当前位置:文档之家› Charpy impact tests on composite structures – An experimental

Charpy impact tests on composite structures – An experimental

Charpy impact tests on composite structures – An experimental
Charpy impact tests on composite structures – An experimental

Charpy impact tests on composite structures –An experimental

and numerical investigation

W.Hufenbach,F.Marques Ibraim *,https://www.doczj.com/doc/d215198626.html,ngkamp,R.Bo ¨hm,A.Hornig

Technische Universita ¨t Dresden,Institute of Lightweight Structures and Polymer Technology (ILK),01062Dresden,Germany

Received 29May 2007;received in revised form 10October 2007;accepted 15October 2007

Available online 23October 2007

Abstract

After careful tailoring,composite structures can provide a reasonable well response to impact loads with the additional advantages of weight savings and structural sti?ness.In order to e?ciently design composite structures for impact loads,reliable numerical models are required and su?ciently accurate material codes are necessary.

This paper deals with the experimental investigation of carbon reinforced composites under low-velocity impact and its numerical modelling with an orthotropic continuous damage-based material approach available in LSDYNA-3D.

Experimental investigations in a Charpy test rig were conducted in order to identify key parameters in?uencing the impact damage resistance of composite https://www.doczj.com/doc/d215198626.html,ing the experimental results,a numerical study of the impacted specimens was performed in LSDY-NA-3D.Solid elements in conjunction with a damage-based composite material model were used to perform the calculations.A good correlation between experimentally and numerically obtained forces and failure modes has been achieved.Furthermore,the practical numerical modelling of composite materials under low-velocity impact,together with recommendations and achievements towards the e?ort to model their complex behaviour under high dynamic impact is discussed.ó2007Elsevier Ltd.All rights reserved.

Keywords:https://www.doczj.com/doc/d215198626.html,posites;B.Impact behaviour;C.Finite element analysis (FEA);C.Damage mechanics

1.Introduction

Composite materials are well known for their outstand-ing mechanical properties at a speci?c low weight,what allows engineers to design slender and sti?structures with-out loss of performance.Despite of their many virtues,they show a highly complex impact behaviour and are very sen-sitive to non-visual damage that strongly in?uences their residual load bearing capability [1].

A broad classi?cation of the experimental treatment of impacts can be performed by distinguishing between in low,medium and high impact velocity events.For low-velocity impact events,the usage of pendulums like the

ones present in the Charpy test,drop towers or drop weights has become standard [2].

A considerable amount of information is available about on impact performance of laminates under a variety of loading conditions and rates [3].Unfortunately,impact design methodologies rely on their experimental boundary conditions and the particular laminate setup,since a scal-ing of the results is very di?cult.The occurrence of usual failure modes under low-velocity impact loading condi-tions,like delamination,matrix tensile fracture,localised compressive failure and ?bre shear failure is strongly dependent of the material con?guration (?bre type,resin type,lay-up,and thickness),the loading velocity and pro-jectile type.In this respect,the Charpy test presented in this paper was used as a fast and cost e?cient comparison tool.An alternative for the usually extensive experimental procedures is the usage of advanced numerical modelling techniques.But although most of today’s commercial FE

0266-3538/$-see front matter ó2007Elsevier Ltd.All rights reserved.doi:10.1016/https://www.doczj.com/doc/d215198626.html,pscitech.2007.10.008

*

Corresponding author.Tel.:+4935146338142;fax:+4935146338143.

E-mail address:?b@ilk.mw.tu-dresden.de (F.M.Ibraim)https://www.doczj.com/doc/d215198626.html,/locate/compscitech

Available online at https://www.doczj.com/doc/d215198626.html,

Composites Science and Technology 68(2008)

2391–2400

COMPOSITES SCIENCE AND TECHNOLOGY

software like LSDYNA-3D are capable of simulating impact events for isotropic materials,modelling capabili-ties for composite components are limited to model failure and damage progression especially in thick laminates[4].In that respect,failure mechanisms play a key role since they control the deformation path of a structure.The bulk of failure criteria used in crash and impact modelling is based on the work of Hashin et al.[6].The usage of linear elastic-ity to describe composite behaviour until the point of?rst failure has also found widespread acceptance and is the form of choice in most actual FE codes.In contrast,exper-imental evidence is that the shear sti?ness will behave quite non-linearly even at very low shear strain levels where per-manent failure has not been reached[7].

It is generally accepted that after very brief elastic strain-ing,the weakest layer will crack,which reduces the sti?ness of the laminate in the direction of the load in a propor-tional ratio.This concept was?rst proposed by Lemaitre [8]for metals and has been extended to composites by Mat-zenmiller et al.[9].Soutis et al.[10]established a direct rela-tion between the crack density growths and the loss of sti?ness under increasing static loads.

In the?eld of crash and impact modelling,Williams et al.[11]implemented a2D damage degradation approach for shell elements in https://www.doczj.com/doc/d215198626.html,deveze et al.[12]also implemented a strain-controlled,damage-based composite model in PAM-CRASH,with the treatment of matrix shear non-linearities by means of a plasticity approach. One of the few commercially available solid orthotropic damage models for?bre-reinforced composites is MAT161/162in LSDYNA-3D,where a modi?ed Hashin [6]failure criterion is used for in-plane load failure and a shear and normal stress based delamination criterion for out-of-plane failure treatment.

The purpose of this study is to experimentally investi-gate selected parameters to improve impact damage toler-ance in composite and hybrid composite structures and to provide a numerical treatment tool based on LSDYNA 3D for the reliable design of such structures.

