当前位置:文档之家› 牛顿迭代法解三元二次方程组(C++版)

牛顿迭代法解三元二次方程组(C++版)

牛顿迭代法解三元二次方程组(C++版)
牛顿迭代法解三元二次方程组(C++版)

牛顿迭代法解三元二次方程组(C++版)

************************************************************************ 方程组为:

Y1=-X1+0.3X2*X3-X3^2+0.6=0

Y2=-0.1X1^2-X2 +0.8X1*X3-X3+0.4=0

Y3=0.3X1-0.5X2^2 +0.7X1*X2-X3+0.5=0

************************************************************************

#include

#include

#include

#include

#include

#define N 3 // 非线性方程组中变量个数及方程个数

const int N2=N*N; // jacobi矩阵的元素个数

#define eps 0.00001 // 收敛精度

#define Max 2000 // 最大迭代次数

using namespace std;

double main()

{

double x0[N],y[N],x1[N],es,esmax,jacobi[N][N],aij;

int i,j,k,it=0,iter=0;

ofstream fpout1("d:\\Program Files\\Microsoft Visual

Studio\\MyProjects\\xieFCZ\\x0.txt",ios::out);

if(!fpout1)

{

cout<<"fpout open fail!"<

return 0; //打开文件失败则结束运行

}

ifstream fpin("d:\\Program Files\\Microsoft Visual Studio\\MyProjects\\xieFCZ\\X0.txt",ios::in);

if(!fpin)

{

cout<<"fpin open fail!"<

return 0; //打开文件失败则结束运行

ofstream fpout2("d:\\Program Files\\Microsoft Visual Studio\\MyProjects\\xieFCZ\\answer.txt",ios::out);

if(!fpout2)

{

cout<<"fpout open fail!"<

return 0; //打开文件失败则结束运行

}

cout<<"********** Please input X0 ***********"<

// 技巧一:为保证jacobi矩阵尽快收敛,初值最好在0 附近

for(i=0;i

cin>>x0[i];

cout<<"输入的初值为:"<

for(i=0;i

cout<

cout<

fpout1<<"输入的初值为:"<

do

{ it++;

for(i=0;i

fpout1<

fpout1<

//jacobi have N2 element //计算jacobi矩阵的值

jacobi[0][0]=0;

jacobi[0][1]=0.3*x0[2];

jacobi[0][2]=0.3*x0[1]-2*x0[2];

jacobi[1][0]=-0.2*x0[0]+0.8*x0[2];

jacobi[1][1]=0;

jacobi[1][2]=0.8*x0[0]-1;

jacobi[2][0]=0.3+0.7*x0[1];

jacobi[2][1]=-x0[1]+0.7*x0[0];

jacobi[2][2]=0;

fpout2<<"第"<

for(i=0;i

{

for(j=0;j

{

fpout2.setf(cout.showpoint); //固定小数位数输出fpout2<

}

fpout2<

}

fpout2<

aij=0;

for(i=0;i

aij=aij+jacobi[i][j]*jacobi[i][j];

if(aij>1)

{

cout<<"Sorry, aij>1"<

k=rand()%3;

x0[k]=((double)rand())/RAND_MAX;

cout<

fpout1<

cout<<" ";

for(i=0;i

cout<

cout<

}

}while(aij>1);

//保证aij<1

for(i=0;i

x1[i]=x0[i];

fpout2<<"*************** 牛顿迭代如下***************"<

do

{

iter=iter+1;

fpout2<<" "<

for(i=0;i

fpout2<

fpout2<

//迭代格式

y[0]=0.3*x1[1]*x1[2]-x1[2]*x1[2]+0.6;

y[1]=-0.1*x1[0]*x1[0]+0.8*x1[0]*x1[2]-x1[2]+0.4;

y[2]=0.3*x1[0]-0.5*x1[1]*x1[1]+0.7*x1[0]*x1[1]+0.5;

//技巧二:由于要使最终的aij小于0,可让方程同除某个数使其系数小于1

esmax=0.0;

for(i=0;i

{

es=y[i]-x1[i];

if(fabs(es)>fabs(esmax))

esmax=es;

}

if(fabs(esmax)

{

fpout2<

cout<

for(i=0;i

{

cout<

fpout2<

}

cout<

fpout2<

break;

