当前位置:文档之家› 最新八年级数学反比例函数知识点归纳和典型例题

最新八年级数学反比例函数知识点归纳和典型例题

最新八年级数学反比例函数知识点归纳和典型例题
最新八年级数学反比例函数知识点归纳和典型例题

最新八年级数学反比例函数知识点归纳和典型例题

知识点归纳

(一)反比例函数的概念

1.()可以写成()的形式,注意自变量x的指数为,

在解决有关自变量指数问题时应特别注意系数这一限制条件;

2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解

析式中的k,从而得到反比例函数的解析式;

3.反比例函数的自变量,故函数图象与x轴、y轴无交点.

(二)反比例函数的图象

在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).

(三)反比例函数及其图象的性质

1.函数解析式:()

2.自变量的取值范围:

3.图象:

(1)图象的形状:双曲线.

越大,图象的弯曲度越小,曲线越平直.

越小,图象的弯曲度越大.

(2)图象的位置和性质:

与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.

当时,图象的两支分别位于一、三象限;

在每个象限内,y随x的增大而减小;

当时,图象的两支分别位于二、四象限;

在每个象限内,y随x的增大而增大.

(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,

则(,)在双曲线的另一支上.

图象关于直线对称,即若(a,b)在双曲线的一支上,

则(,)和(,)在双曲线的另一支上.

4.k的几何意义

如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).

如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.

图1 图2

5.说明:

(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.

(2)直线与双曲线的关系:

当时,两图象没有交点;

当时,两图象必有两个交点,且

这两个交点关于原点成中心对称.

(3)反比例函数与一次函数的联系.

(四)实际问题与反比例函数

1.求函数解析式的方法:

(1)待定系数法;(2)根据实际意义列函数解析式.

(五)充分利用数形结合的思想解决问题.

例题分析

1.反比例函数的概念

(1)下列函数中,y是x的反比例函数的是().

A .y=3x

B .

C .3xy=1

D .

(2)下列函数中,y 是x 的反比例函数的是( ).

A .

B .

C .

D .

2.图象和性质

(1)已知函数是反比例函数,

①若它的图象在第二、四象限内,那么k=___________. ②若y 随x 的增大而减小,那么k=___________.

(2)已知一次函数y=ax+b 的图象经过第一、二、四象限,则函数的图

象位于第________象限.

(3)若反比例函数

经过点(,2),则一次函数的图象一定不

经过第_____象限.

(4)已知a·b<0,点P (a ,b )在反比例函数的图象上,

则直线不经过的象限是( ).

A .第一象限

B .第二象限

C .第三象限

D .第四象限

(5)若P (2,2)和Q (m ,)是反比例函数图象上的两点, 则一次函数y=kx+m 的图象经过( ).

A .第一、二、三象限

B .第一、二、四象限

C .第一、三、四象限

D .第二、三、四象限

(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是( ).

A .

B .

C .

D .

7、已知1

20k k <<,则函数1y k x =和2k y x

=

的图象大致是( )

3.函数的增减性

(1)在反比例函数的图象上有两点,,且,则

的值为( ).

A .正数

B .负数

C .非正数

D .非负数

(2)在函数(a 为常数)的图象上有三个点

,,,则函数

、的大小关系是( ). A .<

B .

C .

D .<<

(3)下列四个函数中:①;②;③;④

y 随x 的增大而减小的函数有( ).

A .0个

B .1个

C .2个

D .3个

(4)已知反比例函数的图象与直线y=2x 和y=x+1的图象过同一点,则当x >0时,这个反比例函数的函数值y 随x 的增大而 (填“增大”或“减小”). 5、 如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ).

A .x <-1

B .x >2

C .-1<x <0,或x >2

D .x <-1,或0<x <2

(1)若与

成反比例,与

4.解析式的确定 成正比例,则y 是z 的( ).

A .正比例函数

B .反比例函数

C .一次函数

D .不能确定

(6)若正比例函数y=2x 与反比例函数的图象有一个交点为 (2,m ),则m=_____,k=________,

y x

O y x

O y x

O y x

O (A )

(B

(C )

(D )

A B

O

x

y

第4题

2 1 2

3 -3 -1 -2 1

3

-3

-1

-2

它们的另一个交点为________.

(7)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求

的值.

(8)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:

①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.

