、结构概述 整台起重机是由桥架、小车(装有起升机构和运行机构)、起重机运行机构和电气设备四大部分组成。

设备安装维护说明书

设备安装维护说明书 天津天丰钢铁有限公司 R8m四机四流方/矩形坯连铸机 设备安装维护说明书 编制:饶辉端 审核:姜利生 批准:陈忠启 武汉大西洋连铸设备工程有限责任公司 二OO六年十一月 1.0、前言 本《连铸机机械设备安装、维修说明书》是天津天丰钢铁有限公司R8米四机四流方矩形坯连铸机的机械设备的结构形式、性能和技术参数、安装及验收、维修、试车要求的说明,其目的是使用户以及施工安装单位对连铸机机械设备有一个比较全面的了解,以利于连铸机的设备安装调试、热负荷试车及建成投产的顺利进行。 2.0、连铸机主要工艺参数及机械设备

2.1、工艺参数 1、冶炼设备:转炉 2、转炉座数:1座 3、转炉工程容量:40t 4、转炉出钢量:平均:43t;最大:45t 5、转炉平均冶炼周期:28min 6、连铸机弧形半径:R8/16m 7、台数×机数×流数:1*4*4 8、流间距:1400mm 9、冶金长度:12.35m 10、铸坯断面:150*150mm2;165*280 mm2;200*200 mm2;试车断面:180*330 mm 2 11、定尺长度:3~6m 12、铸机拉速: 断面平均拉速(m/min)最大拉速(m/min) 150*150 2.2 2.8 165*280 1.1 1.6 200*200 1.3 1.8 180*330 0.9 1.3 13、浇铸钢种:普碳钢、低合金钢、优质钢 2.2主要机械设备: 设备的各部件或零件严格按照各设备施工图纸及其中的有关技术要求进行安装、并应符合下列诸技术条件: JB/ZQ4000.-86 焊接件通用技术要求 JB/ZQ4000.10-86 涂装通用技术要求 YB9244-92 冶金机械设备安装工程质量检验评定标准 YB3217-82 冶金机械加工产品防锈技术条件 YB9246-92 冶金液压、气动和润滑系统安装工程质量检验评定标准(炼钢设备)YBJ201-85 冶金机械设备安装工程施工及验收规范(液压气动和润滑系统) YBJ207-83 冶金机械设备安装工程施工及验收规范(通用) YBJ202-83 冶金机械设备安装工程施工及验收规范(炼钢设备) YB9249-93 冶金机械设备安装工程施工及验收规范(轧钢设备) 所有设备本体除加工面外均涂苹果绿。 车间管道颜色按GB2893-82《安全色》、GB7231-87《工业管路的基本识别色和识别符号》的规定。 基本识别色安全色 1、蒸汽管铅色 2、生产水管绿色 3、热水管绿色 4、烟气管黑色 5、压缩空气管浅蓝色 6、氧气管浅蓝色黄/黑 7、乙炔气管黄褐色黄/黑 8、煤气管道黄褐色黄/黑

通用智能开关使用说明书

智能开关使用说明书 ————一/二/三位暗装智能开关 尊敬的用户: 首先感谢您选择了我公司的智能产品,智能科技有限公司全体同仁祝您全家生活愉快!我们的产品将给您的生活带来舒适和便捷,为了让您能更好的安装和使用该产品,在这里我们提醒您认真阅读此说明书。如有疑问请登联系我们,我们竭诚为您服务。 一、产品说明 NT-JJ3309型一位暗装智能开关,NT-JJ3310型二位暗装智能开关,NT-JJ3311型三位暗装智能开关是尼特智能开关系列产品之一,它主要用于控制灯具及电器的开关。其外型尺寸为86×86×45,可与普通86型开关互换安装,不仅可直接取代传统的墙壁开关,保留原有手动功能,而且增加了射频遥控、远程电话遥控、远程网络遥控等具有现代意识的数字化功能,是现代家居智能化的理想选择。 二、产品图示及接线图、安装图、拆卸图 一位暗装智能开关二位暗装智能开关三位暗装智能开关 220V N(零线) L(火线) 220V 灯泡1 灯泡2 灯泡3 N(零线) L(火线) 220V 一位暗装智能开关 接线图 灯泡2 灯泡1 N(零线) L(火线) 三位暗装智能开关 接线图 二位暗装智能开关 接线图 灯泡1 拆卸图 三、安全警示