2.Charpy tests

2.1.Experimental setup

The Charpy device is a dynamic three point bending experiment of an un-notched beam.The experimental setup consists of the specimen,the anvils where the speci-men is freely supported,a pendulum with a de?ned mass attached to a rotating arm pinned at the machine body. The pendulum falls following a circular trajectory and hits the test specimen at the middle span length transferring kinetic energy to it.Fig.2.1shows the Zwick/Roell Charpy test rig used for the investigations performed.Throughout this investigation,the pendulum hammer had a mass of 2.0kg and the swing arm length was390mm leading to a speed at impact of around3.85m/s and a stored energy of15J.Energy losses due to bearing friction and air resis-tance were disregarded due to their small contribution to the energy balance.

The characteristic specimen length and height were 80mm and10mm,respectively.Two di?erent thicknesses were investigated,namely5mm and3mm.The span to width ratio of the tested specimens was6.Selected tests were digitally recorded with a high-speed Phantom

V7 Fig.2.1.Charpy test rig(a)and specimen ready for testing(b)(DIN ISO179-1and-2).

2392W.Hufenbach et al./Composites Science and Technology68(2008)2391–2400

camera with a maximum capture rate of190.000pictures per second.

2.2.Materials

Three types of?bre materials commonly used for struc-tural design of aerospace components were investigated, namely ToraycaóT300,ToraycaóT700s and ToraycaóT800s.The tested?bre architectures comprised T700s uni-directional reinforcement,T300plain weave satin and T800s4harness satin weave.A woven fabric quasi-unidi-rectional T300preform with80%of the?bres in the weft direction and20%of the?bres in the warp direction were specially fabricated at the Leibniz Institute of Polymer Research Dresden(see Table2.1).All tested specimens were in?ltrated with L1000-VE5194/H epoxy resin in the resin transfer mould process.Each con?guration consists of a core layer,and an upper and lower protective layer (see Table2.2).Specimens were cut out from the panels in three di?erent angles,namely0°,45°,and90°with?ve specimens for each con?guration.

2.3.Experimental results

Among the several factors known to in?uence impact damage response of composites,?bre sti?ness and strengths,matrix toughness,panel thickness,lay-up,?bre arrange-ment,impact velocity and support conditions are consid-ered to be the most important ones.In the scope of this paper,only the factors related with?bre type,lay-up,?bre architecture and arrangement were investigated.The L1000-VE5194/H epoxy resin was used to manufacture all the specimens.The?ndings of the experimental work con-ducted are summarised below.

2.3.1.Damage phenomenology

Due to the complex composite geometry and the di?er-ent microscopic failure modes,a non-linear stress–strain-behaviour could be observed on the macro-scale (Fig.2.2b).Matrix micro-cracking has been recognised as the?rst observed damage mode in loading history (Fig.2.2a).Its presence mainly causes the sti?ness reduc-tion of the a?ected layer.Because it does not necessarily result in a catastrophic failure,matrix cracking is normally not the most important failure mode.But it can trigger ?bre failure or delamination,which is far more important for practical cases(Fig.2.2a).

2.3.2.The e?ect of?bre-reinforcement type

Due to interactions between warp and weft directions, fabric-reinforced composites are less prone to su?er cata-strophic impact damage than unidirectionally reinforced

Table2.1

Fibre type and architecture of investigated specimens

Nomenclature Material type Architecture Reinforcement Interlacing patterns T300qUD Torayca T30080%weft,20%warp Quasi-unidirectional Twill weave

T300BD Torayca T30050%weft,50%warp Bidirectional Satin weave

T700UD Torayca T700s100%UD Unidirectional–

T800BD Torayca T800H50%weft,50%warp Bidirectional Plain weave

Metal INCO625Sheet panels Isotropic–

Table2.2

Overview of tested parameters

Test con?guration Investigated

parameter Upper protective layer Core layer Lower protective layer Test angle Specimen thickness

(mm)

Reinforcement type

tc-1–T300qUD,[0°]16–0°,45°,90°5

tc-2T300BD,[±45°]1T300qUD,[0°]14T300BD,[±45°]10°,45°,90°5

tc-3T300BD,[±45°]2T300qUD,[0°]12T300BD,[±45°]20°,45°,90°5

tc-4T300BD,[±45°]4T300qUD,[0°]8T300BD,[±45°]40°,45°,90°5

Metallic panel

tc-5T300BD,[±45°]2T700UD,[0°]10-0°,45°3

tc-6T300BD,[±45°]2T700UD,[0°]8Metal0°,45°3

Fibre type and architecture

tc-7–T300BD,[0°]8Metal0°,45°,90°3

tc-8–T800BD,[0°]8Metal0°,45°,90°3

tc-9–T700UD,[0°]8Metal0°,45°,90°3

Core?bre orientation

tc-10T300BD,[±45°]2T700UD,[0°]6T300BD,[±45°]1,Metal0°3

tc-11T300BD,[±45°]2T700UD,[±15°]6T300BD,[±45°]1,Metal0°3

tc-12T300BD,[±45°]2T700UD,[±30°]6T300BD,[±45°]1,Metal0°3

tc-13T300BD,[±45°]2T700UD,[±45°]6T300BD,[±45°]1,Metal0°3

W.Hufenbach et al./Composites Science and Technology68(2008)2391–24002393

composites.To quantify this trend,?ve structural con?gu-rations were manufactured with increasing degree of plain weave±45°fabric as protective layers(test con?gurations 1–4).

Fig. 2.3a shows a positive increase of the absorbed energy with increasing amount of±45°fabric layers while Fig.2.3b depicts a decreasing structural strength instead. The increased energy absorption capability of the

fabric Fig.2.2.Damage mechanisms from tc-1in45°test angle(a)and corresponding macroscopic force–displacement diagram

(b).

Fig.2.3.Peak force and energy levels for di?erent amounts of45°protective

?bres.

Fig.2.4.Tested specimens with di?erent amounts of±45°fabric protective layers and corresponding force–displacement diagrams(a)Specimen tc-1(b) Specimen tc-2(c)Specimen tc-3(d)Specimen tc-4.

