当前位置:文档之家› 昆明理工大学 算法分析与设计 实验2

昆明理工大学 算法分析与设计 实验2

昆明理工大学 算法分析与设计 实验2
昆明理工大学 算法分析与设计 实验2

昆明理工大学信息工程与自动化学院学生实验报告

(2014 —2015 学年第 1 学期)

课程名称:算法设计与分析开课实验室:信自楼445 2014 年12月3日

一、上机目的及内容

1.上机内容

设需要编码的字符集为{d1, d2, …, dn},它们出现的频率为{w1, w2, …, wn},应用哈夫曼树构造最短的不等长编码方案。

2.上机目的

(1)了解前缀编码的概念,理解数据压缩的基本方法;

(2)掌握最优子结构性质的证明方法;

(3)掌握贪心法的设计思想并能熟练运用。

二、实验原理及基本技术路线图(方框原理图或程序流程图)

(1)证明哈夫曼树满足最优子结构性质;

证明:设C为一给定的字母表,其中每个字母c∈C都定义有频度f[c]。设x和y 是C中具有最低频度的两个字母。并设D为字母表移去x和y,再加上新字符z 后的字母表,D=C-{x,y}∪{z};如C一样为D定义f,其中f[z]=f[x]+f[y]。设T 为表示字母表D上最优前缀编码的任意一棵树。那么,将 T 中的叶子节点z 替换成具有x 和y 孩子的内部节点所得到的树T,表示字母表C上的一个最优前缀编码。

(2)设计贪心算法求解哈夫曼编码方案;

解:哈弗曼编码是以贪心法为基础的,可以从最优子结构中求得问题的解。所以,需要从一个问题中选出一个当前最优的解,再把这些解加起来就是最终问题的解。可以构造一个优先队列priority_queue,每次求解子问题的解时,从优先级队列

priority_queue 中选取频率最小的两个字母(x、y)进行合并得到一个新的结点z,把x与y从优先级队列priority_queue中弹出,把压入到优先级队列priority_queue 中。如此反复进行,直到优先级队列priority_queue中只有一个元素(根节点)为止。(3)设计测试数据,写出程序文档。

主函数算法:

流程图:

三、所用仪器、材料(设备名称、型号、规格等或使用软件)

1台PC及VISUAL C++6.0软件

四、实验方法、步骤(或:程序代码或操作过程)

源程序:

#include

#define n 7 //一共有n棵左右孩子均为空的树

#define m 2*n-1 //生成哈夫曼树后共有2*n-1个节点

float small1,small2;

int flag1,flag2,count;

typedef struct HuffmanTree

{

float weight;

int lchild,rchild,parent;

}huffman;

huffman huffmantree[m];

void CreatHuffmanTree()

{

int i;

void select();

printf("请输入%d棵树的权值:",n); //初始化每棵树的权值

for(i=0;i

scanf("%f",&huffmantree[i].weight);

printf("\n");

for(i=0;i

{

huffmantree[i].lchild=-1;

huffmantree[i].rchild=-1;

huffmantree[i].parent=-1;

}

for(count=n;count

{

select();

huffmantree[flag1].parent=count;

huffmantree[flag2].parent=count;

huffmantree[count].weight=small1+small2;

huffmantree[count].lchild=flag1; //值最小的作为左孩子

huffmantree[count].rchild=flag2;

}

}

void select() //找出权值最小的两棵树,算法有问题

{

int i,a,b;

float stemp;

int ftemp;

a=0;b=0;

for(i=0;i

{

if(huffmantree[i].parent==-1)

{

if(a==0)

{

small1=huffmantree[i].weight;

flag1=i;

a=a+1;

}

else

if(b==0)

{

small2=huffmantree[i].weight;

flag2=i;

b=b+1;

}

}

if((a==1)&&(b==1))

break;

}

if(small1>small2)

{

stemp=small1;

small1=small2;

small2=stemp;

ftemp=flag1;

flag1=flag2;

flag2=ftemp;

}

for(i=0;i

if(huffmantree[i].parent==-1)

if((flag1!=i)&&(flag2!=i))

if(huffmantree[i].weight

{

small2=huffmantree[i].weight;

flag2=i;

if(small1>small2)

{

stemp=small1;

small1=small2;

small2=stemp;

ftemp=flag1;

flag1=flag2;

flag2=ftemp;

}

}

}

void huffmancode()

{

int a[n],j,k,i,c;

for(i=0;i

{

j=i;

c=0;

while(huffmantree[j].parent!=-1)

{

k=huffmantree[j].parent;

if(huffmantree[k].lchild==j)

a[c]=0;

if(huffmantree[k].rchild==j)

a[c]=1;

c=c+1;

j=k;

}

printf("节点%d的哈夫曼编码为:",i);

for(c=c-1;c>-1;c--)

printf("%d",a[c]);

printf("\n");

}

}

void main()

{

CreatHuffmanTree();

huffmancode();

}

五、实验过程原始记录( 测试数据、图表、计算等)

六、实验结果、分析和结论(误差分析与数据处理、成果总结等。其中,绘制曲线图时必须用计算纸或程序运行结果、改进、收获)

