当前位置:文档之家› 导数与微分讲义

导数与微分讲义

导数与微分讲义
导数与微分讲义

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1. 导数定义 00000)()(lim lim )()(lim 0x x x f x f x y x x f x x f x x x x --=??=?-?+→→?→? 0|)()(00x x dx dy x y x f =='='= 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?左右极限都存在且相等,左极限为左导,右极限为右导, )(lim 00x f x y x --→?'=??, )(lim 00x f x y x ++→?'=?? 导数定义是非常重要的概念,一定要灵活掌握。 2. 导函数)(x f ',dx dy . f (x )在(a , b )可导, f (x )在[a , b ]可导 3. 可导与连续的关系 可导一定连续,但连续不一定可导(如函数||x y =在x =0点处连续,但是不可导) 4. 导数的几何意义 切线方程:))((000x x x f y y -'=-; 法线方程:)() (1000x x x f y y -'- =- 0)(0≠'x f , 5. 微分的定义

微分的几何意义 6. 微分与导数的关系 )(x f 在x 处可微?)(x f 在x 处可导,且dx x f dy )('= 同时 dx x f dy x x )(|00'==。 §2 导数与微分的计算 基本概念 1. 基本初等函数的导数、微分公式(书159页,166页) 2. 导数(微分)四则运算公式 )()())()((x g x f x g x f '±'='±, )()()()())()((x g x f x g x f x g x f '+'=', 特别地 )())((x f k x kf '=', ) ()()()()())()((2x g x g x f x g x f x g x f '-'=' 特别地 ) ()())(1(2x f x f x f '-='。 后面两个公式不要记错。 3. 复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。

导数与微分测试题及答案(一)

导数与微分测试题(一) 一、选择题(每小题4分,共20分) 1、 设函数10 ()10 2 x x f x x ?≠??=??=?? 在0x =处( ) A 、不连续; B 、连续但不可导; C 、二阶可导; D 、仅一阶可导; 2、若抛物线2y ax =与曲线ln y x =相切,则a 等于( ) A 、1; B 、 12 ; C 、 12e ; D 、2e ; 3、设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( ) A 、1; B 、 2 e ; C 、 2e ; D 、e ; 4、设函数()f x 在点x a =处可导,则0 ()() lim x f a x f a x x →+--等于( ) A 、0; B 、()f a '; C 、2()f a '; D 、(2)f a '; 5、设函数()f x 可微,则当0x ?→时,y dy ?-与x ?相比是( ) A 、等价无穷小; B 、同阶非等价无穷小; C 、低阶无穷小; D 、高阶无穷小; 二、填空题(每小题4分,共20分) 1、设函数()f x x x =,则(0)f '=______; 2、 设函数()x f x xe =,则(0)f ''=______; 3、 设函数()f x 在0x 处可导,且0()f x =0,0()f x '=1,则 01lim ()n nf x n →∞ + =______; 4、 曲线2 28y x x =-+上点______处的切线平行于x 轴,点______处的 切线与x 轴正向的交角为 4 π 。

5、 d ______ = x e dx - 三、解答题 1、(7分)设函数()()() , ()f x x a x x ??=-在x a =处连续, 求()f a '; 2、(7分)设函数()a a x a x a f x x a a =++,求()f x '; 3、(8分)求曲线 sin cos 2x t y t =?? =? 在 6 t π = 处的切线方程和法线方程; 4、(7分)求由方程 1sin 02 x y y -+=所确定的隐函数y 的二阶导数 2 2 d y dx 5、(7分)设函数1212()()()n a a a n y x a x a x a =--- ,求 y ' 6、(10分)设函数2 12()12 x x f x ax b x ?≤?? =? ?+> ?? ,适当选择,a b 的值,使 得()f x 在12 x = 处可导 7(7分)若2 2 ()()y f x xf y x +=,其中 ()f x 为可微函数,求dy 8、(7分)设函数()f x 在[,]a b 上连续,且满足 ()()0,()()0f a f b f a f b +-''==?>,证明:()f x 在(,)a b 内至少存在一点c ,使得 ()0f c = 导数与微分测试题及答案(一) 一、1-5 CCBCD 二、1. 0; 2. 2; 3. 1; 4.(1,7)、329(, )24 ; 5. x e --; 三、1. 解:()() ()() ()lim lim ()x a x a f x f a x a x f a a x a x a ??→→--'===--;