2394W.Hufenbach et al./Composites Science and Technology68(2008)2391–2400

structures is a function of the complex ?bre reorientation and stretching and of matrix micro-cracking at the micro-mechanical level.Additionally,the presence of the weft ?bres interacting with the warp ?bres enhances the trans-verse and out-of-plane strengths considerably.

The remaining structural integrity of the specimens with higher amounts of ±45°layers depicted in Fig.2.4also indicates the superior impact damage tolerance of these fabrics.Structural sti?ness drops after the fracture of the core layers (T300qUD –0°)can be clearly identi-?ed in the force–displacement diagrams depicted in Fig.2.4.

An advantage of the ±45°woven fabric as upper pro-tective layer is the redistributing of the concentrated pen-dulum contact force throughout the ?bres in a better manner than with plain weaves in 0°/90°,what can be

well observed by comparing the brittle fracture of the tc-1con?guration against the more smooth ones,see tc-4.This assumption is additionally reinforced by the results of the tc-1specimen impacted at a 45°test angle (Fig.2.2b).

2.3.3.The e?ect of hybrid materials

The usage of hybrid materials to improve the impact resistance and inhibit the crack propagation has been already explored on the structure of GLARE ó.In order to enhance the impact damage tolerance of the composite specimens within this study,0.6mm thick metallic panels were added as the lower protective layers of the specimens (test con?gurations tc-5and tc-6).Additional positive e?ects are a sti?ening of the composite structure and,due to the plastic deformation of the panels,the possibility

to

Fig.2.5.Peak force and energy level trends for specimens with and without metallic rear

panel.

Fig.2.6.Tested specimens with and without metallic lower protective panel for 0°and 45°test angle and corresponding force–displacement diagrams Specimens tc-5and tc-6with 0°test angle (a)Specimens tc-5and tc-6with 45°test angle (b).

W.Hufenbach et al./Composites Science and Technology 68(2008)2391–24002395

’’freeze’’the deformed structure after the impact event.To keep the impact speed constant,the thickness of the speci-mens with metal were reduced to3mm and±45°T300BD fabric layers were applied as upper protective layers.

Fig.2.5shows a direct comparison of the energy peak forces measured on the specimens with and without metallic lower protective layers.The sudden sti?ness loss of speci-men tc-5with0°test angle(Fig.2.6-a)is minimized by the presence of the metal panel(tc-6).This e?ect is not very large for the tc-5specimen with test angle of45°(Fig.2.6b),what supports the assumption that45°lay-up has a greater bend-ing impact damage tolerance than0°/90°lay-ups.

2.3.4.The e?ect of?bre type and architecture

Three di?erent?bre types were investigated,namely T300BD,T800BD and T700UD(test con?gurations7–9).All the specimens had a metallic rear panel but lacked the upper T300BD±45°protective layer.Peak load and energy trends are depicted in Fig.2.6for the0°test angle.

The force–displacement diagrams for the three?bre types tested are depicted in Fig.2.7.

T300BD(tc-8)and T800BD(tc-9)render similar peak load levels,while the T700UD?bre(tc-10)reaches a lower value.The reason for the lower load levels of the T700UD ?bres is the lower transverse resistance of the UD layers, since they do not support much load under out-of-plane compression,as woven fabrics do[13].Especially the lack of the±45°fabric T300BD is seen well here.The presence of the metallic panel at the rear side of the specimen explains the similar energy levels recorded for all three?bre types and the smooth long deformation following the peak loads.

2.3.5.E?ect of core?bre orientation

In order to investigate the e?ect of?bre-reinforcement angle,specimens were manufactured with core?bre angles of0°,±15°,±30°,±45°(test con?gurations tc-10to tc-13). All specimens were tested at0°test angle.A T300BD±45

°

Fig.2.7.Peak force and energy levels for di?erent core?bre

types.

Fig.2.8.Tested specimens of di?erent?bre types with corresponding force–displacement diagrams(test con?gurations7to9)(a)tc-7,T300BD (b)tc-8,T800BD(c)tc-9,T700UD.

2396W.Hufenbach et al./Composites Science and Technology68(2008)2391–2400

fabric upper protective layer and a lower metal panel were integrated into the specimens.

The measured peak loads and energies recorded are summarised in Fig.2.8and they con?rm the trends usually found in static tests.The reduction of energy absorption with increasing ?bre angle can be explained by the presence of the ±45°T300protective layers and of the metallic back panel in all specimens (See Fig.2.9).The measured dis-placements,see Fig.2.10,reinforces this assumption.3.Numerical modelling of Charpy tests

3.1.Material model

Throughout this investigation,the LSDYNA (version 971)non-local orthotropic damage material model for composite materials MAT 162was used in conjunction with 8-nodes under-integrated volume elements.Material 162allows the modelling of tow di?erent reinforcement

types,namely unidirectional reinforcements (UD-model)and plain weave reinforcements (BD-model).These models di?er in their failure surfaces formulation and in the cou-pling between failure and sti?ness degradation.Post dam-age response can be modelled through element erosion either triggered by a tensile strain-to-failure criterion in ?bre direction or by a volumetric strain tensile or compres-sive strain-to-failure criterion due to matrix fracture.Addi-tional information about this material model and its behaviour can be found in [4,5].3.2.Simulation strategy

Due to its wide material library and its capabilities to compute non-linear impact events,the explicit FE-code LSDYNA-3D from LSTC was chosen to perform the numerical simulations of the Charpy tests.The ?nite ele-ment model of the Charpy test device (Fig.3.1)included only the supports and the pendulum and both

components

Fig.2.9.Peak force and energy level trends for di?erent core ?bre

orientation.

Fig.2.10.Tested specimens and corresponding force–displacement diagrams for di?erent core ?bre orientations (a)tc-10,0°T700UD (b)tc-11,15°T700UD (c)tc-12,30°T700UD (d)tc-13,45°T700UD.