在实验过程中,当选择概率最小的结点时,要返回原数组下标的索引值,我一开始设想把结点分为两组进行存储,一组存储在向量里,另一组存储在优先级队列中,通过优先级队列可以较为容易地实现应该选择哪个结点,通过对向量操作,可以较为容易地实现对数组的操作,并且还具有动态的扩展性。通

过优先级队列中顶层结点元素的频率与向量中结点元素频率匹配的元素来确定要选择的元素在原向量中的位置。然而,当产生的新结点的频率(权值)与原结点相同时,即使应该选择新结点,他还是选择了原向量中原来已经选过的结点元素。为了标志一个结点元素是否已被选过,我在元素结构中又增加了一个布尔变量test,以标志在向量中的某个结点是否已经被选过,若已经被选过,就不会再选择该结点。

通过本次实验,了解了哈弗曼编码的过程,对贪心法也有了更深刻的理解与认识。

注:教师必须按照上述各项内容严格要求,认真批改和评定学生成绩。

算法设计与分析(作业三)

算法设计与分析实验报告 学院信息科学与技术学院 专业班级软件工程3班 学号 20122668 姓名王建君 指导教师尹治本 2014年10月

实验四 矩阵相乘次序 一、问题提出 用动态规划算法解矩阵连乘问题。给定n 个矩阵{A 1,A 2,…,A n },其中A i 与A i+1是可乘的,i=1,2,…,n-1。要算出这n 个矩阵的连乘积A 1A 2…A n 。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A 是完全加括号的,则A 可表示为2个完全加括号的矩阵连乘积B 和C 的乘积并加括号,即A=(BC)。 例如,矩阵连乘积A 1A 2A 3A 4有5种不同的完全加括号的方式:(A 1(A 2(A 3A 4))),(A 1((A 2A 3)A 4)),((A 1A 2)(A 3A 4)),((A 1(A 2A 3))A 4),(((A 1A 2)A 3)A 4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。若A 是一个p ×q 矩阵,B 是一个q ×r 矩阵,则计算其乘积C=AB 的标准算法中,需要进行pqr 次数乘。 (3)为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵{A 1,A 2,A 3}连乘的情况。设这三个矩阵的维数分别为10×100,100×5,5×50。加括号的方式只有两种:((A 1A 2)A 3),(A 1(A 2A 3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。第二种加括号方式的计算量时第一种方式计算量的10倍。由此可见,在计算矩阵连乘积时,加括号方式,即计算次序对计算量有很大的影响。于是,自然提出矩阵连乘积的最优计算次序问题,即对于给定的相继n 个矩阵{A 1,A 2,…,A n }(其中矩阵Ai 的维数为p i-1×p i ,i =1,2,…,n ),如何确定计算矩阵连乘积A 1A 2…A n 的计算次序(完全加括号方式),使得依此次序计算矩阵连乘积需要的数乘次数最少。 二、求解思路 本实验采用动态规划算法解矩阵连乘积的最优计算次序问题。本实验的算法思路是: 1)计算最优值算法MatrixChain():建立两张表(即程序中的**m 和**s ,利用二维指针存放),一张表存储矩阵相乘的最小运算量,主对角线上的值为0,依次求2个矩阵、3个矩阵…、直到n 个矩阵相乘的最小运算量,其中每次矩阵相乘的最小运算量都在上一次矩阵相乘的最小运算量的基础上求得,最后一次求得的值即为n 个矩阵相乘的最小运算量;另一张表存储最优断开位置。 2)输出矩阵结合方式算法Traceback():矩阵结合即是给矩阵加括号,打印出矩阵结合方式,由递归过程Traceback()完成。分三种情况: (1)只有一个矩阵,则只需打印出A1; (2)有两个矩阵,则需打印出(A1A2); (3)对于矩阵数目大于2,则应该调用递归过程Traceback()两次,构造出最优加括号方式。 三、算法复杂度 该算法时间复杂度最高为)(n 3 O 。 四、实验源代码

算法设计与分析实验报告贪心算法

算法设计与分析实验报告 贪心算法 班级:2013156 学号:201315614 姓名:张春阳哈夫曼编码 代码 #include float small1,small2; int flag1,flag2,count; typedefstructHuffmanTree { float weight; intlchild,rchild,parent; }huffman; huffmanhuffmantree[100]; void CreatHuffmanTree(intn,int m) { inti; void select(); printf("请输入%d个节点的权值:",n); for(i=0;i

printf("\n"); for(i=0;i

算法分析与设计实验指导书

《算法分析与设计》实验指导书本书是为配合《算法分析与设计实验教学大纲》而编写的上机指导,其目的是使学生消化理论知识,加深对讲授容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。 上机实验一般应包括以下几个步骤: (1)、准备好上机所需的程序。手编程序应书写整齐,并经人工检查无误后才能上机。(2)、上机输入和调试自己所编的程序。一人一组,独立上机调试,上机时出现的问题,最好独立解决。 (3)、上机结束后,整理出实验报告。 实验报告应包括: 1)问题分析 2)算法描述 3)运行结果、 4)算法性能分析。 实验一 实验名称:贪心算法应用及设计 实验学时:6学时 实验类型:验证 实验目的: 1.理解贪心算法的基本思想 2.掌握利用贪心算法求解问题的求解步骤 实验容 1.活动选择问题(2学时) 问题描述: 设有11个会议等待安排,用贪心法找出满足目标要求的会议集合,这些会议按结束时间的非减序排列如下表。 实验实现提示: 1)数据结构设计: 将会议开始时间存储在数组B中,结束时间存储在数组E中,数组下标为会议的代码。结果存储在数组A中,其元素A[i]==true,表示会议i被选中。 2)算法: void GreedySelect(int n, struct time B[], struct time E[], bool A[]) { int i,j;