}

for(i=0;i

x1[i]=y[i];

}while(iter

fpin.close();

fpout1.close();

fpout2.close();

return 0;

}

(读入文件为x0.txt,输出文件为answer.txt)

方程组的解为:

0.26742924 -0.054130429 0.56862270

将这个三个根人代入方程组计算,可知与0 的误差在±10^-6,这说明了计算机编程求代数方程得到的只是近似解。

三元二次方程组的变形求值问题(专题复习)

第1页(共5页) 三元二次方程组的变形求值问题 1.(2013春?和平区校级期末)已知 ,那么x :y :z 为 ( ) . 2.(2010春?北京校级期末)若2x+3y ﹣z=0且x ﹣2y+z=0,则x :z=( ) 3.若4x ﹣3y ﹣6z=0,x+2y ﹣7z=0(xyz ≠0),则 的值等于( ) . . C 4.若 3x+5y+z=0,3x+y ﹣7z=0,则x+y ﹣z 的值是( ) 5.(2014春?招远市期末)已知,则a :b :c 等于( ) 6.(2014春?北京校级月考)已知 (xyz ≠0),则x :y :z 的值为( ) 7.(2012春?大连期末)若,则x+y+z=( )

8.(2012春?雁江区期中)已知x+4y﹣3z=0,且4x﹣5y+2z=0,x:y:z为() 9.(2011秋?海珠区校级期中)已知a+2b+3c=20,a+3b+5c=31,则a+b+c的值为() 10.(2009秋?重庆校级期末)已知方程组(xyz≠0),则x:y:z等于() 11.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值为() 12.已知3a﹣c=a+b+c=4a+2b﹣c,那么3a:2b:c等于() 13.若2x+5y﹣3z=2,3x+8z=3,则x+y+z的值等于() 14.若2a+5b+4c=0,3a+b﹣7c=0,则a+b﹣c的值是() 15.若3x+5y+6z=5,4x+2y+z=2,则x+y+z的值等于() 16.已知方程组,则x+y的值为()

17.若a﹣2b+3c=7,4a+3b﹣2c=3,则5a+12b﹣13c=() 18.(2014?牡丹江二模)若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于. 19.(2014春?文登市校级期中)已知(xyz≠0),则x:y:z的值. 20.(2015春?山西期中)已知a+b=3,2b﹣c=2,则2a+c=.21.(2012春?荔湾区校级期中)已知3x+7y+4z=35,x+5y+2z=40,则x+y+z=. 22.(2010秋?西盟县期末)若,那么代数式 x+y+z=. 23.(2010秋?诸城市校级期末)已知x+2y﹣6z=0,3x﹣y=4z,则 的值为. 24.(2008春?武胜县期末)若x+2y+3z=10,4x+3y+2z=15,则x+y+z 的值是. 25.若4x+3y+2z=15,x+2y+3z=10,则x+y+z=.26.已知方程2x﹣3y=z与方程x+3y﹣14z=0(z≠0)有相同的解.则x:y:z=.

一元二次方程的基本解法

第一讲:一元二次方程的基本解法 【知识要点】 ① 一元二次方程及其标准形式: 只含有一个未知数,且未知数的最高次数是二次的方程叫一元二次方程。 形如ax 2+bx+c=0(a 、b 、c 为常数,且a≠0)的方程叫一元二次方程的标准形式。 任何一元二次方程都可以通过去分母、去括号、移项、合并同类项等过程,转化为标准形式。 ② 一元二次方程的解法主要有: 直接开方法、配方法、求根公式法、因式分解法。 一元二次方程的求根公式为x 1,2=)04(2422≥--±-ac b a ac b b . ③一元二次方程解(根)的含义:使方程成立的未知数的值 【经典例题】 例1、直接开平方法 (1)x 2-196=0; (2)12y 2-25=0; (3)(x +1)2-4=0; (4)12(2-x )2-9=0. 例2 、配方法: (1)x 2-2x =0; (2)2 12150x x +-= (3)24x 2x 2=+ (4)17x 3x 2+= 例3 、求根公式法: (1) 1522-=x x (2) 052222 =--x x

(3)(x +1)(x -1)=x 22 (4)3x (x -3) =2(x -1) (x +1). 例4 、因式分解法: (1) x (3x +2)-6(3x +2)=0. (2)4x 2 +19x -5=0; (3) ()()2232 -=-x x x (4)x (x +1)-5x =0. 例5、换元法解下列方程: (1)06)12(5)12(2=+---x x (2) 06)1 (5)1(2=+---x x x x 例6、配方法的应用:求证:代数式122+--x x 的值不大于 4 5.