浅谈微积分与化学的关系

浅谈微积分与化学的关系 说到微积分与化学的关系,首先要从微积分的创造与发展说起。 微积分是微分和积分两门学问的统称,研究的范畴有三,包括微分、积分,以及微分和积分两者之间的关系。微分主要讨论一个变量怎样随时间(或其他变量)改变,而积分则主要讨论计算面积的方法。它们两者的关系由「微积分基本定理」(或称「牛顿-莱布尼茨公式」)给出:简单来说,这条定理说明,在适当的条件下,求积分是求微分之逆,求微分也是求积分之逆。以下简称微积分的历史。一微积分发展的蒙芽时期早在希腊时期,人类已经开始讨论「无穷」、「极限」以及「无穷分割」等概念。这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论証和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。例如公元前五世纪,希腊的德謨克利特(Democritus)提出原子论:他认為宇宙万物是由极细的原子构成。在中国,《庄子.天下篇》中所言的「一尺之捶,日取其半,万世不竭」,亦指零是无穷小量。这些都是人类对早期的极限以及无穷等概念的原始认识。其他关於无穷、极限的论述,还包括芝诺(Zeno)几个著名的悖论1:其中一个悖论说一个人永远都追不上一隻乌龟2,因為当那人追到乌龟的出发点时,乌龟已经向前爬行了一小段路,当他再追完这一小段,乌龟又已经再向前爬行了一小段路。芝诺说这样一追一赶的永远重覆

下去,任何人都总追不上一隻最慢的乌龟--当然,从现代的观点看,芝诺说的实在荒谬不过;他混淆了「无限」和「无限可分」的概念。人追乌龟经过的那段路纵然无限可分,其长度却是有限的;所以人仍然可以以有限的时间,走完这一段路。然而这些荒谬的论述,开啟了人类对无穷、极限等概念的探讨,对后世发展微积分有深远的歷史意味。 另外值得一提的是,希腊时代的阿基米德(Archimedes)已经懂得用无穷分割的方法正确地计算一些面积,这跟现代积分的观念已经很相似。由此可见,在歷史上,积分观念的形成比微分还要早--这跟课程上往往先讨论微分再讨论积分刚刚相反。 二、十七世纪的大发展--牛顿和莱布尼茨的贡献 中世纪时期,欧洲科学发展停滞不前,人类对无穷、极限和积分等观念的想法都没有甚麼突破。中世纪以后,欧洲数学和科学急速发展,微积分的观念也於此时趋於成熟。在积分方面,一六一五年,开普勒(Kepler)把酒桶看作一个由无数圆薄片积累而成的物件,从而求出其体积。而伽利略(Galileo)的学生卡瓦列里(Cavalieri)即认為一条线由无穷多个点构成;一个面由无穷多条线构成;一个立体由无穷多个面构成。这些想法都是积分法的前驱。

高数第二章导数与微分知识点与习题

高数第二章导数与微分知识点总结 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x - --?→→+?--==?-. 0 '00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x + ++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001 ()()'() y f x x x f x -=- -. 2.基本公式 (1)'0C = (2)' 1 ()a a x ax -= (3)()'ln x x a a a =(特例()'x x e e =)(4)1 (log )'(0,1)ln a x a a x a = >≠

(5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2 (cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =- (11)2 1(arcsin )'1x x = - (12)2 1(arccos )'1x x =- - (13)21(arctan )'1x x = + (14)2 1 (arccot )'1x x =-+ (15222 2 1[ln()]'x x a x a + += + 3.函数的求导法则 (1)四则运算的求导法则 ()'''u v u v ±=± ()'''uv u v uv =+ 2 '' ()'u u v uv v v -= (2)复合函数求导法则--链式法则 设(),()y f u u x ?==,则(())y f x ?=的导数为:[(())]''(())'()f x f x x ???=. 例5 求函数2 1 sin x y e =的导数. (3)反函数的求导法则 设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则 11 '()'()'(()) g y f x f g y = =. (4)隐函数求导 设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法' ''x y F y F =-. (5)对数求导法:适用于若干因子连乘及幂指函数 4.高阶导数