A[1]=true; j=1; i=2; while( i<=n) if (B[i]>=E[j]) { A[i]=true; j=i;} else A[i]=false; } 思考题:证明所得的解是最优解? 2.单源点最短路径问题。(2学时) 问题描述 如图所示的有向带权图中,求源点0到其余顶点的最短路径及最短路径长度。并对算法进行性能分析。 实现提示 1)数据结构设计: 将图存储在邻接矩阵C中,结点个数为n,源点编号为u, 源点u到其余顶点的最短路径长度存储在dist[],最短路径存储在p[]。 2) 算法 void Dijkstra(int C[n][n], int n,int u,float dist[],int p[]) { bool s[n]; for( int i=1; i<=n; i++) { dist[i]=C[u][i]; s[i]=false; if (dist[i]=∞) p[i]=-1; else p[i]=u; } p[u]=-1; s[u]=true; for( i=1; i<=n; i++) { int temp= ∞; int t=u; for( int j=1;j<=n;j++)

算法分析与设计作业及参考答案样本

《算法分析与设计》作业( 一) 本课程作业由两部分组成。第一部分为”客观题部分”, 由 15个选择题组成, 每题1分, 共15分。第二部分为”主观题部分”, 由简答题和论述题组成, 共15分。作业总分30分, 将作为平时成 绩记入课程总成绩。 客观题部分: 一、选择题( 每题1分, 共15题) 1、递归算法: ( C ) A、直接调用自身 B、间接调用自身 C、直接或间接 调用自身 D、不调用自身 2、分治法的基本思想是将一个规模为n的问题分解为k个规模 较小的字问题, 这些子问题: ( D ) A、相互独立 B、与原问题相同 C、相互依赖 D、相互独立且与原问题相同 3、备忘录方法的递归方式是: ( C ) A、自顶向下 B、自底向上 C、和动态规划算法相同 D、非递归的 4、回溯法的求解目标是找出解空间中满足约束条件的: ( A )

A、所有解 B、一些解 C、极大解 D、极小解 5、贪心算法和动态规划算法共有特点是: ( A ) A、最优子结构 B、重叠子问题 C、贪心选择 D、 形函数 6、哈夫曼编码是: ( B) A、定长编码 B、变长编码 C、随机编码 D、定 长或变长编码 7、多机调度的贪心策略是: ( A) A、最长处理时间作业优先 B、最短处理时间作业优 先 C、随机调度 D、最优调度 8、程序能够不满足如下性质: ( D ) A、零个或多个外部输入 B、至少一个输出 C、指令的确定性 D、指令的有限性 9、用分治法设计出的程序一般是: ( A ) A、递归算法 B、动态规划算法

C、贪心算法 D、回溯法 10、采用动态规划算法分解得到的子问题: ( C ) A、相互独立 B、与原问题相同 C、相互依赖 D、相互独立且与原问题相同 11、回溯法搜索解空间的方法是: ( A ) A、深度优先 B、广度优先 C、最小耗费优先 D、随机搜索 12、拉斯维加斯算法的一个显著特征是它所做的随机选性决策 有可能导致算法: ( C ) A、所需时间变化 B、一定找到解 C、找不到所需的解 D、性能变差 13、贪心算法能得到: ( C ) A、全局最优解 B、 0-1背包问题的解 C、背包问题的 解 D、无解 14、能求解单源最短路径问题的算法是: ( A ) A、分支限界法 B、动态规划 C、线形规划 D、蒙特卡罗算法 15、快速排序算法和线性时间选择算法的随机化版本是:

算法分析与设计实验报告

算法设计与分析 学院:计算机科学与技术 学号:129074106 姓名:张淼淼 2014 11 14

1、 当问题规模100 N 时,快速排序和插入排序各需多少时间?写清机器配置,列出五种 快速排序所需时间(ms) 插入排序所需时间(ms ) 两者相差多少 N=100 0.00600 0.019000 -0.013000 N=1000 0.074000 0.724000 -0.650000 N=10000 0.032000 64.657000 -64.625000 N=100000 13.300000 50.900000 -37.600000 N=1000000 53.500000 117.700000 -64.200000 Window 7 32位 Cpu :Inter(R) Core(TM) i3-2120 cpu@3.30GHz AMD Radeon HD 6450 Graphics