②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;

③ 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

5.面积计算

(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().

A.B.C.D.

第(1)题图第(2)题图

(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x轴,△ABC 的面积S,则().

A.S=1 B.1<S<2 C.S=2 D.S>2

(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.

第(3)题图第(4)题图

(4)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.

(5)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x 轴于B且S△ABO=.

①求这两个函数的解析式;

②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.

O

C

A B

y

x

第(5)题图

6.如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=x

m 的图象的两个交点,直线

AB 与y 轴交于点C .

(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-x

m <0的解集(直接写出答案).

7.如图,已知反比例函数y =错误!的图象经过点A (-1,3),一次函数y =kx +b 的图象经过点A 和点C (0,4),且与反比例函数的图象相交于另一点B .

(1)求这两个函数的解析式; (2)求点B 的坐标.

8、如图所示,一次函数

y x m =+和反比例函数1

(1)m y m x

+=

≠-的图象在第一象限内的交点为(,3)P a .

⑴求a 的值及这两个函数的解析式; ⑵根据图象,直接写出在第一象限内,使反 比例函数的值大于一次函数的值的x 的取值范围.

6.综合应用

(1)如图,一次函数的图象与反比例数的图象交于A 、B 两点:A (,1),B (1,

n ).

① 求反比例函数和一次函数的解析式;

② 根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.

(,3)P a

O

x

y

(2)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.

① 求点A、B、D的坐标;

② 求一次函数和反比例函数的解析式.

3.如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的

图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.

(1)分别求反比例函数和一次函数的解析式(关系式);

(2)连接OA,求△AOC的面积.

4.如图,一次函数y=x+1与反比例函数的图象相交于点A(2,3)和点B.

(1)求反比例函数的解析式;

(2)求点B的坐标;

(3)过点B作BC⊥x轴于C,求S△ABC.

5.已知一次函数y=kx+b的图象与反比例函数的图象相交于A,B两点,其中A点的横坐标与B

点的纵坐标都是2,如图:

(1)求这个一次函数的解析式;

(2)求△AOB的面积;

(3)在y轴是否存在一点P使△OAP为等腰三角形?若存在,请在坐标轴相应位置上用P1,P2,P3…标出符合条件的点P;(尺规作图完成)若不存在,请说明理由.

6.如图,反比例函数y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,﹣1).

(1)求反比例函数与一次函数的函数关系式;

(2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;

(3)连接AO、BO,求△ABO的面积;

(4)在反比例函数的图象上找点P,使得点A,O,P构成等腰三角形,直接写出两个满足条件的点P的坐标.

7.如图,已知反比例函数的图象经过点,过点A作AB⊥x轴于点B,

且△AOB的面积为.

(1)求k和m的值;

(2)若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求|AO|:|AC|的值;

(3)若D为坐标轴上一点,使△AOD是以AO为一腰的等腰三角形,请写出所有满足条件的D点的坐标.

初中反比例函数经典例题

初中反比例函数习题集合(经典) (1)下列函数,① 1)2(=+y x ②. 11 += x y ③21x y = ④.x y 21-=⑤2 x y =-⑥13y x = ; 其中是y 关于x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 (4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (6)反比例函数(0k y k x = ≠) 的图象经过(—2,5)和(2, n ), 求(1)n 的值;(2)判断点B (24,2-)是否在这个函数图象上,并说明理由 (7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1; x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值. (8)若反比例函数2 2)12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (9)已知0k >,函数y kx k =+和函数k y x =在同一坐标系内的图象大致是( ) (10)正比例函数2x y = 和反比例函数2 y x =的图象有 个交点. (11)正比例函数5y x =-的图象与反比例函数(0)k y k x =≠的图象相交于点A (1,a ), 则a = . (12)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =. x y O x y O x y O x y O A B C D