最新导数和微分的概念

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1.导数定义 ?Skip Record If...? ?Skip Record If...? 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?Skip Record If...?左右极限都存在且相等,左极限为左导,右极限为右导, ?Skip Record If...?, ?Skip Record If...? 导数定义是非常重要的概念,一定要灵活掌握。 2.导函数?Skip Record If...?,?Skip Record If...?. f(x)在(a, b)可导, f(x)在[a, b]可导 3.可导与连续的关系 可导一定连续,但连续不一定可导(如函数?Skip Record If...?在x=0点处连续,但是不可导) 4.导数的几何意义 切线方程:?Skip Record If...?; 法线方程:?Skip Record If...? ?Skip Record If...?, 5.微分的定义 微分的几何意义 6.微分与导数的关系

?Skip Record If...?在x处可微?Skip Record If...??Skip Record If...?在x处可导,且?Skip Record If...? 同时 ?Skip Record If...?。 §2 导数与微分的计算 基本概念 1.基本初等函数的导数、微分公式(书159页,166页) 2.导数(微分)四则运算公式 ?Skip Record If...?, ?Skip Record If...?, 特别地 ?Skip Record If...?, ?Skip Record If...? 特别地 ?Skip Record If...?。 后面两个公式不要记错。 3.复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。 §3 中值定理 基本概念

第二章 导数与微分习题汇总

第二章 导数与微分 【内容提要】 1.导数的概念 设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ?=+?-.若0→?x 时,极限x y x ??→?0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数, 记为 )(0x f '或)(0x y '或0|x x y ='或 0|d d x x x y =或0|d d x x x f = +→?0x 时,改变量比值的极限x y x ??+ →?0 lim 称f(x)在x 0处的右导数,记为)(0x f +'。 -→?0x 时,改变量比值的极限x y x ??- →?0 lim 称f(x)在x 0处的左导数,记为)(0x f -'。 2.导数的意义 导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。 导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。 3.可导与连续的关系 定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。 此定理的逆命题不成立,即连续未必可导。 4.导数的运算 定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u '±'='±)( 定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u uv '+'=')( 定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则 2v v u v u v u ' -'= ' ?? ? ??

导数与微分重点知识归纳

导数的概念 例:设一质点沿x轴运动时,其位置x是时间t的函数,,求质点在t0的瞬时速 度? 我们知道时间从t0有增量△t时,质点的位置有增量 这就是质点在时间段△t的位移。因此,在此段时间内质点的平均速度为: 若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。 我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度, 即:质点在t0时的瞬时速度= 为此就产生了导数的定义,如下 导数的定义 设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地 函数有增量 , 若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。 记为:还可记为:, 函数在点x0处存在导数简称函数在点x0处可导,否则不可导。 若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。这时函数 对于区 间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数, 我们就称这个函数为原来函数的导函数。 注:导数也就是差商的极限左、右导数 前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的

概念。 若极限存在,我们就称它为函数在x=x0处的左导数。 若极限存在,我们就称它为函数在x=x0处的右导数。 注:函数在x0处的左右导数存在且相等是函数在x0处的可导的充分必要条件 函数的和差求导法则 法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差). 用公式可写为:。其中u、v为可导函数。 常数与函数的积的求导法则 法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。用公式可写成: 函数的积的求导法则 法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数。用公式可写成: 函数的商的求导法则 法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘积,在除以分母导数的平方。用公式可写成: 复合函数的求导法则 例题:求=? 解答:由于,故这个解答正确吗? 这个解答是错误的,正确的解答应该如下: 我们发生错误的原因是是对自变量x求导,而不是对2x求导。 下面我们给出复合函数的求导法则

第二章 导数与微分(测试题)