程序: #include #include #include #include int a[1000000];

int b[1000000]; void QuickSort(int low ,int high) { long i,j; int x; i=low; j=high; x=a[i]; while(i=x&&i(j+1)) QuickSort(j+1,high); } void BinaryInsertSort(int length) { int low,high,mid; int i,j,m;//m为保存待插入的元素 for(i=1;i=b[mid]) low=mid+1; else high=mid-1; } for(j=i-1;j>=high+1;j--)//high为插入位置 b[j+1]=b[j];//后移元素,留出插入的空位b[high+1]=m;//将元素插入正确的位置 }

算法分析_实验报告3

兰州交通大学 《算法设计与分析》 实验报告3 题目03-动态规划 专业计算机科学与技术 班级计算机科学与技术2016-02班学号201610333 姓名石博洋

第3章动态规划 1. 实验题目与环境 1.1实验题目及要求 (1) 用代码实现矩阵连乘问题。 给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,…,n-1。考察这n 个矩阵的连乘积A1A2…A n。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序,这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,则可以依此次序反复调用2个矩阵相乘的标准算法(有改进的方法,这里不考虑)计算出矩阵连乘积。 确定一个计算顺序,使得需要的乘的次数最少。 (2) 用代码实现最长公共子序列问题。 一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X= < x1, x2,…, xm>,则另一序列Z= < z1, z2,…, zk>是X的子序列是指存在一个严格递增的下标序列< i1, i2,…, ik>,使得对于所有j=1,2,…,k有Xij=Zj 。例如,序列Z=是序列X=的子序列,相应的递增下标序列为<2,3,5,7>。给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X= < A, B, C, B, D, A, B>和Y= < B, D, C, A, B, A>,则序列是X和Y的一个公共子序列,序列也是X和Y的一个公共子序列。而且,后者是X和Y的一个最长公共子序列,因为X和Y没有长度大于4的公共子序列。 (3) 0-1背包问题。 现有n种物品,对1<=i<=n,已知第i种物品的重量为正整数W i,价值为正整数V i,背包能承受的最大载重量为正整数W,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过W且总价值尽量大。(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分) 使用动态规划使得装入背包的物品价值之和最大。 1.2实验环境: CPU:Intel(R) Core(TM) i3-2120 3.3GHZ 内存:12GB 操作系统:Windows 7.1 X64 编译环境:Mircosoft Visual C++ 6 2. 问题分析 (1) 分析。

最新算法分析与设计作业(一)及参考答案讲课讲稿

《算法分析与设计》作业(一) 本课程作业由两部分组成。第一部分为“客观题部分”,由15个选择题组成,每题1分,共15分。第二部分为“主观题部分”,由简答题和论述题组成,共15分。作业总分30分,将作为平时成绩记入课程总成绩。 客观题部分: 一、选择题(每题1分,共15题) 1、递归算法:(C ) A、直接调用自身 B、间接调用自身 C、直接或间接调用自身 D、不调用自身 2、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的字问题,这些子问题:(D ) A、相互独立 B、与原问题相同 C、相互依赖 D、相互独立且与原问题相同 3、备忘录方法的递归方式是:(C ) A、自顶向下 B、自底向上 C、和动态规划算法相同 D、非递归的 4、回溯法的求解目标是找出解空间中满足约束条件的:(A ) A、所有解 B、一些解 C、极大解 D、极小解 5、贪心算法和动态规划算法共有特点是:( A ) A、最优子结构 B、重叠子问题 C、贪心选择 D、形函数 6、哈夫曼编码是:(B) A、定长编码 B、变长编码 C、随机编码 D、定长或变长编码 7、多机调度的贪心策略是:(A) A、最长处理时间作业优先 B、最短处理时间作业优先 C、随机调度 D、最优调度 8、程序可以不满足如下性质:(D ) A、零个或多个外部输入 B、至少一个输出 C、指令的确定性 D、指令的有限性 9、用分治法设计出的程序一般是:(A ) A、递归算法 B、动态规划算法

C、贪心算法 D、回溯法 10、采用动态规划算法分解得到的子问题:( C ) A、相互独立 B、与原问题相同 C、相互依赖 D、相互独立且与原问题相同 11、回溯法搜索解空间的方法是:(A ) A、深度优先 B、广度优先 C、最小耗费优先 D、随机搜索 12、拉斯维加斯算法的一个显著特征是它所做的随机选性决策有可能导致算法:( C ) A、所需时间变化 B、一定找到解 C、找不到所需的解 D、性能变差 13、贪心算法能得到:(C ) A、全局最优解 B、0-1背包问题的解 C、背包问题的解 D、无解 14、能求解单源最短路径问题的算法是:(A ) A、分支限界法 B、动态规划 C、线形规划 D、蒙特卡罗算法 15、快速排序算法和线性时间选择算法的随机化版本是:( A ) A、舍伍德算法 B、蒙特卡罗算法 C、拉斯维加斯算法 D、数值随机化算法 主观题部分: 二、写出下列程序的答案(每题2.5分,共2题) 1、请写出批处理作业调度的回溯算法。 #include #include using namespace std; class Flowing { friend int Flow(int ** ,int ,int []); private: //int Bound(int i); void Backtrack(int t); int **M;// int *x;//当前解

计算机算法设计与分析

算法设计与分析 实 验 报 告 班级: 姓名: 学号: (备注:共给出5个参考实验案例,根据学号尾数做对应的实验,即如尾号为1,则模仿案例实验123;尾号2,则模仿案例实验234;尾号3,即345;尾号4,同1.)