反比例函数及典型例题

反比例函数知识点及典型例题 反比例函数这一章是初中数学的一个重点,也是初中数学的一个核心知识点。由反比例函数的图像和性质衍生出了好多数学问题,这对“数形结合”思想还有点欠缺的中学生来说无疑是一个难点。 一、反比例函数知识要点点拨 1、反比例函数的图象和性质: 反比例函数 (0)k y k x = ≠ k 的符号 0k > 0k < 图象 性质 ①x 的取值范围是0x ≠, y 的取值范围是0y ≠. ②当0k >时,函数图象的两个分支分别在第一、第三象限.在每 个象限内,y 随x 的增大而减小. ①x 的取值范围是0x ≠, y 的取值范围是0y ≠. ②当0k <时,函数图象的两个分支分别在第二、第四象 限.在每个象限内,y 随x 的增大而增大. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. 2、反比例函数与正比例函数(0)y kx k =≠的异同点: 函数 正比例函数 反比例函数 x y O x y O

解析式 (0)y kx k =≠ (0)k y k x = ≠ 图象 直线,经过原点 双曲线,与坐标轴没有交点 自变量取值范围 全体实数 0x ≠的一切实数 图象的位置 当0k >时,在一、三象限; 当0k <时,在二、四象限. 当0k >时,在一、三象限; 当0k <时,在二、四象限. 性质 当0k >时,y 随x 的增大而增大; 当0k <时,y 随x 的增大而减小. 当0k >时,y 随x 的增大而 减小; 当0k <时,y 随x 的增大而增大. 二,、典型例题 例 1 下面函数中,哪些是反比例函数? (1)3 x y -=;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).8 1=xy 解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,x k y =)0(≠k , 它也可变形为1-=kx y 及k xy =的形式,(4),(5)就是这两种形式. 例 2在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填 (正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( ); (5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( );

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题 知识点归纳 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限; 在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限; 在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上, 则(,)在双曲线的另一支上.

图象关于直线对称,即若(a,b)在双曲线的一支上, 则(,)和(,)在双曲线的另一支上.4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称 点Q也在双曲线上,作QC⊥PA的延长线于C,则有三 角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线 与双曲线的关系: 当 时,两图象没有交点; 当 时,两图象必有两个交点,且这两个交点关于原点成中心对称.

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

反比例函数经典编辑中考例题

反比例函数经典中考例题解析一 一、 填空题(每空3分,共36分) 1、任意写出一个图象经过二、四象限的反比例函数的解析式:__________ 2、若正比例函数y =mx (m ≠0)和反比例函数y =n x (n ≠0)的图象有一个交点为点(2,3),则m =______,n =_________ . 3、已知正比例函数y=kx 与反比例函数y= 3 x 的图象都过A (m ,1)点,求此正比例函数解析式为________,另一个交点的坐标为________. 4、已知反比例函数2k y x -=,其图象在第一、三象限内,则k 的值可为 。 (写出满足条件的一个k 的值即可) 5、已知反比例函数x k y = 的图象经过点)2 1 4(,,若一次函数1+=x y 的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标为______________ 6、已知双曲线x k y = 经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b . 7、函数y=x 2的图象如图所示,在同一直角坐标系内,如果将直线y=-x+1沿y 轴向上平 移2个单位后,那么所得直线与函数y= x 2 的图象的交点共有 个 8、已知函数y kx =- (k≠0)与y=4x -的图象交于A 、B 两点,过点A 作AC 垂直于y轴,垂足为点C ,则△BOC 的面积为____ (第9题)

9.如图,11POA V 、 212P A A V 是等腰直角三角形,点1P 、2P 在函数4 (0)y x x =>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是____________. 10. 两个反比例函数x y 3= ,x y 6 =在第一象限内的图象如图 所示, 点P 1,P 2,P 3,…,P 2 005在反比例函数x y 6 = 图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2 005个连续奇数,过点P 1, P 2,P 3,…,P 2 005分别作 y 轴的平行线,与x y 3 = 的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2 005(x 2 005,y 2 005),则 y 2 005= . 二、选择题(每题3分,共30分) 11、反比例函数k y x = 与直线2y x =-相交于点A ,A 点的横坐标为-1,则此反比例函数的解析式为( ) A .2y x = B .12y x = C .2y x =- D .12y x =- 12、如图所示的函数图象的关系式可能是( ). (A )y = x (B )y =x 1 (C )y = x 2 (D) y = 1x 13、若点(3,4)是反比例函数2 21m m y x +-=图象上一点,则此函数图象必须经过点 ( ). O x y (第12题) 第10

反比例函数经典中考例题解析二

反比例函数经典中考例题解析二 一、选择题(每小题3分,共30分) 1、反比例函数y = x n 5 图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、1 2、若反比例函数y = x k (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(- 2 1 ,2) C 、(-2,-1) D 、( 2 1 ,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( ) 4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y = x k 满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y = x 1 于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ). A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定 Q p x y o t /h v /(km/ O t /h v /(km/ O t /h v /(km/ O t /h v /(km/ O A . B . C . D .