W.Hufenbach et al./Composites Science and Technology 68(2008)2391–24002397

were modelled with elastic steel materials in conjunction with 8-node volume elements An initial velocity of 3.85m/s was assigned to the pendulum while the beam sup-port rear faces were fully restrained.

Volume elements were chosen to simulate the impacted specimens due to the important contribution of through-thickness properties for the composite impact response under bending impact loads.The representative material volume chosen to model the material was either a UD layer or a BD-layer with homogenised properties.Delamination was not explicitly modelled and is accessed via an internal material failure criterion.

The material data used in the FE modelling for T300qUD,T300BD and T700UD were obtained form quasi-static tests.

In order to properly account for the anisotropic behav-iour of the composite materials during the computation,the numerical de?nition of the material coordinate system was coupled with the element coordinate system.O?-axis orientations like 45°were de?ned by a rotation around the out-of-plane material axis.Eroding surface-to-surface contacts were used to model the contacting interfaces.Vis-cous hourglass control was used throughout the simulation.

To con?rm the accuracy of the sti?ness assumptions made,the specimens were ?rst simulated with linear-elastic orthotropic materials,and then with MAT162.The cali-bration of the damage parameters and material properties was performed by means of inverse modelling.4.Results and discussion

Since the material model works in an orthotropic linear-elastic fashion until the failure criteria are satis?ed,simula-tions of the more brittle structures have been more accurate

than of the materials that su?er from successive damage progression and large non-linear response:Especially the match of failure modes and load-curve response has not always been possible.Furthermore,the degradation of some sti?ness terms during the simulation did cause strong numerical instabilities (±45°and 0°combined)were the weak layers looses their sti?ness much earlier than the stronger ones.

Taking into consideration the above mentioned excep-tions,the numerical results achieved with Mat162have matched pretty well the observed experimental response for many of the materials tested here.

A comparison of the simulated and experimentally recorded force–displacement curves for the test con?gura-tion tc-1(16xqUD T300)under test angles of 0°,45°and 90°is depicted in Fig.4.1.The solution convergence of all three models strongly indicates a material property solution rather than an individual mathematical solution for each test angle.The appearance of strong hourglas-sing was di?cult to avoid,especially after the damage function strongly reduced the failed elements sti?ness (Fig.4.1a).

The modelled responses of the more brittle materials were better achieved with MAT162,especially when using failure with small damage amounts at ?bre direction.The increase of damage amount do provide a much better ?t to the experimental results,with sti?ness reductions due to micro-cracking being accurately represented,but requires some sort of strain energy limit due to the higher numerical damage introduced.4.1.Element erosion

To account properly for the sti?ness fall after the point of ?rst failure,the ?bre damage coe?cient

was

Fig.3.1.FE model for Charpy test rig and the selected specimens.

2398W.Hufenbach et al./Composites Science and Technology 68(2008)2391–2400

set to render a large degradation with very slow sti?ness drop for increasing loads.The results of this simulation are depicted in Fig.4.2a Using this modelling approach would match the experimental load-curve on a very accu-rate fashion,but would render the material with a huge amount of strain energy that is not realistic.In order to limit this growing strain energy,the usage of element erosion would provide a coarse modelling strategy to limit the material strain energy (Fig.4.2b)and,provided the mesh density is high enough,a simple modelling tool for crack propagation.A disadvantage of this approach is the mass removal of the physical system,what could lead to divergence for models where mass plays a more pronounced role.

4.1.1.Shear non-linearities

Woven fabrics are among the most impact damage tol-erant composites because of their remarkable deformation without complete fracture.This impact damage tolerance comes mainly from the internal matrix micro-cracking,?bre reorientation and successive ?bre breakage.Model-ling the shear non-linearities is not an easy task and requires models capable of a non-linear function treatment for in-plane shear and the possibility to account for resid-ual permanent deformation:

The code of Mat162does not handle the non-linear material behaviour out of the scope of damage and also does not account for permanent damage.The conse-quences for the simulations can be seen in Fig. 4.1b by comparing the mismatch at the beginning of the force–displacement curve between experimental and numerical response and,especially by the fact that the permanent deformation achieved by the specimen tc-1tested at 45°could not be modelled with MAT162.Fur-thermore,the fabric specimens undergoing shear defor-mation fracture after a certain strain limiting the strain energy those specimens can store.Such a feature is also not present within MAT162and the usage of ?bre strain erosion or matrix erosion would render inaccurate results for limiting the in-plane shear response of fabric

composites.

Fig. 4.1.Simulated and measured force–displacement diagrams and specimens (a)tc-1,0°(b)tc-1,45°(c)tc-1,90°

.

Fig.4.2.E?ect of element erosion.

W.Hufenbach et al./Composites Science and Technology 68(2008)2391–24002399

5.Conclusions

In order to design impact damage tolerant and sti?com-posite structures,a mixture of sti?UD reinforcements at the core and tougher fabric lay-ups as protective layers is imperative.The addition of metallic panels would enhance impact damage tolerance even more,but mainly for0°rein-forcement specimens without huge structural strength reductions.Residual sti?ness and strengths are better achieved with±45°fabric lay-ups between the impacting object and the load-carrying structure,serving as protective layers.

The numerical simulation of the complex non-linear composite response under beam bending impact is a rather challenging task on the material models available in com-mercial FEA codes for3D elements.The more brittle response of BD laminates is a rather manageable task with good results being delivered,but the simulation of shear non-linearities is still not entirely accurate when using a 3D modelling approach.Forms of limiting the energy growth of the material model and accounting for the dam-age evolution are still required since the usage of element erosion has limitations due to mass removal in the structure.

Acknowledgement

The authors gratefully acknowledge the?nancial support of this research by The European Commission within the EU-Project‘‘Environmentally friendly aero en-gine(VITAL)’’at Technische Universita¨t Dresden.References

[1]Reid SR,Zhou G.Impact behaviour of?bre-reinforced composite

materials and structures.Woodhead Publishing Limited;2000. [2]Abrate S.Impact on composites structures.Cambridge University

Press;1998.