目录 实验一分治与递归 (1) 1、基本递归算法 (1) 2、棋盘覆盖问题 (2) 3、二分搜索 (3) 4、实验小结 (5) 实验二动态规划算法 (5) 1、最长公共子序列问题 (5) 2、最大子段和问题 (7) 3、实验小结 (8) 实验三贪心算法 (8) 1、多机调度问题 (8) 2、用贪心算法求解最小生成树 (10) 3、实验小结 (12) 实验四回溯算法和分支限界法 (12) 1、符号三角形问题 (12) 2、0—1背包问题 (14) 3、实验小结 (18) 实验五多种排序算法效率比较 1、算法:起泡排序、选择排序、插入排序、shell排序,归并排序、快速排序等 (19) 2、实验小结 (18)

P art1:课程设计过程 设计选题--→题目分析---→系统设计--→系统实现--→结果分析---→撰写报告 P art2:课程设计撰写的主要规范 1.题目分析:主要阐述学生对题目的分析结果,包括题目描述、 分析得出的有关模型、相关定义及假设; 2.总体设计:系统的基本组成部分,各部分所完成的功能及相互 关系; 3.数据结构设计:主要功能模块所需的数据结构,集中在逻辑设 计上; 4.算法设计:在数据结构基础上,完成算法设计; 5.物理实现:主要有数据结构的物理存储,算法的物理实现,系 统相关的实现。具体在重要结果的截图,测试案例的结果数据,核心算法的实现结果等; 6.结果分析:对第五步的分析,包括定性分析和定量分析,正确 性分析,功能结构分析,复杂性分析等; 7.结论:学生需对自己的课程设计进行总结,给出评价,并写出 设计体会; 8.附录:带有注释的源代码,系统使用说明等; 9.参考文献:列出在撰写过程中所需要用到的参考文献。

算法分析实验报告--分治策略

《算法设计与分析》实验报告 分治策略 姓名:XXX 专业班级:XXX 学号:XXX 指导教师:XXX 完成日期:XXX

一、试验名称:分治策略 (1)写出源程序,并编译运行 (2)详细记录程序调试及运行结果 二、实验目的 (1)了解分治策略算法思想 (2)掌握快速排序、归并排序算法 (3)了解其他分治问题典型算法 三、实验内容 (1)编写一个简单的程序,实现归并排序。 (2)编写一段程序,实现快速排序。 (3)编写程序实现循环赛日程表。设有n=2k个运动员要进行网球循环赛。现 要设计一个满足以下要求的比赛日程表:(1)每个选手必须与其它n-1个选手各赛一次(2)每个选手一天只能赛一场(3)循环赛进行n-1天 四、算法思想分析 (1)编写一个简单的程序,实现归并排序。 将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行 排序,最终将排好序的子集合合并成为所要求的排好序的集合。 (2)编写一段程序,实现快速排序。 通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有 数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数 据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据 变成有序序列。 (3)编写程序实现循环日赛表。 按分治策略,将所有的选手分为两组,n个选手的比赛日程表就可以通

过为n/2个选手设计的比赛日程表来决定。递归地用对选手进行分割, 直到只剩下2个选手时,比赛日程表的制定就变得很简单。这时只要让 这2个选手进行比赛就可以了。 五、算法源代码及用户程序 (1)编写一个简单的程序,实现归并排序。 #include #include #define MAX 10 using namespace std; void merge(int array[],int p,int q,int r) { int i,k; int begin1,end1,begin2,end2; int* temp = new int[r-p+1]; begin1 = p; end1 = q; begin2 = q+1; end2 = r; k = 0; while((begin1 <= end1)&&(begin2 <= end2)) { if(array[begin1] < array[begin2]) { temp[k] = array[begin1]; begin1++; } else { temp[k] = array[begin2]; begin2++; } k++; } while(begin1 <= end1) {

《算法分析与设计》实验指导书

《计算机算法设计与分析》实验指导书(第一版)

前言 计算机算法分析与设计是面向设计的,它是计算机科学的核心。无论是计算机系统、系统软件和解决计算机的各种应用问题都可归结为算法的设计。通过本课程的学习,使学生掌握计算机领域中许多常用的非数值的算法描述:分治法、贪心法、动态规划、回溯法、分枝限界等算法,并掌握算法分析的方法,从而把学生的分析问题和解决问题能力提高到理论的高度。 前期课程为程序设计语言、数据结构、高等数学,即学生应该具备一门高级语言程序设计编程基础,学习基本的数据结构知识,还要求学生掌握较好的数学基础。 开发环境不限,本书采用C/C++语言的集成开发环境等。 实验完成后书写实验报告,包含实验问题、基本思想、关键算法流程图、测试数据及运行结果(截图)、调试心得和源程序。 总实验学时为16学时。