7、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ= V m ,它的图象如图所示,则该 气体的质量m 为( ). A 、1.4kg B 、5kg C 、6.4kg D 、7kg 8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x 1的图象上,则y 1,y 2,y 3的大 小关系是( ). A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 1=y 2=y 3 D 、y 1<y 3<y 2 9、已知反比例函数y = x m 21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <2 1 D 、m > 2 1 10、如图,一次函数与反比例函数的图象相交于A 、B 两 点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ). A 、x <-1 B 、x >2 C 、-1<x <0或x >2 D 、x <-1或0<x <2 二、填空题(每小题3分,共30分) 11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式 为 . 12、已知反比例函数 x k y = 的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =x b 3 -和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)x m 2 - 10的图象分布在第二、四象限内,则m 的值为 .

反比例函数知识点及典型例题解析

反比例函数 知识点及考点: (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11 += x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于 x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (5)反比例函数(0k y k x = ≠) 的图象经过(—2,5, n ), 求1)n 的值; 2)判断点B (24,)是否在这个函数图象上,并说明理由 (6)已知y 与2x -3成反比例,且4 1 =x 时,y =-2,求y 与x 的函数关系式.

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

反比例函数知识点归纳总结与典型例题(供参考)

反比例函数知识点归纳总结与典型例题 (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11+= x y ③21x y = ④.x y 21 -=⑤2 x y =-⑥13y x = ;其中是y 关 于x 的反比例函数的有:_________________。 (2)函数2 2)2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)反比例函数(0k y k x = ≠) 的图象经过(—2,52, n ), 求1)n 的值; 2)判断点B (24,2- (二)反比例函数的图象和性质: 知识要点: 1、形状:图象是双曲线。 2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。 3、增减性:(1)当k>0时,_________________,y 随x 的增大而________; (2)当k<0时,_________________,y 随x 的增大而______。 4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交 5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点____________;(2)对于k 取互为相反数的两个反比例函数(如:y = x 6 和y = x 6 -)来说,它们是关于x 轴,y 轴___________。 例题讲解: 反比例函数的图象和性质: (1)写出一个反比例函数,使它的图象经过第二、四象限 . (2)若反比例函数 2 2 )12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (3)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =.

导数典型例题(含答案)

导数典型例题 导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点. 一、与导数概念有关的问题 【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 .1002 C ! 解法一 f '(0)=x f x f x ?-?+→?) 0()0(lim = x x x x x ?--?-?-??→?0 )100()2)(1(lim 0 Λ =lim 0 →?x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D. 解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D. 点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解. 【例2】 已知函数f (x )=n n n k k n n n n x c n x c k x c x c c 11212210 ++++++ΛΛ,n ∈N *,则 x x f x f x ??--?+→?) 2()22(lim 0 = . 解 ∵ x x f x f x ??--?+→?) 2()22(lim 0 =2x f x f x ?-?+→?2) 2()22(lim + []x f x f x ?--?-+→?-) 2()(2lim 0 =2f '(2)+ f '(2)=3 f '(2), 又∵f '(x )=1 1 2 1 --+++++n n n k k n n n x c x c x c c ΛΛ, ∴f '(2)= 21(2n n n k n k n n c c c c 222221+++++ΛΛ)=21[(1+2)n -1]= 2 1(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如 x m x f x m x f x ?--?-→?-)()(000 lim ,且其定义形式可以是 x m x f x m x f x ?--?-→?) ()(000 lim ,也可以是 00 ) ()(lim x x x f x f x --→?(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关 知识的综合题,连接交汇、自然,背景新颖. 【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n个数a ij(i 1,2, ,m; j 1,2, , n)组成的m行n 列的矩形数表 a11 a12 a1n a2n a m1 a m2 a mn 称为m×n矩阵,记为 A (a ij )m n 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是 1 的对角阵,记为E; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设 A (a ij )mn; B (b ij )mn 若a ij b ij(i 1,2, ,m; j 1,2, ,n),则称 A 与B相等,记为A=B 2.1.2 矩阵的运算