二次方程根的分布情况归纳完整版

次方程根的分布与二次函数在闭区间上的最值归纳 9 元二次方程ax + bx + C = 0根的分布情况 设方程ax 2 +bx +c =O (a H O )的不等两根为X |, X 2且X 1 < X 2,相应的二次函数为 f (x )=ax 2 +bx + c = 0,方程的 根即为二次函数图象与 X 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分布情况 两个负根即两根都小于 0 (X j <0, X 2 <0 ) 两个正根即两根都大于 0 (为 >0,X 2 A O ) 一正根一负根即一个根小于 0, 一个大于 0(X i V Oc X 2 ) 大致图象(> a 得出的结论 A >0 f (0 )>0 A >0 存0 f (0 )>0 f (0)v 0 O 大致图象(V a 得出的结论 △ >0 A >0 舌。 l f (0)<0 占。 ”(0)<0 f (0)A 0 综合结论(不讨论 a o < b a 计(0)< 0

表二:(两根与k 的大小比 较) 分布情况 两根都小于k 即 ( >0 ) yJ \ / / ■ k K a 得 出的结论 o > A - 两根都大于k 即 X i A k, X 2 A k o > A - 一个根小于k ,一个大于k 即 x , < k < X 2 y l I \ k 八 J “ f (k )v 0 o 大致图象(< a 得出的结论 O > A - I A>0 t^>k 2a f (k )<0 f (k )>0 综合 结论(不讨论 a △ >0 」0 -^>k 2a a 计(k )A 0

一元二次方程的解法例析

一元二次方程的解法例析 【要点综述】: 且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为 的形式,那么这个方程就是一元二次方程。 下面再讲一元二次方程的解法。解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。 一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。如下表: 方法适合方程类型注意事项 直接开平方法 ≥0时有解,<0时无解。 配方法二次项系数若不为1,必须先把系数化为1, 再进行配方。 公式法 ≥0时,方程有解;<0 时,方程无解。先化为一般形式再用公式。 因式分解法方程的一边为0,另一边分 解成两个一次因式的积。方程的一边必须是0,另一边可用任何方法分解因式。 【举例解析】 例1:已知,解关于的方程。

例2:用开平方法解下面的一元二次方程。 (1);(2) (3);(4) 说明:解一元二次方程时,通常先把方程化为一般式,但如果不要求化为一般式, 像本题要求用开平方法直接求解,就不必化成一般式。用开平方法直接求解,应注意方程两边同时开方时, 只需在一边取正负号,还应注意不要丢解。 例3:用配方法解下列一元二次方程。 (1);(2) 说明:配方是一种基本的变形,解题中虽不常用,但作为一种基本方法要熟练掌握。 配方时应按下面的步骤进行:先把二次项系数化为1,并把常数项移到一边; 再在方程两边同时加上一次项系数一半的平方。最后变为完全平方式利用直接开平方法即可完成解题任务。

牛顿迭代法

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较. 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0 引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法. 迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制. (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败. 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件. 1牛顿迭代法:

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

一元二次、三次方程的通解

一元二次、三次方程的通解 徐厚骏 ㈠一元二次方程的通解 以下形式的一元二次方程我们很容易解 x 2-c=0其解为c x ±=, 现在要讨论标准型方程ax 2+bx +c =0可改写为 02 =++a c x a b x ……………⑴如果x 1,x 2为方程的两个根,有根与系数的关系: 2121;)(x x a c x x a b =+?=我们对方程⑴进行变换,令 a b y x 2?=…………………⑵代入方程⑴,则有 0)2(2(2=+?+?a c a b y a b a b y ,整理后为0(4122=+?a c a b y 改写为 222 44a ac b y ?=……………⑶显然,方程⑶的解为