目录 预备实验验证算法的方法 (4) 实验目的: (4) 实验课时: (4) 实验原理: (4) 实验题目: (6) 基本题: (6) 提高题: (6) 实验一递归与分治 (7) 实验目的: (7) 实验课时: (7) 实验原理: (7) 实验题目: (7) 基本题: (7) 提高题: (8) 思考问题: (8) 实验二动态规划算法 (9) 实验目的: (9) 实验课时: (9) 实验原理: (9) 实验题目: (9) 基本题: (9) 提高题: (10) 思考问题: (10) 实验三贪心选择算法 (11) 实验目的: (11) 实验课时: (11) 实验原理: (11) 实验题目: (11) 基本题: (11) 提高题: (12) 思考问题: (12) 实验四回溯算法 (13) 实验目的: (13) 实验课时: (13) 实验原理: (13) 实验题目: (14) 基本题: (14) 提高题: (14) 思考问题: (14)

《算法分析与设计》作业参考答案

《算法分析与设计》作业参考答案 作业一 一、名词解释: 1.递归算法:直接或间接地调用自身的算法称为递归算法。 2.程序:程序是算法用某种程序设计语言的具体实现。 二、简答题: 1.算法需要满足哪些性质?简述之。 答:算法是若干指令的有穷序列,满足性质: (1)输入:有零个或多个外部量作为算法的输入。(2)输出:算法产生至少一个量作为输出。 (3)确定性:组成算法的每条指令清晰、无歧义。 (4)有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。 2.简要分析分治法能解决的问题具有的特征。 答:分析分治法能解决的问题主要具有如下特征: (1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。 3.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。 答:将递归算法转化为非递归算法的方法主要有: (1)采用一个用户定义的栈来模拟系统的递归调用工作栈。该方法通用性强,但本质上还是递归, 只不过人工做了本来由编译器做的事情,优化效果不明显。(2)用递推来实现递归函数。 (3)通过Cooper 变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。 后两种方法在时空复杂度上均有较大改善,但其适用范围有限。 三、算法编写及算法应用分析题: 1.冒泡排序算法的基本运算如下: for i ←1 to n-1 do for j ←1 to n-i do if a[j]

武汉理工大学算法分析实验报告

学生实验报告书 实验课程名称算法设计与分析开课学院计算机科学与技术学院 指导教师姓名李晓红 学生姓名 学生专业班级软件工程zy1302班2015-- 2016学年第一学期

实验课程名称:算法设计与分析 同组者实验日期2015年10月20日第一部分:实验分析与设计 一.实验内容描述(问题域描述) 1、利用分治法,写一个快速排序的递归算法,并利用任何一种语言,在计算机上实现,同时 进行时间复杂性分析; 2、要求用递归的方法实现。 二.实验基本原理与设计(包括实验方案设计,实验手段的确定,试验步骤等,用硬件逻辑或者算法描述) 本次的解法使用的是“三向切分的快速排序”,它是快速排序的一种优化版本。不仅利用了分治法和递归实现,而且对于存在大量重复元素的数组,它的效率比快速排序基本版高得多。 它从左到右遍历数组一次,维护一个指针lt使得a[lo..lt-1]中的元素都小于v,一个指针gt 使得a[gt+1..hi]中的元素都大于v,一个指针i使得a[lt..i-1]中的元素都等于v,a[i..gt]中的元素都还未确定,如下图所示: public class Quick3way { public static void sort(Comparable[] a, int lo, int hi) { if (lo >= hi) return; int lt = lo, i = lo + 1, gt = hi; Comparable pivot = a[lo];

第二部分:实验调试与结果分析 一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等) 1、调试方法描述: 对程序入口进行断点,随着程序的运行,一步一步的调试,得到运行轨迹; 2、实验数据: "R", "B", "W", "W", "R", "W", "B", "R", "R", "W", "B", "R"; 3、实验现象: 4、实验过程中发现的问题: (1)边界问题: 在设计快速排序的代码时要非常小心,因为其中包含非常关键的边界问题,例如: 什么时候跳出while循环,递归什么时候结束,是对指针的左半部分还是右半部分 排序等等; (2)程序的调试跳转: 在调试过程中要时刻记住程序是对那一部分进行排序,当完成了这部分的排序后, 会跳到哪里又去对另外的那一部分进行排序,这些都是要了然于心的,这样才能准 确的定位程序。 二、实验结果分析(包括结果描述、实验现象分析、影响因素讨论、综合分析和结论等) 1、实验结果:

算法分析与设计实验指导书

《算法分析与设计》实验指导书 《算法分析与设计》课程是计算机专业的一门必修课程。开设算法分析与设计实验,目的就是为了使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。 《算法分析与设计》课程实验的目的:是为了使学生在课程学习的同时,通过实验环境中的实际操作,对部分算法的具体应用有一个初步的了解,使学生加深了解和更好地掌握《算法分析与设计》课程教学大纲要求的内容。 《算法分析与设计》课程实验的注意事项:在《算法分析与设计》的课程实验过程中,要求学生做到: (1)预习实验指导书有关部分,认真做好实验内容的准备,就实验可能出 现的情况提前作出思考和分析。 (2)认真书写实验报告。实验报告包括实验目的和要求,实验情况及其分 析。 (3)遵守机房纪律,服从辅导教师指挥,爱护实验设备。 (4)实验课程不迟到。如有事不能出席,所缺实验一般不补。 《算法分析与设计》课程实验的验收:实验的验收将分为两个部分。第一部分是上机操作,包括检查程序运行和即时提问。第二部分是提交电子的实验报告。