1、为了您的安全,在使用本产品之前必须详读此说明书。 2、聘请专业电工为您安装或拆卸开关,安装或拆卸开关时,必须先切断电源。 3、本开关安装在洗漱间、浴室等潮湿的地方时应装防溅盒或采取防潮措施。 4、配接负载时应严格控制在负载功率之内。 5、安装开关时严禁锤打、过力紧固以防面板变形,同时严禁金属物掉入开关外壳内。 四、概念解释: 1、学习状态:此时可以把遥控器的某一指令代码,存储于开关(插座、单路控制器)的记忆芯片中,从 而实现两者之间的相互确认 2、对码:实现遥控器和开关(插座、单路控制器)的相互确认。如果不进行对码,遥控器则不能控制该 开关(插座、单路控制器) 3、数字对码:实现遥控器数字键和开关(插座、单路控制器)的相互确认。即实现用遥控器的某一数字 键控制该开关(插座、单路控制器)的开、关状态,从而达到控制灯光和电器的目的 4、情景对码:实现遥控器情景键和开关(插座、单路控制器)的相互确认。在进行情景设置之前,必须 先进行情景对码,已进行过数字对码的开关(插座、单路控制器),则不必进行此程序 5、情景设置:设置遥控器一键控制若干个灯具、电器的开关状态。通过灯光、电器的变换组合营造出不 同氛围的生活场景,只要按动一键即可实现看电视、用餐、会客等不同的场景需求 五、功能概述: 1、自动关断功能:停电自动转入关断状态。 2、断电记忆功能:可记忆断电前设置的各种对码和情景模式。 3、远程控制功能:经过智能终端、电话远程控制器可实现网络、电话、手机的远程控制功能。 4、情景设置功能:与遥控器配合使用可进行个性化情景设置。 5、夜光指示功能:可在黑暗中指示开关的位置。 6、编码学习功能:用户可以根据自己的意愿随意设定遥控器和开关的对应关系。 7、其它功能:(1)单火线供电,安装方便。 (2)可同时存储8个遥控器的控制码。 六、功能设置 1、数字对码(开关上的每个按键最多能存储8个遥控器的控制码,最多能学习一个遥控器的2个数字键) 数字对码操作步骤如下: (1)(2)(3)

TBS安装调试、使用、维护说明书资料

粗煤泥分选机安装调试操作与维护说明书 湖南长欣矿业工程技术有限公司

目录 前言---------------------------------------------------------------1 工作原理---------------------------------------------------------2 基本结构组成及作用------------------------------------------4 安装---------------------------------------------------------------8 调试---------------------------------------------------------------12 运行---------------------------------------------------------------15 启动/停车/待机------------------------------------------------16 维护与故障排除------------------------------------------------17 备件---------------------------------------------------------------19 操作规程、维护及保养---------------------------------------20 现场安装注意事项和要求------------------------------------21 附图

安装使用说明书

安装使用说明书 (1)安装使用说明书是为本样本所有泵类产品而编辑的安装使用指南。 (2)设备应安装在平稳而固定的机架上或水泥地面上,底座的固定螺丝可用膨胀螺丝,大型设备可用底脚螺丝,本系列具有良好的动平衡和无噪音设计。 (3)安装完成后在接管线时建议在进出口安装一段金属波纹软管,以防机头负压变形不能正常工作。 (4)电机采用国内优质电机,电源380V,三相,50H z。泵类系列设备进口在侧面,出口为上面,配对法兰标准为 HG5010-58,PN=0.6Mpa。 (5)在接通电源后启动电机时,如果密封形式是单面密封,那首先先进物料后点动几下电机,在确认物料进入泵腔后,而且无异常响声时,可以正常启动电机;如果如果密封形式是双面密封,必须先通冷却水(油),冷却管在泵头与机座中间的2根细管,进出水方式:为下进上出,待冷却水(油)溢出后,点动几下电机,无异常响声时可以正常启动电机。 (6)在点动电机时一旦发现电流过大,跳闸,电机运转不正常时,首先检查泵头工作腔内是否有异物,或者用手盘动电机是否能转动,如果能转动,就要考虑电机及配电箱接线螺丝是否松动,电线是否符合规定等,以及是否关小闸门减少物料的流量。 (7)严禁石块,铁钉,木块等硬质物料进入泵体,必要时请在进出口处添加快开过滤器。 (8)在处理量大时或扬程高时,请在出口处增加一台相匹配泵作为输送,本系列设备进入口压力≤0.2 Mpa。 (9)较长时间不工作时,请将泵内物料排除干净,排污口在泵头的下面,检修安装时首先擦干净泵体内的每一个要件,然后逐件按顺序安装,完成后首先用手转一下电机,仔细听一下泵体内是否有异常摩擦声,如有请重装,直至无异常声响为止。 本说明书最终解释权属启东市东盛化工机械厂