[3]Hufenbach W,Petrinic N,Bo¨hm R,Wiegand J,Langkamp A,

Marques Ibraim F,et al.Multidisciplinary damage analysis of textile-reinforced composites for impact and crash applications.e-J Nondestruct Test2006;11:12.

[4]Yen C-F.Ballistic impact modelling of composite materials.7th

International LS-DYNA Users Conference,2003,on CD-ROM. [5]Hufenbach W,Langkamp A,Marques Ibraim F,Bo¨hm R,Gude M,

Andrich M.Damage and impact simulation of textile-reinforced composites using FEA.15th international conference on composite materials(ICCM-15),Durban,27.6.–1.7.2005,auf CD-ROM. [6]Hashin Z.Failure criteria for unidirectional?bre compounds.J Appl

Mech1980;47:329–34.

[7]Cuntze RG,Freund A.The predictive capability of failure mode

concept-based strength criteria for multidirectional https://www.doczj.com/doc/d215198626.html,-pos Sci Technol2004;64(3–4):343–77.

[8]Lemaitre J.A course on damage mechanics.Berlin,Heidelberg:

Springer;1996.

[9]Matzenmiller A,Lubliner J,Taylor RL.A constitutive model for

anisotropic damage in?ber-composites.Mech Mater1995;20(2): 125–52.

[10]Kashtalyan M,Soutis C.Sti?ness degradation in cross-ply laminates

damaged by transverse cracking and https://www.doczj.com/doc/d215198626.html,pos:Part A 2000;31:335–51.

[11]Williams K,Vaziri R.Finite element analysis of impact response

of GFRC composite plates.In:Proceedings of the ICCM-11,p.532–

54.

[12]Ladeveze P,Lubineau G.On a damage mesomodel for laminates:

micro–meso relationships,possibilities and https://www.doczj.com/doc/d215198626.html,pos Sci Technol2001;61:2149–58.

[13]Abot JL,Daniel IM.Through-thickness mechanical characterization

of woven fabric composites.J Compos Mater2004;39(7):329–34.

2400W.Hufenbach et al./Composites Science and Technology68(2008)2391–2400

数字式绝缘电阻测试仪的使用知识

数字式绝缘电阻测试仪性能特点 ●适于在各种电气设备的维修、试验及检定中作绝缘测试。 ●31/2LCD大屏幕数字显示,分辨率高,读数方便。 ●有三种额定绝缘测试电压,负载能力强。 ●操作便捷,携带方便,准确、可靠、稳定。 ●低耗电、用6×1.5V(AA, R6)电池供电,使用时间长。 ●电池电压不足,有欠压标志符“”显示。 ●具有防震、防尘、防潮结构,适应恶劣工作环境。 ●保护功能完善,能承受短路和被测电器残余电压冲击。 数字式绝缘电阻测试仪技术指标 2.1 主要指标 额定电压:500V、1000V、2500V三档 测量范围及误差:(20~1999)MΩ±(5%RDG+2d) (0~19.99)MΩ(2.00~19.99)GΩ±(10%RDG+2d) 输出短路电流:≥1mA 2.2 其它指标 ●绝缘电阻: ≥50M? (1000V) ●耐压: AC 3kV 50Hz 1min ●工作温度和湿度: -10℃~+50℃<85%RH ●贮存温度和湿度: -15℃~+55℃<90%RH ●电源: 6×1.5V(AA,R6)电池或充电电池。 ●耗电: ≤150mA; ●外形尺寸: 255mm(L)×135mm(W)×80mm(D)

●重量: ≈1kg 数字式绝缘电阻测试仪仪表外形

数字式绝缘电阻测试仪使用方法 敬告: ●确认被测试品安全接地,试品不带电。 ●确认仪表E端(接地端)已接地。 ●按了测试开关按钮后,仪表E、L端就有高电压输出,请注意安全! ●测试完毕,请及时关闭高压和工作电源。 4.1电池检查及更换 仪表在接通电源工作时,显示屏若显示“”欠压符号,表示 电池电量不足,应更换新电池,否则仪表无法正常工作。 4.2测试 将仪表E端接试品的接地端(或一端),L端接试品的线路端(或 另一端)。打开电源开关,将档位开关置所需的额定电压位,显 示屏首位显示“1”,表示工作电源接通。按一下测试开关按钮, 高压指示灯点亮,显示屏上显示的数值就是被测试品的绝缘电 阻值。当试品的绝缘电阻值超过仪表量程的上限值时,显示屏首 位显示“1”,后三位熄灭。 注:测量时,由于试品有吸收、极化过程,绝缘值读数逐渐向大数 值漂移或有一些上下跳动,系正常现象。 4.3 G端(保护环)的使用 测量高绝缘电阻值时,应在试品两测量端之间的表面上套一导

绝缘电阻测试仪说明书

绝缘电阻测试仪说明书 由于输入输出端子、测试柱等均有可能带电压,在插拔测试线、电源插座时,会产生电火花,小心电击, 避免触电危险,注意人身安全! 安全要求 请阅读下列安全注意事项,以免人身伤害,为了避免可能发生的危险,只可在规定的范围内使用。 只有合格的技术人员才可执行维修。 —防止火灾或人身伤害 使用适当的电源线。只可使用专用并且符合规格的电源线。 正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。 注意所有终端的额定值。为了防止火灾或电击危险, 请注意所有额定值和标记。在进行连接之前,请阅读使用说明书,以便进一步了解有关额定值的信息。 使用适当的保险丝。只可使用符合规定类型和额定值的保险丝。