实验一算法实现一 一、实验目的与要求 熟悉C/C++语言的集成开发环境; 通过本实验加深对分治法、贪心算法的理解。 二、实验内容: 掌握分治法、贪心算法的概念和基本思想,并结合具体的问题学习如何用相应策略进行求解的方法。 三、实验题 1. 【伪造硬币问题】给你一个装有n个硬币的袋子。n个硬币中有一个是伪造的。你的 任务是找出这个伪造的硬币。为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。试用分治法的思想写出解决问题的算法,并计算其时间复杂度。 2.【找零钱问题】一个小孩买了价值为33美分的糖,并将1美元的钱交给售货员。售 货员希望用数目最少的硬币找给小孩。假设提供了数目有限的面值为25美分、10美分、5美分、及1美分的硬币。给出一种找零钱的贪心算法。 a)实验步骤 理解算法思想和问题要求; 编程实现题目要求; 上机输入和调试自己所编的程序; 验证分析实验结果; 整理出实验报告。 四、实验程序 五、实验结果 六、实验分析

算法设计与分析实验报告

本科实验报告 课程名称:算法设计与分析 实验项目:递归与分治算法 实验地点:计算机系实验楼110 专业班级:物联网1601 学号:2016002105 学生:俞梦真 指导教师:郝晓丽 2018年05月04 日

实验一递归与分治算法 1.1 实验目的与要求 1.进一步熟悉C/C++语言的集成开发环境; 2.通过本实验加深对递归与分治策略的理解和运用。 1.2 实验课时 2学时 1.3 实验原理 分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。 需要注意的是,分治法使用递归的思想。划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。 1.4 实验题目 1.上机题目:格雷码构造问题 Gray码是一个长度为2n的序列。序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。 对于给定的正整数n,格雷码为满足如下条件的一个编码序列。 (1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。 (2)序列中无相同的编码。 (3)序列中位置相邻的两个编码恰有一位不同。 2.设计思想: 根据格雷码的性质,找到他的规律,可发现,1位是0 1。两位是00 01 11 10。三位是000 001 011

010 110 111 101 100。n位是前n-1位的2倍个。N-1个位前面加0,N-2为倒转再前面再加1。 3.代码设计:

算法设计与分析实验报告

算法设计与分析实验报告 教师: 学号: 姓名:

实验一:串匹配问题 实验目的:(1) 深刻理解并掌握蛮力法的设计思想; (2) 提高应用蛮力法设计算法的技能; (3) 理解这样一个观点: 用蛮力法设计的算法, 一般来说, 经过适度的努力后, 都可以对算法的第一个版本进行一定程度的改良, 改进其时间性能。 三、实验要求:( 1) 实现BF 算法; (2 ) 实现BF 算法的改进算法: KMP 算法和BM 算法; (3 ) 对上述 3 个算法进行时间复杂性分析, 并设计实验程序验证 分析结果。 #include "stdio.h" #include "conio.h" #include //BF算法 int BF(char s[],char t[]) { int i; int a; int b; int m,n; m=strlen(s); //主串长度 n=strlen(t); //子串长度 printf("\n*****BF*****算法\n"); for(i=0;i

算法分析与设计(线下作业二)

《算法分析与设计》 学习中心: 专业: 学号: 姓名:

作业练习二 一、名词解释 1、MST性质 2、子问题的重叠性质 递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次,这种性质称为子问题的重叠性质。 二、简答题 1、简述动态规划算法求解的基本要素。 答:动态规划算法求解的基本要素包括: 1)最优子结构是问题能用动态规划算法求解的前提; 2)动态规划算法,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果,即重叠子问题。 2、备忘录方法和动态规划算法相比有何异同简述之。 答:备忘录方法是动态规划算法的变形。与动态规划算法一样,备忘录方法用表格保存已解决的子问题的答案,在下次需要解此问题时,只要简单地查看该子问题的解答,而不必重新计算。备忘录方法与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同的子问题的重复求解,而直接递归方法没有此功能。

3、贪心算法求解的问题主要具有哪些性质简述之。 答:贪心算法求解的问题一般具有二个重要的性质: 一是贪心选择性质,这是贪心算法可行的第一个基本要素; 另一个是最优子结构性质,问题的最优子结构性质是该问题可用贪心算法求解的关键特征。 三、算法编写及算法应用分析题 1、设计求解如下最大子段和问题的动态规划算法。只需给出其递推计算公式即可。 最大子段和问题:给定由n 个整数(可能为负整数)组成的序列a1a2 … an,求该序列形如Σi≤k≤j ak的子段和的最大值。当所有整数均为负整数时定义其最大子段和为0。依次定义,所求的最优值为max{0, max1≤i≤j≤n Σi≤k≤j ak }。