动力、照明配电箱管理规定

动力、照明配电箱管理规定 1 目的: 为了规范动力、照明配电箱使用、维护、检查、试验标准,避免人身触电事故的发生,特制订本规定。 2适用范围: 本制度适用于风电场动力、照明配电箱的使用。 3 引用标准: 《电业安全工作规程》 4内容 4.1职责: 4.1.1风电场专业库房管理员负责对动力、照明配电箱进行统一标识,定期由运行人员进行外观检查(时间间隔不超过30天),并确认是否完好。 4.1.2风电场安全员负责组织动力、照明配电箱的定期检验工作(时间间隔不超过6个月)。 4.1.3风电场电气专业人员负责对动力、照明配电箱内漏电保护器等的维修工作,如不能维修交由安全员统一联系外部维修单位进行维修或更换。

4.1.4风电场安全员负责监督漏电保护器检测、检验工作,专业库房管理员负责漏电保护器的保管、检查和维修等工作 4.2动力、照明配电箱使用中的要求: 4.2.1工作现场的总配电箱和开关箱应至少设置两级漏电保护器,而且两级漏电保护器的额定漏电动作电流和额定漏电动作时间应作合理配合,使之具有分级保护的功能。 4.2.2配电箱中必须设置漏电保护器,施工现场所有用电设备,除作保护接零外,必须在设备负荷线的首端处安装漏电保护器。 4.2.3漏电保护器应装设在配电箱或开关箱电源隔离开关的负荷侧。 4.2.4动力配电箱与照明配电箱宜分别设置,如合置在同一配电箱内,动力和照明线路应分路设置,照明线路接线宜接在动力开关的上侧。 4.2.5开关箱应由末级分配电箱配电。开关箱内应一机一闸,每台用电设备应有自己的开关箱,严禁用一个开关电器直接控制两台及以上的用电设备。 4.2.6总配电箱应设在靠近电源的地方,分配电箱应装设在用电设备或负荷相对集中的地区。分配电箱与开关箱的距离

天然气 安装使用维护说明书中英文

136万t/a球团工程项目供货商文件 Brazil 1.36 million t / a pellet project in supplier 单项工程名称:136万t/a球团工程 Single Work Name Brazil 1.36 million t / a pellet project 一,天然气烧嘴设备结构特点 First, the structural characteristics of natural gas burner equipment 1.1安装方式:水平安装。1.1 Installation: horizontal installation. 1.2天然气、空气与烧嘴采用金属软管连接。 1.2 natural gas, air and burner metal hose. 1.3天然气火嘴配有空气喷枪和天然气喷枪、看火孔、高能点火烧嘴、火焰检测器 以烧嘴砖部分。1.3 Natural gas burner with the air gun and gas gun, watching the fire hole, high-energy ignition burner, the flame detector to block part of the burner 1.4烧嘴喷枪采用套管结构,空气壳体和天然气喷枪可独立装卸。天然气枪带有空气涡流导流器,燃烧空气经过气体涡流导流器后可以获得非常强劲的涡流状态。当气体离开喷嘴时,气体的速度达到最大。再通过带有耐火锥筒扩散器的气枪喷出。在耐火锥筒的导流作用下,空气与天然气垂直相交,从而达到空气与天然气的完全预混合。形成高强度预混式旋流燃烧,这种设计能够使火焰保持稳定高的设备弹性比。1.4 burner tube structure with gun, air gun shells and natural gas can be independent of loading and unloading. Gas gun with an air swirl diffuser, combustion air through the gas swirl diffuser can be very strong after the vortex state. When the gas leaving the nozzle, the gas velocity reaches the maximum. With the fire and through the diffuser cone spray nozzles. Diversion in the fire under the cone, perpendicular to the air and gas, air and gas so as to achieve full pre-mixed. The formation of high-strength premixed swirl combustion, this design can make the flame stable than the high flexibility of equipment. 1.5烧嘴设有看火孔以便现场观察火焰;自带空气吹扫入口。 1.5 burner with holes for observation to see the fire flame; own air purge inlet.