2 244a ac b y ?±=再代入⑵式,得 a ac b b x 242?±?=………………⑷这就是一元二次方程的通解公式。 ㈡一元三次方程的通解 一元三次方程式: 032213=+++a x a x a x ………………⑸如果x 1,x 2,x 3为方程的三个根,有根与系数的关系:a 1=-(x 1+x 2+x 3) a 2=x 1x 2+x 1x 3+x 2x 3 a 3=-x 1x 2x 3 也可以求其通解令13 1a y x ?=代入⑸,得03=++q py y ……………⑹其中:22131a a p ?=,3121327 231a a a a q +?=,令;12?=i ,2742;2742332332p q q B p q q A +??=++?=则三个根分别是:

)(2 3)(21)(2 3)(21321B A i B A y B A i B A y B A y ??+?=?++?=+=我们令32427p q +=?,称作判别式,显然 ⒈Δ>0时有一个实根和一对复根; ⒉Δ=0时有三个实根,特别当042732≠?=p q 时,三个实根中有两个相等,0==q p ,时有三重零根; ⒊Δ<0时有三个不等的实根。 ㈢一元四次方程的通解公式 一元四次方程 0234=++++e dx cx bx x ………………………………………⑺的根与下列两个方程式的根一致: 048(2) 48(0)48(2) 48(222222=?+??+?+?+=?+?++?+++c b y d by y x c b y b x c b y d by y x c b y b x ……………⑻ 其中y 为三次方程:0)4()82(482223=??+?+?d b c e y e bd cy y ……………………⑼的任一个实数根。 下面列出四次方程的根与系数的关系:

牛顿法求非线性方程的根

学科前沿讲座论文 班级:工程力学13-1班姓名:陆树飞

学号:02130827

牛顿法求非线性方程的根 一 实验目的 (1)用牛顿迭代法求解方程的根 (2)了解迭代法的原理,了解迭代速度跟什么有关 题目:用Newton 法计算下列方程 (1) 013=--x x , 初值分别为10=x ,7.00=x ,5.00=x ; (2) 32943892940x x x +-+= 其三个根分别为1,3,98-。当选择初值02x =时 给出结果并分析现象,当6510ε-=?,迭代停止。 二 数学原理 对于方程f(x)=0,如果f(x)是线性函数,则它的求根是很容易的。牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程f(x)=0逐步归结为某种线性方程来求解。 设已知方程f(x)=0有近似根x k (假定k f'(x )0≠) ,将函数f(x)在点x k 进行泰勒展开,有 k k k f(x)f(x )+f'(x )(x-x )+≈??? 于是方程f(x)=0可近似的表示为 k k k f(x )+f'(x )(x-x )=0 这是个线性方程,记其根为x k+1,则x k+1的计算公式为 k+1k ()x =x -'() k k f x f x ,k=0,1,2,… 这就是牛顿迭代法。

三 程序设计 (1)对于310x x --=,按照上述数学原理,编制的程序如下 program newton implicit none real :: x(0:50),fx(0:50),f1x(0:50)!分别为自变量x ,函数f(x)和一阶导数f1(x) integer :: k write(*,*) "x(0)=" read(*,*) x(0) !输入变量:初始值x(0) open(10,file='1.txt') do k=1,50,1 fx(k)=x(k-1)**3-x(k-1)-1 f1x(k)=3*x(k-1)**2-1 x(k)=x(k-1)-fx(k)/f1x(k) !牛顿法 write(*,'(I3,1x,f11.6)') k,x(k) !输出变量:迭代次数k 及x 的值 write(10,'(I3,1x,f11.6)') k,x(k) if(abs(x(k)-x(k-1))<1e-6) exit !终止迭代条件 end do stop end (2)对于32943892940x x x +-+=,按照上述数学原理,编制的程序如下 program newton implicit none

二元二次方程组解法例题

二元二次方程的解法 二次方程组的基本思想和方法 方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。因法和技巧是解二元二次方程组的关键。 型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 程组的解法 元法(即代入法) 二·一”型方程组的一般方法,具体步骤是: 次方程中的一个未知数用另一个未知数的代数式表示; 数式代入二元二次方程,得到一个一元二次方程; 元二次方程,求得一个未知数的值; 的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; 个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 与系数的关系 二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一根,解这个方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。注意

二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。 比较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。 程组的解法 中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二型方程组,所得的解都是原方程组的解。 中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 析:例1.解方程组 观察这个方程组,不难发现,此方程组除可用代入法解外,还可用根与系数的关系,通过构造一个以x, y为根的一元二次方程来求解。 1)得y=8-x..............(3) 把(3)代入(2),整理得x2-8x+12=0. 解得x1=2, x2=6.