第二章 导数与微分 单元测试题 考试时间:120分钟 满分:100分 试卷代码:M1-2b 一、选择题(每小题2分,共40分) 1.两曲线21y y ax b x = =+,在点1(22 ,处相切,则( ) A.13164a b =-=, B.11164 a b ==, C.912a b =-=, D.712a b ==-, 2.设(0)0f =,则()f x 在0x =可导的充要条件为( ) A.201lim (1cos )h f h h →-存在 B.01lim (1)h h f e h →-存在 C.201lim (sin )h f h h h →-存在 D.[]01lim (2)()h f h f h h →-存在 3.设函数()f x 在区间()δδ-,内有定义,若当()x δδ∈-,时恒有2()f x x ≤,则0x =必是()f x 的( ) A.间断点 B.连续而不可导的点 C.可导的点,且(0)0f '= D.可导的点,且(0)0f '≠ 4.设函数()y f x =在0x 点处可导,x y ,分别为自变量和函数的增量,dy 为其微分且0()0f x '≠,则0lim x dy y y →-= ( ) A.-1 B.1 C.0 D.∞ 5.设()f x 具有任意阶导数,且[]2 ()()f x f x '=,则()()n f x =( ) A.[]1()n n f x + B.[]1!()n n f x + C.[]1(1)()n n f x ++ D.[]1(1)!()n n f x ++ 6.已知函数 0() 0x x f x a b x x x ≤??=?>?? +cos 在0x =处可导,则( ) A.22a b =-=, B.22a b ==-, C.11a b =-=, D.11a b ==-, 7.设函数32()3f x x x x =+,则使()(0)n f 不存在的最小正整数n 必为( ) A.1 B.2 C.3 D.4 8.若()f x 是奇函数且(0)f '存在,则0x =是函数()()f x F x x =的( )

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞ ∞或00型,)()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

导数与微分知识点

第二章 导数与微分 一、导数 1.导数的定义: 由“变速直线运动的瞬时速度”、“平面曲线的切线斜率”引出 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 注:函数()x f 在0x 处的导数,就是导函数f ’(x)在点在0x 处的函数值,即()0x f '=f ’(x)|x=x0。 多数情况下用求导法则,有时用定义求导更方便。如题中函有f(x),而不是具体的方程时。 2、单侧导数 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 3、导数的几何意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率,即:()0x f '=K=tan a 。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y 注:切线与法线垂直,切线的斜率与法线的斜率乘积为负1,即:K 切 * K 法 = -1。 设物体作直线运动时路程S 与时间t 的函数关系为()t f S =,如果()0t f '存在,则

高等数学练习题第二章导数与微分

高等数学练习题 第二章 导数与微分 系 专业 班 学号 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3 π ,21)处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点 x 处连续是在该点 x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ]

电大【高等数学基础】 导数与微分

2) 导数与微分 070713.设 )(x f 在0x 可导,则=--→h x f h x f h ) ()2(lim 000 ( ). A )(0x f ' B )(20x f ' C )(0x f '- D )(20x f '- 070113.设 )(x f 在0x 可导,则=--→h x f h x f h 2) ()2(lim 000 ( ). (A) )(0x f ' (B) )(20x f ' (C) )(0x f '- (D) )(20x f '- 060113.设 x x f e )(=,则=?-?+→?x f x f x )1()1(lim ( ).A e 2 B e C 080713.下列等式中正确的是( ) A dx x x d 1 )1(2-= B dx x 2)x 1d(= C dx d x x 2)ln22(= D 050713.下列等式中正确的是( ). A.xdx d arctan )1( 2= B. 2 )1(dx d -= C.dx d x x 2)2ln 2 (= D.xdx x d cot )(tan = A 先单调下降再单调上升 B 单调下降 C 先单调上升再单调下降 D 单调上升 060713. 函数 622+-=x x y 在区间)5,2(内满足( ) . A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升 080724.函数 2)2(2+-=x y 的单调减少区间是 .