算法分析与设计实验报告

实验一、归并排序及各种排序算法性能比较 一、实验实习目的及要求 了解归并排序等各种排序算法,并能独立在计算机上实现,同时并能够计算它们的时间复杂度,并用计算机来验证。 二、实验实习设备(环境)及要求(软硬件条件) 计算机eclipse软件,执行环境JavaSE-1.8. 三、实验实习项目、内容与步骤(注意是主要关键步骤,适当文字+代码+截图说明) 项目:对10 4 6 3 8 2 5 7进行从小到大排序,采用几种排序方法,并统计这几种方法的运行时间,与归并排序比较。 内容及步骤: (1)归并排序:将序列每次分成两组,再进行合并,直到递归完成; 1、递归调用mergeSort对数组排序 2、merge将两个有序数组合并为一个有序数组

3、主函数调用mergeSort对数组排序 4、统计时间 (2) 选择排序:每次选择一个当前最小的并和当前的相对的第一个元素交换,直到最后 只有一个元素时结束;也可选择当前最大的并与当前的相对的最后一个 元素交换,直到最后只有一个元素时结束。

1、数组长度为n,需要选择n-1次;每次选择完成后,将数组中的最大值与最后一 个元素互换,调用java.util包中Arrays类。 2、主函数调用ChooseSort对数组排序。 3、统计运行时间。 (3)插入排序:从第二个元素开始,每次插入一个到当前有序序列中,使得有序,当 所有的元素插入完毕时,就排好序了; 1、从第二个元素开始,与之前序列比较,插入到合适的位置。

2、主函数调用sort对数组排序。 3、统计运行时间 (4) 快速排序:每次选择一个中间元素,并进行交换,使得中间元素的左边比它小,右 边比它大,然后对左右两边进行递归; 1、选取一个基准位,从右边向左边看,找比基准位小的元素,再从左边向右边看, 找比基准位大的元素,若两者均存在则交换;若两者相遇,则相遇元素与基准位元素交换,然后递归排序左右半数组。

算法分析与设计实验报告

计算机算法设计与分析实验报告

目录 实验一 (1) [实验题目] (1) [问题描述] (1) [算法设计] (1) [算法分析] (1) [源代码] (1) [运行结果] (2) 实验二 (2) [实验题目] (2) [问题描述] (2) [算法设计] (2) [算法分析] (2) [源代码] (2) [运行结果] (4) 实验三 (5) [实验题目] (5) [问题描述] (5) [算法设计] (5) [算法分析] (5) [源代码] (5) [运行结果] (6)

实验一 [实验题目] 2-7集合划分问题 [问题描述] n个元素的集合{1,2,…,n}可以划分为若干非空子集。例如,当n=4时,集合{1,2,3,4}可以划分为15个不同的非空子集。 [算法设计] 给定正整数n,计算出n个元素的集合{1,2,…,n}可以划分为多少个不同的非空子集。 [算法分析] 本算法实现采用分治法思想,F(n,m)=F(n-1,m-1)+m*F(n-1,m)。假设将m个元素分解到n 个集合中,首先考虑将(m – (n - 1))个元素分到第一个集合中,将余下的(n - 1)个元素分别分配到余下的(n - 1)个集合中,然后再考虑将(m – (n - 2))个元素分配到第一个集合中,将余下的(n - 2)个元素分别分配到余下的(n - 1)集合中,依此类推,直到后面的有一个集合中的元素个数比第一个集合中的元素个数多为止。 [源代码] #include using namespace std; int compute_bell(int row,int position) { if(row==1) return 1; if(row == 2 && position ==1) return 1; else { if(position == 1) return compute_bell(row-1,row-1); else return compute_bell(row,position-1)+ compute_bell(row-1,position-1); } } int main(){ int n=0; int m; cout<<"please input a number."<>n; m=compute_bell(n,n); cout<<"the resule is "<

算法分析与设计 实验二 哈夫曼编码

昆明理工大学信息工程与自动化学院学生实验报告 (201 —201 学年第一学期) 课程名称:算法设计与分析开课实验室:年月日 一、上机目的及内容 1.上机内容 设需要编码的字符集为{d1, d2, …, dn},它们出现的频率为{w1, w2, …, wn},应用哈夫曼树构造最短的不等长编码方案。 2.上机目的 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)证明哈夫曼树满足最优子结构性质; (2)设计贪心算法求解哈夫曼编码方案; (3)设计测试数据,写出程序文档。 数据结构与算法: typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 typedef struct { unsigned int weight; //用来存放各个结点的权值 unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针 } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树

程序流程图:

三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++6.0软件 四、实验方法、步骤(或:程序代码或操作过程) 程序代码: #include #include #include typedef struct { unsigned int weight; unsigned int parent,LChild,RChild; } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 void Select(HuffmanTree *ht,int n,int *s1,int *s2) { int i,min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { if((*ht)[i].weight<(*ht)[min].weight) min=i; } } *s1=min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0 && i!=(*s1)) { min=i; break; }

相关主题
文本预览
相关文档 最新文档