避免接触裸露电路和带电金属。有电时,请勿触摸裸露的接点和部位。 请勿在潮湿环境下操作。 请勿在易爆环境中操作。

目录 第一章概述 (6) 第二章介绍 (6) 一、特性 (6) 二、技术指标......................... . (8) 三、仪表结构............................ . (9) 四、仪表原理... . (10) 第三章使用方法 (11) 一、准备工作 (11) 二、开始测试 ............................ ... (12) 三、调阅测试结果 (14) 四、屏蔽端使用方法 (14) 五、电池充电 (15)

第一章概述 随着我国电力工业的快速发展,电气设备预防性实验是保障电力系统安全运行和维护工作中的一个重要环节。绝缘诊断是检测电气设备绝缘缺陷或故障的重要手段。绝缘电阻测试仪(兆欧表)是测量绝缘电阻的专用仪表。1990年5月批准实施的JJG662-89《绝缘电阻表(兆欧表)》已把它作为强制检定的仪表之一。目前,电气设备(如变压器、发电机等)朝着大容量化、高电压化、结构多样化及密封化的趋势发展。这就需要绝缘电阻测试仪本身具有容量大、抗干扰能力强、测量指标多样化、测量结果准确、测量过程简单并迅速、便于携带等特点。对于容量较大的电气设备要进行吸收比和极化指数二种绝缘指标的测试,在我国的《500KV规程》中,已将极化指数指标列为500KV变压器、电抗器的预防性试验项目。 BC2000型智能双显绝缘电阻测试仪采用嵌入式工业单片机实时操作系统,超薄形张丝表头与图形点阵液晶显示器完美结合,该表具有二种电压输出等级(2.5KV和5KV)、容量大、抗干扰强、指针与数字同步显示、交直流两用、操作简单、自动计算各种绝缘指标(吸收比、极化指数)、各种测量结果具有防掉电功能等特点。是测量大型变压器、互感器、发电机、高压电动机、电力电容、电力电缆、避雷器等绝缘电阻的理想测试仪器。

耐压测试仪绝缘电阻测试仪基本原理与选用

耐压测试仪绝缘电阻测试仪基本原理与选用 作者:北京中仪来源:https://www.doczj.com/doc/d215198626.html, 耐压测试仪绝缘电阻测试仪基本原理与选用 一、耐电压测试仪 耐电压测试仪又叫电气绝缘强度试验仪或叫介质强度测试仪。将一规定交流或直流高压施加在电器带电部分和非带电部分(一般为外壳)之间以检查电器的 绝缘材料所能承受耐压能力的试验。电器在长期工作中,不仅要承受额定工作电 压的作用,还要承受操作过程中引起短时间的高于额定工作电压的过电压作用 (过电压值可能会高于额定工作电压值的好几倍)。在这些电压的作用下,电气 绝缘材料的内部结构将发生变化。当过电压强度达到某一定值时,就会使材料的 绝缘击穿,电器将不能正常运行,操作者就可能触电,危及人身安全。 1 、耐电压测试仪结构及组成 (1 )升压部分

调压变压器、升压变压器及升压部分电源接通及切断开关组成。 220V电压通过接通,切断开关加到调压变压器上调压变压器输出连接升压变 压器。用户只需调节调压器就可以控制升压变压器的输出电压。 (2 )控制部分 电流取样,时间电路、报警电路组成。控制部分当收到启动信号,仪器立即在接通升压部分电源。当收到被测回路电流超过设定值及发出声光报警立即切断 升压回路电源。当收到复位或者时间到信号后切断升压回路电源。 (3 )显示电路 显示器显示升压变压器输出电压值。显示由电流取样部分的电流值,及时间电路的时间值一般为倒计时。 (4 )以上是传统的耐电压试验仪的结构组成。随着电子技术及单片,计算 机技术飞速发展;程控耐电压测试仪这几年也发展很快,程控耐压仪与传统的耐 压仪不同之处主要是升压部分。程控耐压仪高压升压不是通过市电由调压器来调

数字绝缘测试仪

61-797 数字绝缘测试仪 显示屏 功能键 测试合格指示灯 高电压指示灯 功能选择与电源开关 低电阻测量接口 绝缘电压/电阻测量接口 公共端

测量ACV/DCV:自动感知交/直流功能 自动感知模式:被测电压>0.3V,自动显示ACV/DCV;被测电压大于660V AC/DC,屏幕自动显示“>660V AC/DC”。 自动感知与低通滤波器(LPF)功能 在AC电压模式下,启动低通滤波器(LPF)功能,可阻止频率>1kHz的信号影响测试结果。低通滤波器能很大程度提高对诸如调速设备或变频设备的复杂波形测量能力。

1.测试前 (A)被测电路不能带电,否则会烧仪表内的保险丝。如果电压超过2V,仪表屏幕会显示“>2V”警示。 (B)测试前先短路测试线,按蓝色按钮,将测试线电阻归零 2.锁定模式:按锁定按钮(LOCK),按TEST按钮开始测试,直到TEST再次被按下,测试将持续进行。 3.屏幕显示“>”表示被测电阻超过仪表量程

1.测试前 被测电路不能带电。如果电压超过30V,仪表屏幕会显示“>30V”警示。测试将被禁止。 2.按蓝色按钮,显示绝缘电阻或在停止测试后显示漏电流 2.锁定模式:按锁定按钮(LOCK),按TEST按钮开始测试,直到TEST/LOCK再次被按下,测试将持续进行。 3.屏幕显示“>”表示被测电阻超过仪表量程 使用比较功能 1.开始绝缘测试之前,按COMP按钮,在下列参数中选择比较值: 100kΩ,200kΩ, 500kΩ,1MΩ,2MΩ,5MΩ,10MΩ,20MΩ,50MΩ,100MΩ,200MΩ,500MΩ 2.如果被测值大于所选数值,绿色指示灯点亮。