080124.函数 1)(2-=x x f 的单调减少区间是 . 070724. 函数2 x e y -=的单调减少区间是 . 070124.函数x y arctan =的单调增加区间是 . 060724.函数1)1(2++=x y 的单调增加区间是 . 060124.函数1)1(2++=x y 的单调减少区间是 . 050724.函数 )1ln(2x y +=的单调增加区间是 . 080732.设 2sin sin x e y x +=,求y ' 解:2sin 2sin cos 2cos )(sin )(x x x e x e y x x +='+'=' 080132.设2 x xe y =,求 y ' 解:2 22222)()(x x x x e x e e x e x y +='+'=' 070732.设2sin x e y x -=,求'y 解:x xe x x e y x x 2cos )().(sin sin 2sin -='-'=' 070132.设x x y e cos ln +=,求'y 解:x x x y e sin )(ln -'=' 060732.设 x x e y x ln tan -=,求y '. x x x x x 12- 解:由导数四则运算法则得 x x x x x x x x x y ++= '+'+'='ln 2cos 1 )(ln ln )()(tan 222 050733.设 2cos ln x y =,求d y .

偏导数与全导数-偏微分与全微分的关系

1。偏导数 代数意义 偏导数是对一个变量求导,另一个变量当做数 对x求偏导的话y就看作一个数,描述的是x方向上的变化率 对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义 对x求偏导是曲面z=f(x,y)在x方向上的切线 对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分 偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在detax趋进于0时偏增量的线性主要部分 detaz=fx(x,y)detax+o(detax) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分 这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分 全增量:x,y都增加时f(x,y)的增量 全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分 同样也有求全微分公式,也建立了全微分和偏导数的关系 dz=Adx+Bdy 其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也

指明了求微分的方法。 3.全导数 全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。 u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数 如果z=f(x^2,2^x) 只有这种情况下dz/dx才是全导数! 偏导数就是 在一个范围里导数,如在(x0,y0)处导数。 全导数就是定义域为R的导数,如在实数内都是可导的 在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。 函数f关于变量x的偏导数写为或。偏导数符号是圆体字母,区别于全导数符号的正体d。这个符号是阿德里安-马里·勒让德介入的并在雅可比的重新介入后

导数和微分练习题

第二章 导数与微分 复习自测题 一、选择题: 1、函数)(x f 在点0x 处的导数)(0x f '定义为( ) A x x f x x f ?-?+)()(00 B x x f x x f x x ?-?+→) ()(lim 000 C x x f x f x x ?-→)()(lim 00 D 0 0)()(lim 0x x x f x f x x --→ 2、设函数)100)(99()2)(1()(--???--=x x x x x x f ,则=')0(f ( ) A 100 B 100- C 100! D 100-! 3、曲线x y sin 2 += π 在0=x 处的切线的倾斜角为( ) A 2 π B 4 π C 0 D 1 4、函数1ln )(-=x x f 的导数是( ) A 11)(-='x x f B 11)(-='x x f C x x f -='11)( D 11 1 ()1 1 1x x f x x x ??-? 5、微分运算 =) (arccos ) (arcsin x d x d ( ) A x arc cot B 1- C x tan D 1 6、设()f x 在x a =的某个领域内有定义,则()f x 在x a =处可导的一个充分条件是( ) A 1 lim [()()]h h f a f a h →+∞ +-存在 B 0(2)() lim h f a h f a h h →+-+存在 C 0()() lim 2h f a h f a h h →+--存在 D 0 ()() lim h f a f a h h →--存在

导数与微分练习题答案

高等数学练习题 第二章 导数与微分 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3π,2 1 )处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠ ? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点0x 处连续是在该点0x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ] (A )(0,1) ( B) (1, 0) (C) ( 0,0) (D) (1,1)

高中数学导数与定积分知识点

高中数学知识点—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x 的导数; ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数; ③会使用导数公式表。 (3)导数在研究函数中的应用 ①结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积

分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即 x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ’(x 0)或y ’|0x x =。 即f (x 0)=0 lim →?x x y ??=0 lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0);