如何用《几何画板》画三元二次方程

1、如何用《几何画板》画三元二次方程? 2、什么软件可以画三元二次方程? 2011-02-17 22:19匿名 | 分类:其它类软件| 浏览638次 如何画X^2+Y^2-Z^2=0的图像? 我有更好的答案 提问者采纳 2011-02-26 12:19 (以5.02版为例) 步骤 1“自定义工具”/“选择工具文件夹”(在自定义菜单的最下端)/“C:\Program Files\Sketchp ad5\Tool Folder” 2“自定义工具”/“三维透视”/“建立三维坐标系”/匹配点x-y center 匹配点z center 匹配点image center 匹配点dial 3依次点击“坐标系复位”,“初始化”,“正投影” 4“数据”/“新建参数”/t1 5“数据”/“新建参数”/t2 6“数据”/“计算”/sqrt(t1^2+t2^2) 7“数据”/“计算”/-sqrt(t1^2+t2^2)

8“自定义工具”/“画点(x,y,z)”/将匹t1配给x,将匹t2配给y,将匹sqrt(t1^2+t2^2)配给z (匹配时点击度量结果即可)/标签为A1 9选中度量结果t1点A1,“构造”/“轨迹”/T1 10选中轨迹T1和度量结果t2,“构造”/“曲线族” 11选中度量结果t2点A1,“构造”/“轨迹”T2 12选中轨迹T2和度量结果t1,“构造”/“曲线族” 13“自定义工具”/“画点(x,y,z)”/将匹t1配给x,将匹t2配给y,将匹-sqrt(t1^2+t2^2)配给z(匹配时点击度量结果即可)标签为A 2 14选中度量结果t1点A2,“构造”/“轨迹”/T 3 15选中轨迹T3和度量结果t2,“构造”/“曲线族” 16选中度量结果t2点A2,“构造”/“轨迹”T4 17选中轨迹T4和度量结果t1,“构造”/“曲线族”

一元二次方程及其解法

第2课时 一元二次方程及其解法 一·基本概念理解 1 一元二次方程的定义: 含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 2、一元二次方程的解法 (1)、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 直接开平方法适用于解形如 b a x =+2 )(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有2 22)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (3)、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程 )0(02 ≠=++a c bx ax 的求根公式:

) 04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c (4)、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 (5)、韦达定理 若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则 a b x x -=+21,a c x x =21。以上的就称为韦达定理(或称为根与系数的关系)利用 韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=a b -,二根之积 =a c 也可以表示为a b x x -=+21,a c x x =21。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 3、一元二次方程根的判别式 根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42 -叫做一元二次方程 )0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?

用牛顿迭代法求近似根

用牛顿迭代法求近似根

————————————————————————————————作者:————————————————————————————————日期:

第四题 题目:用Newton 法求方程在 74 28140x x -+= (0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001). 解:此题是用牛顿迭代法求解近似根的问题 1. Newton 迭代法的算法公式及应用条件: 设函数在有限区间[a,b]上二阶导数存在,且满足条件 ⅰ. ()()0f a f b <; ⅱ. ()''f x 在区间[a,b]上不变号; ⅲ. ()'0f x ≠; ⅳ. ()()'f c f c b a ≤-,其中c 是a,b 中使()()''min(,)f a f b 达到的一个. 则对任意初始近似值0[,]x a b ∈,由Newton 迭代过程 ()()() 1'k k k k k f x x x x f x +=Φ=-,k=0,1,2… 所生成的迭代序列{ k x }平方收敛于方程()0f x =在区间[a,b]上的唯一解а. 对本题: )9.1()9.1(0 )8(4233642)(0 )16(71127)(0 )9.1(,0)1.0(,1428)(3225333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f Θ 故以1.9为起点 ?? ???='-=+9.1)()(01x x f x f x x k k k k 2. 程序编写 #include #include void main() { double x0,x=1.9; do