数字式高压绝缘电阻测试仪使用说明书

如有你有帮助,请购买下载,谢谢! 使用说明书 日本共立电气计器株式会社 目录 1.安全警告---------------------------------------------1 2.特点-------------------------------------------------4 3.技术规格---------------------------------------------5 4.仪器布局图 4-1 仪器布局图----------------------------------------8 4-2 液晶屏显示----------------------------------------9 5. 测试前的准备 5-1 检查电池电压--------------------------------------10 5-2 连接测试导线--------------------------------------10 6. 测试 6-1 电压测量(600V或更少些)---------------------------11 6-2 绝缘电阻的测量------------------------------------12 6-3 连续测量------------------------------------------15 6-4 定时器测量功能------------------------------------15 6-5 极化指数测量--------------------------------------15 6-6 测量接线端的电压特性------------------------------15 6-7 保护接线的使用----------------------------------15 7.电池更换---------------------------------------------19 0页

绝缘电阻测试仪型号

绝缘电阻测试仪型号 RT5200采用嵌入式工业单片机实时操作系统,图形点阵液晶显示器,该系列表具有多种电压输出等级容量大、抗干扰强、数字同步显示、交直流两用、操作简单、自动计算各种绝缘指标(吸收比、极化指数)、各种测量结果具有防掉电功能等特点。是测量大容量变压器、互感器、发电机、高压电动机、电力电容、电力电缆、避雷器等绝缘电阻的理想测试仪器。 RT-5200绝缘电阻测试仪产品特性 >采用微电脑控制,菜单操作,大屏幕液晶LCD点阵显示,性能稳定,属智能化仪表。

>抗干扰能力强,适合在强电磁干扰环境中测量。 >有50V、100V、250 V、500V、1.0kV、2.5kV、5.0kV、10.0kV共8个电压输出档。 >输出高电压同时也可连续调节。 >自动测量R15、R60、R600,自动计算吸收比、极化指数。 >带载能力强,短路电流约5mA。 >测量范围最大为0 ~10TΩ,自动切换量程。 >模拟条指针与数字显示相结合,形象的表明数据的变化趋势及准确的测量结果。 >随时显示测试时间,且每隔15秒蜂鸣器自动鸣叫提示。 >测量完毕自动泄放高压,高压泄放时间不超过30秒。 >自动测量环境温度、空气湿度及每次测试的日期与时间。 >能保存60组测量结果,且数据20年可不丢失。 >自带RS232串行接口,能与计算机数据通信。 >超大容量9800mAH锂电池,一次充电连续使用30天,具有完善的充电保护功能。 >RS232串口外接打印机(选配),可打印测量结果,免抄表工作。 >具有全面完善的保护功能,工作可靠性高。 可选配功能: 1.打印机

2.泄露电流和吸收电容 可定制参数: 1.测量范围:0~20TΩ 2.短路电流:5mA/6mA/8mA/10mA RT-5200绝缘电阻测试仪型号产品参数 额定测试电压50V、100V、250 V、500V、1.0kV、2.5kV、5.0k、10.0kV(共8个电压输出档,输出高电压同时也可连续调节) 测量上限值100GΩ~ 10TΩ测量下限值0.1MΩ 输出电压误差±5% 短路电流约5mA 准确度等级 3.0级 下半量程范围误差±( 2%·Rx + 1d ) 上半量程范围误差±( 3%·Rx + 2d ) 高压显示误差±( 3%·Ux + 1d ) 温度测量误差±0.5℃

绝缘电阻测试仪使用说明

绝缘电阻测试仪

目录 第一章概述..... .. (1) 第二章产品介绍 (2) 一、产品特性 (2) 二、技术指标 (3) 三、仪表结构 (4) 第三章使用方法 (6) 一、准备工作 (6) 二、开始测试 (7) 三、屏蔽端使用方法 (8) 四、电池充电 (9)

第一章概述 随着我国电力工业的快速发展,电气设备预防性实验是保障电力系统安全运行和维护工作中的一个重要环节。绝缘诊断是检测电气设备绝缘缺陷或故障的重要手段。绝缘电阻测试仪(兆欧表)是测量绝缘电阻的专用仪表。1990年5月批准实施的JJG662-89《绝缘电阻表(兆欧表)》已把它作为强制检定的仪表之一。目前,电气设备(如变压器、发电机等)朝着大容量化、高电压化、结构多样化及密封化的趋势发展。这就需要绝缘电阻测试仪本身具有容量大、抗干扰能力强、测量指标多样化、测量结果准确、测量过程简单并迅速、便于携带等特点。 绝缘电阻测试仪采用超薄形张丝表头、多种电压等级输出、容量大、抗干扰强、交直流两用(C型)、操作简单、具有时间提示功能。是测量变压器、互感器、发电机、高压电动机、电力电容、电力电缆、避雷器等绝缘电阻的理想测试仪器。

第二章产品介绍 一、产品特性 1、仪表的绝缘测试对于BC2533在500V最高可测20GΩ, 在1000V最高 可测40GΩ, 在2500V最高可测100GΩ;对于BC2550型在2500V最高可测100GΩ, 在5000V最高可测200GΩ; 2、额定的输出电压保持在对BC2533型负载电阻可低至4MΩ/8MΩ/20M Ω;对BC2550型为20MΩ/40MΩ,这使得仪表能够精确测量较低的绝缘阻抗。 3、自动转换的高低范围双刻度指示, 彩色刻度易于读识, 并且有LED 显示相应色彩。 4、整机采用ABS塑料机壳便携式设计,具有抗干扰能力强、结构紧凑、 外观精美。 5、仪表采用超薄型张丝表头,抗震能力强。 6、交直流两用,内置可充电池和智能充电模块,整机输出功率大(C 型)。 7、是测量变压器、互感器、发电机、高压电动机、电力电容、电力电缆、避雷器等绝缘电阻的理想测试仪器。