导数与微分的关系

导数与微分的关系 宁小青 我们知道一个函数在某点可导和可微是等价的,大部分高等数学、经济数学和数学分析课本中都是先引进导数的概念,再引进微分的概念,到底导数和微分这两个概念,哪个概念产生在前、哪个概念产生在后呢? 一、微分概念的导出背景 当一个函数的自变量有微小的改娈时,它的因变量一般说来也会有一个相应的改变。微分的原始思想在于去寻找一种方法,当因变量的改变也是很微小的时候,能够简便而又比较精确地估计出这个改变量。 我们来看一个简单的例子: 维持物体围绕地球作永不着地(理论上)的飞行所需要的最低速度称为第一宇宙速度。在中学里,利用计算向凡加速度的办法已经求出这种速度约为7.9千米/秒,现在我们改用另一种思路去推导它。 设卫星当前时刻在地球表面附近的A点沿着水平方向飞行,假如没有外力影响的话,那么它在一秒种后本应到达B点,但事实上它要受到地球的引力,因而实际到达的并非是B 点,而是C点,BC=4.9米是自由落体在重力加速度的作用下,第一秒中所走过的距离。 容易看出,若C点与地心O的距离与A事点到O的距离是相等的,那么由运动的独立性原理,就可以推断出卫星在沿地球的一个同心圆轨道运行,也就是作环绕地球的飞行了。因此,卫星应具有最小每秒飞行速度恰好在线段AB的长度。△OAB是直角三角形,OA和OC可近似的取为地球的平均半径6371千米,也就是6371000米,于是由勾股定理 显然就这样按上式去计算是不可取的——这将导致两个量级的数在直接相减,工作量大不说,在字长较短的计算机上,还可能产生较大的误差。 利用乘法公式 可将上式改为 由于,因此这一项与这一项想比可以忽略不计,于是可以把计算简化为 由此计算出千米。 这就是说,卫星的速度至少要达到每秒7.9千米才能维持其围绕地球的飞行,此即所要求的第一宇宙速度。 上面所计算的,实际上就是函数在处,自变量出现了一个微小的改变量之后,函数值的相应改变量4.9。然而在计算过程中,我们并没有完全精确地去算

导数与微分习题及答案

第二章 导数与微分 (A) 1.设函数()x f y =,当自变量x 由0x 改变到x x ?+0时,相应函数的改变量 =?y ( ) A .()x x f ?+0 B .()x x f ?+0 C .()()00x f x x f -?+ D .()x x f ?0 2.设()x f 在0x 处可,则()() =?-?-→?x x f x x f x 000 lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则 =dx dy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( ) A .左导数存在; B .右导数存在; C .左右导数都存在 D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在 7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .6 8.设()x f e y =且()x f 二阶可导,则=''y ( ) A . ()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){} x f x f e x f ''+'2 9.若()???≥+<=0,2sin 0 ,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=b C .2-=a ,1=b D .2=a ,1-=b

经济数学(导数与微分习题及答案)

第三章 函数的导数与微分 习题 3-1 1. 根据定义求下列函数的导数: (1) x y 1 = (2)x y cos = (3)b ax y +=(a ,b 为常数) (4)x y = 解 (1) 因为 00()()'lim lim x x y f x x f x y x x ?→?→?+?-==?? =x x x x x ?-?+→?1 1lim 0=01lim ()x x x x ?→-+?=2 1 x - 所以 21 y x '=- . (2) 因为 00cos()cos 'lim lim x x y x x x y x x ?→?→?+?-==?? 02sin()sin 22 lim sin x x x x x x ?→??-+==-? 所以 sin y x '=- (3) 因为 00[()][]'lim lim x x y a x x b ax b y x x ?→?→?+?+-+==?? =x x a x ??→?0lim =a 所以 y a '= (4) 因为 00'lim lim x x y y x ?→?→?==? = )(lim 0x x x x x x +?+??→? lim x ?→== 所以 y '= . 2. 下列各题中假定)(0'x f 存在, 按照导数的定义观察下列极限, 指出A 表示什么? (1) A x x f x x f x =?-?-→?) ()(lim 000 (2) A x x f x =→)(lim 0(其中0)0(=f 且)0('f )存在) (3) A x f tx f x =-→)0()(lim 0(其中)0('f 存在)

相关主题
文本预览
相关文档 最新文档