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

3元一次方程组解法

3元一次方程组解法 本周目标: 会解三元一次方程组.通过解三元一次方程组的学习,提高逻辑思维能力.培养抽象概括的数学能力. 重点、难点: 三元一次方程组的解法.解法的技巧. 重点难点分析: 1.三元一次方程的概念 三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1, 2a-3b+c=0等都是三元一次方程. 2.三元一次方程组的概念 一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 例如,等都是三元一次方程组. 三元一次方程组的一般形式是: 3.三元一次方程组的解法 (1)解三元一次方程组的基本思想 解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数. (2)怎样解三元一次方程组? 解三元一次方程组例题 1.解方程组 法一:代入法 分析:仿照前面学过的代入法,将(2)变形后代入(1)、(3)中消元,再求解.

解:由(2),得x=y+1.(4) 将(4)分别代入(1)、(3)得 解这个方程组,得 把y=9代入(4),得x=10. 因此,方程组的解是 法二:加减法 解:(3)-(1),得x-2y=-8 (4) 由(2),(4)组成方程组 解这个方程组,得 把x=10,y=9代入(1)中,得z=7. 因此,方程组的解是 法三:技巧法 分析:发现(1)+(2)所得的方程中x与z的系数与方程(3)中x与z的系数分别对应相等,因此可由(1)+(2)-(3)直接得到关于y的一元一次方程,求出y 值后再代回,即可得到关于x、y的二元一次方程组 解:由(1)+(2)-(3),得y=9. 把y=9代入(2),得x=10. 把x=10,y=9代入(1),得z=7. 因此,方程组的解是 注意: (1)解答完本题后,应提醒同学们不要忘记检验,但检验过程一般不写出. (2)从上述问题的一题多解,使我们体会到,灵活运用代入法或加减法消元,将有助于我们迅速准确 求解方程组.

一元二次方程及解法

课题:复习一元二次方程及其解法 【课前热身】 1.方程3(1)0x x +=的二次项系数是 ,一次项系数是 ,常数项是 . 2.一元二次方程 x 2=3x 的根是 . 3.一元二次方程2230x x --=的根是 . 4. 关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实 数 p =( ) 5.关于x 的方程1 (3)(1)30n n x n x n +++-+=是一元二次方程,则一次项系数是 . 【课标解读】 1了解一元二次方程的有关概念,知道一元二次方程的一般形式; 2会用直接开平方法、配方法、公式法、因式分解法解简单系数的一元二次方程,并根据方程的特点,灵活选择方程的解法(重点) 【命题趋向】一元二次方程是中考的重点,一元二次方程的解法以选择题和解答题为主。 【考点精要】 1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数。(警告:判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .) 2. 一元二次方程的常用解法: (1)直接开平方法:形如 )0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法. (警告:用直接开平方的方法时要记得取正、负.) (2)配方法:用配方法解一元二次方程 ()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(警告: 用配方法时二次项系数要化1.) (3)公式法:一元二次方程 20(0)ax bx c a ++=≠的求根公式是 21,2(40)2b x b ac a -±=-≥.(警告:方程要先化成一般形式.) (4)因式分解法:1提取公因式2运用公式法(平方差公式和完全平方公式)3十字相乘法: 因式分解法的步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.(警告:方程要先化成一般形式.) 3、一元二次方程的根的判断式 若 ()02≠=++a o c bx ax , 则

最新二元二次方程组的解法

二元二次方程的解法 一、内容综述: 1.解二元二次方程组的基本思想和方法 解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。因此,掌握好消元和降次的一些方法和技巧是解二元二次方程组的关键。 2.二元二次方程组通常按照两个方程的组成分为“二·一”型和“二·二”型,又分别成为Ⅰ型和Ⅱ型。 “二·一”型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 “二·一”型方程组的解法 (1)代入消元法(即代入法) 代入法是解“二·一”型方程组的一般方法,具体步骤是: ①把二元一次方程中的一个未知数用另一个未知数的代数式表示; ②把这个代数式代入二元二次方程,得到一个一元二次方程; ③解这个一元二次方程,求得一个未知数的值; ④把所求得的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; ⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 (2)逆用根与系数的关系 对“二·一”型二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一元二次方程z2-az+b=0的两个根,解这个方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。 注意:不要丢掉一个解。 此方法是解“二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。