通用控制模块安装使用说明书

HW-BA5208 DDC 通用控制模块
安装使用说明书
(Ver. 1.01, 2005.03)

HW-BA5208DDC 通用控制模块安装使用说明书

一、 二、 三、 四、 五、 六、 七、

概述...................................................................................................................................................... 1 特点...................................................................................................................................................... 1 技术特性.............................................................................................................................................. 1 结构特征与工作原理 .......................................................................................................................... 1 安装与调试 .......................................................................................................................................... 2 使用及操作 .......................................................................................................................................... 4 故障分析与排除 .................................................................................................................................. 4

安装使用以及维护说明书

2902958 (0) 安装,使用以及维护说明书 轻油燃烧器 编码 型号 类型 3737750RG2 377 T1 一段火运行

2958 1中文 目录 1.燃烧器描述 一段火轻油燃烧器. 1.1燃烧器附件 带绝热石棉垫的法兰. . . . .数量. 1将法兰安装到锅炉上的螺栓螺母 . . . . . . . . . . . . 数量. 4法兰用螺栓螺母. . . . . . .数量. 1带变径头的油软管. . . . . . . . . . . . . . . . . . . . . . . 数量. 2 7 针插头 . . . . . . . . . .数量. 1 1.燃烧器描述. . . . . . . . . . . . . . . . . . . . . . . 11.1燃烧器附件. . . . . . . . . . . . . . . . . . . . . . . 1 2.技术参数. . . . . . . . . . . . . . . . . . . . . . . . . 22.1技术参数. . . . . . . . . . . . . . . . . . . . . . . . . 22.2外观尺寸. . . . . . . . . . . . . . . . . . . . . . . . . 22.3工作范围. . . . . . . . . . . . . . . . . . . . . . . . . 2 3.安装. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.1锅炉安装. . . . . . . . . . . . . . . . . . . . . . . . . 33.2燃料供给. . . . . . . . . . . . . . . . . . . . . . . . . 33.3液压系统. . . . . . . . . . . . . . . . . . . . . . . . . 43.4 电气连接. . . . . . . . . . . . . . . . . . . . . . . . . 5 4.工作 . . . . . . . . . . . . . . . . . . . . . . . . . . . .64.1燃烧调节 . . . . . . . . . . . . . . . . . . . . . . . . .6 4.2推荐的喷嘴 . . . . . . . . . . . . . . . . . . . . . . .64.3设定电极 . . . . . . . . . . . . . . . . . . . . . . . . .74.4油泵压力 . . . . . . . . . . . . . . . . . . . . . . . . .74.5燃烧头设置 . . . . . . . . . . . . . . . . . . . . . . .84.6风门调整 . . . . . . . . . . . . . . . . . . . . . . . . .84.7 燃烧器启动程序. . . . . . . . . . . . . . . . . . . . 8 5. 维护 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6. 故障 / 解决方法 . . . . . . . . . . . . . . . . . . . . 91 – 油泵2 – 控制盒 3 – 带锁定指示灯的复位按钮 4 – 带绝热石棉垫的法兰 5 – 风门调节机构 6 – 喷嘴座 7 – 光电管 符合EN267中DIN 标准 :5G 060/97.燃烧器保护等级为IP 40, EN 60529. 燃烧器符合下列标准:EMC 89/336/EEC, 低电压 73/23/EEC, 机械 98/37/EEC 和效率 92/42/EEC. 图. 1 S7639 2 4 3 1 6 7 5

相关主题
文本预览
相关文档 最新文档