1.加法 (1)定义:设 A (A ij )mn ,B (b ij ) mn ,则 C A B (a ij b ij )mn (2) 运算规律 ① A+B=B+A ; ②( A+B )+C=A+(B+C ) ③ A+O=A ④ A+(-A ) =0, –A 是 A 的负矩阵 2.数与矩阵的乘法 (1)定义:设 A (a ij ) mn , k 为常数,则 kA (ka ij )mn (2)运算规律 ①K (A+B) =KA+KB , ② (K+L )A=KA+LA , ③ (KL) A= K (LA) 3.矩阵的乘法 (1)定义:设 A (a ij )mn ,B (b ij )np .则 n AB C (C ij )mp ,其中 C ij a ik b kj k1 (2) 运算规律 ① (AB)C A (BC) ;② A(B C) AB AC ③ (B C)A BA CA 3)方阵的幂 ①定义:A (a ij ) n ,则 A k A K A ②运算规律: A m A n A m n (A m )n A (4)矩阵乘法与幂运算与数的运算不同之处。 ① AB BA ② AB 0, 不能推出 A 0或B 0; ③ (AB)k A k B k 4.矩阵的转置 (1) 定义:设矩阵 A=(a ij )mn ,将 A 的行与列的元素位置交换,称为矩阵 A 的转置,记为 A T (a ji )nm , (2) 运算规律 ①(A T )T A; ②(A B)T A T B T ; ③(kA)T KA T ; ④ (AB)T B T A T 。

反比例函数的典型例题集

反比例函数的典型例题一 例 下面函数中,哪些是反比例函数? (1)3x y - =;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).8 1=xy 解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,x k y =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式, (4),(5)就是这两种形式. 反比例函数的典型例题二 例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( ); (5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( ); (7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( ); (9)x 越来越大时,y 越来越小,y 与x 的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答: 说明:本题考查了 正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义. 反比例函数的典型例题三 例 已知反比例函数6 2)2(--=a x a y ,y 随x 增大而减小,求a 的值及解析式. 分析 根据反比例函数的定义及性质来解此题. 解 因为6 2)2(--=a x a y 是反比例函数,且y 随x 的增大而减小, 所以???>--=-.02,162a a 解得???>±=. 2,5a a

反比例函数经典题型

X Y -9 -8-7-6-5-4-3-2-1 1110987654321 -8-7-6-5-4-3-2-1 9 876543210X Y -9 -8-7-6-5-4-3-2-1 11109876543 21 -8-7-6-5-4-3-2-19 8 7 6 5 4 3 2 1 0反比例函数 一、经典内容解析 1.反比例函数的概念 (1) (k ≠0)可以写成(k ≠0)的形式,注意自变量x 的指数为-1,在解决有关 自变量指数问题时应特别注意系数k ≠0这一限制条件; (2) (k ≠0)也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的 k ,从而得到反比例函数的解析式; (3) 反比例函数 的自变量x ≠0,故函数图象与x 轴、y 轴无交点. 解析式 x k y = (k 为常数,且0k ≠) 自变量取值范围 0≠x 的实数 图 象 图象的性质 双曲线 0k > 0k < 示意图 位置 两个分支分别位于 一、三象限 两个分支分别位于 二、四象限 变化趋势 在每个象限内,y 随x 的增大而减小 在每个象限内,y 随x 的增大而增大 对称性 是轴对称图形,直线x y ±=是它的两条对称轴 是中心对称图形,对称中心为坐标原点 3.反比例函数的性质(与正比例函数对比) 函数解析式 正比例函数 y=kx (k ≠0) 反比例函数 (k ≠0) 自变量的 取值范围 全体实数 x ≠0 图 象 直线,经过原点 双曲线,与坐标轴没有交点