以上两种是比较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 注意:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。 “二·二”型方程组的解法 (i) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解。 (ii) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 注意:“二·一”型方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 二、例题分析: 例1.解方程组 分析:仔细观察这个方程组,不难发现,此方程组除可用代入法解外,还可用根与系数的关系,通过构造一个以x, y为根的一元二次方程来求解。 解法一:由(1)得y=8-x (3) 把(3)代入(2),整理得x2-8x+12=0. 解得x1=2, x2=6. 把x1=2代入(3),得y1=6. 把x2=6代入(3),得y2=2. 所以原方程组的解是。 解法二:根据根与系数的关系可知:x, y是一元二次方程,

C语言编程_牛顿迭代法求方程2

牛顿迭代公式 设r 是f(x) = 0的根,选取x0作为r 初始近似值,过点(x0,f(x0)) f(x)的切线L ,L 的方程为y = f(x0)+f'(x0)(x-x0),求出L 与x 轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r 的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x 轴交点的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r 的二次近似值。重复以上过程,得r 的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r 的n+1次近似值,上式称为牛顿迭代公式。 解非线性方程 f(x)=0似方法。把f(x)在 x0 f(x) = f(x0)+(x -x0)f'(x0)+(x -x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x -x0)-f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。 牛顿迭代法又称牛顿切线法,它采用以下方法求根:先任意设定一个与真实的根接近的值x 0作为第一个近似根,由x 0求出f(x 0),过(x 0,f(x 0))点做f(x)的切线,交x 轴于x 1,把它作为第二次近似根,再由x 1求出f(x 1),再过(x 1,f(x 1))点做f(x)的切线,交x 轴于x 2,再求出f(x 2),再作切线……如此继续下去,直到足够接近真正的x *为止。 ) ()()()(0' 0010 100' x f x f x x x x x f x f - =-= 因此, 就是牛顿迭代公式。 例1 用牛顿迭代法求方程2x 3-4x 2 +3x-6=0在1.5附近的根。 本题中,f(x)= 2x 3-4x 2+3x-6=((2x-4)x+3)x-6 f ’(x)= 6x 2-8x+3=(6x-8)x+3 #include "stdio.h"

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

高一数学二元二次方程组解法

方程 22260x xy y x y +++++= 是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项. 我们看下面的两个方程组: 224310,210; x y x y x y ?-++-=?--=? 222220,560. x y x xy y ?+=??-+=?? 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组. 下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解. 例1 解方程组 22440,220.x y x y ?+-=?--=? 分析:二元二次方程组对我们来说较为生疏,在解此方程组时,可以将其转化为我们熟悉的形式.注意到方程②是一个一元一次方程,于是,可以利用该方程消去一个元,再代入到方程①,得到一个一元二次方程,从而将所求的较为生疏的问题转化为我们所熟悉的问题. 解:由②,得 x =2y +2, ③ 把③代入①,整理,得 8y 2+8y =0, 即 y (y +1)=0. ①

解得 y 1=0,y 2=-1. 把y 1=0代入③, 得 x 1=2; 把y 2=-1代入③, 得x 2=0. 所以原方程组的解是 112,0x y =??=?, 22 0,1.x y =??=-? 说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解. 例2 解方程组 7,12.x y xy +=??=? 解法一:由①,得 7.x y =- ③ 把③代入②,整理,得 27120y y -+= 解这个方程,得 123,4y y ==. 把13y =代入③,得14x =; 把24y =代入③,得23x =. 所以原方程的解是 114,3x y =??=?, 223,4. x y =??=? 解法二:对这个方程组,也可以根据一元二次方程的根与系数的关系,把,x y 看作一个一元二次方程的两个根,通过解这个一元二次方程来求,x y . 这个方程组的,x y 是一元二次方程 27120z z --= 的两个根,解这个方程,得 3z =,或4z =. 所以原方程组的解是 114,3;x y =?? =? 223,4. x y =??=? 练 习: ①

相关主题
文本预览
相关文档 最新文档