图象位置 (性质) 当k>0时,图象经过一、三象限;当 k<0时,图象经过二、四象限. 当k>0时,图象的两支分别位于一、三 象限;当k<0时,图象的两支分别位 于二、四象限. 性质 (1) 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小. (2) 越大,图象越靠近y轴. (1) 当k>0时,在每个象限内y随x的 增大而减小;当k<0时,在每个象限 内y随x的增大而增大. (2) 越大,图 象的弯曲度越小,曲线越平直. 注: (1) 双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论, 不能一概而论. (2) 正比例函数与反比例函数, 当时,两图象没有交点; 当时,两图象必有两个交点, 且这两个交点关于原点成中心对称. (3) 反比例函数与一次函数的联系. 4.反比例函数中比例系数k的几何意义 (1)过双曲线(k≠0) 上任意一点作x轴、y轴的垂线,所得矩形的面积为. (2)过双曲线(k≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形

反比例函数知识点及经典例题

第十七章 反比例函数 一、基础知识 1. 定义:一般地,形如x k y =(k 为常数,o k ≠)的函数称为反比例函数。x k y = 还可以写成kx y =1- 2. 反比例函数解析式的特征: ⑴等号左边是函数y ,等号右边是一个分式。分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k ⑶自变量x 的取值为一切非零实数。 ⑷函数y 的取值是一切非零实数。 3. 反比例函数的图像 ⑴图像的画法:描点法 ① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,x k y =(k 为常数,0≠k )中自变量0≠x ,函 数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。 ⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。 ⑷反比例函数x k y = (0≠k )中比例系数k 的几何意义是:过双曲线x k y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。 4 5. 点的坐标即可求出k ) 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数, 但是反比例函数x k y =中的两个变量必成反比例关系。 7. 反比例函数的应用二、例题 【例1】如果函数2 22 -+=k k kx y 的图像是双曲线,且在第二,四象限内,那么的值 是多少?【解析】有函数图像为双曲线则此函数为反比例函数x k y = ,(0≠k )

即kx y =1-(0≠k )又在第二,四象限内,则0>>则下列各式正确的是( ) A .213y y y >> B .123y y y >> C .321y y y >> D .231y y y >> 【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。 解法一:由题意得111x y - =,221x y -=,3 31x y -= 3210x x x >>>Θ,213y y y >>∴所以选A 解法二:用图像法,在直角坐标系中作出x y 1 -=的图像 描出三个点,满足3210x x x >>>观察图像直接得到213y y y >>选A 解法三:用特殊值法 213321321321,1,1,2 1 1,1,2,0y y y y y y x x x x x x >>∴=-=-=∴-===∴>>>令Θ 【例3】如果一次函数()的图像与反比例函数x m n y m n mx y -=≠+=30相交于点 (22 1,),那么该直线与双曲线的另一个交点为( ) 【解析】 ???==?? ???=-=+∴??? ??-=+=12132 212213n m m n n m x x m n y n mx y 解得,,相交于与双曲线直线Θ ?????== ???-=-=?? ? ? ?=+==+=∴2 21111121,122211y x y x x y x y x y x y 得解方程组双曲线为直线为 ()11--∴, 另一个点为 【例4】 如图,在AOB Rt ?中,点A 是直线m x y +=与双曲线x m y =在第一象限的交点,且2=?AOB S ,则m 的值是_____.

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

反比例函数经典例题(含详细解答)

反比例函数难题 1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n An-1An都是等腰直角三角形,点P1、P 2、P3…Pn都在函 2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函 数y= (1)求AB的长; (2)当矩形ABCD是正方形时,将反比例函数y=k x 的图象沿y轴翻折,得到反比例函数y= 1 k x 的图象(如 图2),求k1的值; (3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线 y=k x 于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明 理由.

1.已知反比例函数y= 2k x 和一次函数y=2x-1,其中一次函数的图象经过(a,b ),(a+k ,b+k+2)两点.?(1)求反比例函数的解析式; (2)求反比例函数与一次函数两个交点A、B 的坐标: (3)根据函数图象,求不等式 2k x >2x -1的解集;?(4)在(2)的条件下,x轴上是否存在点P,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.

1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k≠0)的图象与反比例函数y = (m≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =\f (4,5). (1)求该反比例函数和一次函数; (2)求△AO C的面积. (1)过A 点作AD⊥x轴于点D,∵sin ∠AO E= 错误!未定义书签。,OA =5, ∴在Rt△ADO中,∵sin∠AOE=错误!未定义书签。 =错误!未定义书签。= 4 5, ∴AD=4,DO=OA 2-DA2=3,又点A 在第二象限∴点A的坐标为(-3,4), x m

相关主题
文本预览
相关文档 最新文档