绝缘电阻测试仪的原理

绝缘电阻测试仪-表面电阻测试仪的原理 利用直流四探针法测量半导体的电阻率一,测试原理: 当四根金属探针排成一条直线,并以一定压力压在半导体材料上时,在1,4两根探针间通过电流I,则2,3探针间产生电位差V(如图所示). 根据公式可计算出材料的电阻率: 其中,C为四探针的探针系数(cm),它的大小取决于四根探针的排列方法和针距. 二,仪器操作: (一)测试前的准备: 1,将电源插头插入仪器背面的电源插座,电源开关置于断开位置; 2,工作方式开关置于"短路"位置,电流开关处于弹出位置; 3,将手动测试架的屏蔽线插头与电气箱的输入插座连接好; 4,对测试样品进行一定的处理(如喷沙,清洁等); 5,调节室内温度及湿度使之达到测试要求. (二)测试: 首先将电源开关置于开启位置,测量选择开关置于"短路",出现数字显示,通电预热半小时. 1,放好样品,压下探头,将测量选择开关置于"测量"位置,极性开关置于开关上方; 2,选择适当的电压量程和电流量程,数字显示基本为"0000",若末位有数字,可旋转调零调节旋钮使之显示为"0000"; 3,将工作方式开关置于"I调节",按下电流开关,旋动电流调节旋钮,使数字显示为"1000",该值为各电流量程的满量程值; 4,再将极性开关压下,使数显也为1000±1,退出电流开关,将工作方式开关置于1或6.28处(探头间距为1.59mm时置于1位置,间距为1mm时置于6.28位置); (调节电流后,上述步骤在以后的测量中可不必重复;只要调节好后,按下电流开关,可由数显直接读出测量值.) 5,若数显熄灭,仅剩"1",表示超出该量程电压值,可将电压量程开关拨到更高档; 6,读数后,将极性开关拨至另一方,可读出负极性时的测量值,将两次测量值取平均数即为样品在该处的电阻率值. 三,注意事项: 1,压下探头时,压力要适中,以免损坏探针; 2,由于样品表面电阻可能分布不均,测量时应对一个样品多测几个点,然后取平均值; 3,样品的实际电阻率还与其厚度有关,还需查附录中的厚度修正系数,进行修正. 1. 在测容性负载阻值时,绝缘电阻测试仪输出短路电流大小与测量数据有什么关系,为什么? 绝缘电阻测试仪输出短路电流的大小可反映出该兆欧表内部输出高压源内阻的大小。当被测试品存在电容量时,在测试过程的开始阶段,内的高压源要通过其内阻向该电容充电,并逐步将电压充到的输出额定高压值。显然,如果试品的电容量值很大,或高压源内阻很大,这一充电过程的耗时就会加长。其长度可由R内和C负载的乘积决定(单位为秒)。请注意,给电容充电的电流与被测试品绝缘电阻上流过的电流,在测试中是一起流入内的。测得的电流不仅有绝缘电阻上的分量,也加入了

BY2671数字式绝缘电阻测试仪使用说明书

BY2671型 数字式绝缘电阻测试仪 使用说明书

目录 一、引言 (2) 二、仪表工作原理 (2) 三、仪表电路框图 (2) 四、仪表使用范围 (3) 五、仪表特点 (3) 六、主要技术指标 (4) 七、操作方法 (5) 八、维护保养及注意事项 (5) 九、配套附件 (6) 十、售后服务 (6)

一、引言 在使用本仪表之前,请您仔细阅读说明书! 二、仪表工作原理 BY2671绝缘电阻测试仪由中大规模集成电路组成。本表输出功率大,短路电流值高,输出电压等级多(每种机型有四个电压等级)。工作原理为由机内电池作为电源经DC/DC变换产生的直流高压由E极出经被测试品到达L极,从而产生一个从E到L极的电流,经过I/V变换经除法器完成运算直接将被测的绝缘电阻值由LCD显示出来。 三、仪表电路框图 如图所示: 四、仪表使用范围 本仪表是电力、邮电、通信、机电安装和维修以及利用电力作为工业动力或能源的工业企业部门常用而必不可少的仪表。它适用于测量各种绝缘材料的电阻值及变压器、电机、电缆及电器设备等的绝缘电阻。

五、仪表特点 本表具有以下特点: ·输出功率大、带载能力强,抗干扰能力强。 本表外壳由高强度铝合金组成,机内设有等电位保护环和四阶有源低通滤波器,对外界工频及强电磁场可起到有效的屏蔽作用。对容性试品测量由于输出短路电流大于 1.6mA,很容易使测试电压迅速上升到输出电压的额定值。对于低阻值测量由于采用比例法设计故电压下落并不影响测试精度。 ·本仪表不需人力作功,由电池供电,量程可自动转换。一目了然的面板操作和LCD显示使得测量十分方便和迅捷。 ·本表输出短路电流可直接测量,不需带载测量进行估算。 六、主要技术指标 1. 输出电压等级:500V,1000V,2000V,2500V 2. 测量范围:0~19999MΩ 3. 相对误差:≤±4%±1d 4. 分辨率:0.01 MΩ,0.1 MΩ,1.0 MΩ,10.0 MΩ 5. 电压负载:2500V/20 MΩ 6. 电压跌落:约10% 7. 短路电流:>1.6mA 8. 电源适用范围,功率损耗 直流:7-9V(6节5#可充电电池) 外接交流220V电源进行充电。 功耗:静态功耗≤160mW; 最大功率≤2.5W 9. 使用条件

HDT20系列绝缘电阻测试仪使用说明书

HDT20系列绝缘电阻测试仪使用说明书 安全规范 安全警告 本仪器的设计、制造和检测均达到IEC1010安全标准(电子类测量产品安全要求),本说明书包括确保仪器的安全使用及保证仪器的安全状态,使用者所必须遵守的警告和安全条例。使用前请先阅读以下说明。 郑重申明 ●使用仪器前请先仔细阅读并理解本使用说明书。 ●无论何时必须遵守说明书的要求,并保存好说明书,使之随时能供参考。 ●仪器测试时,错误的操作会导致事故及仪器的损坏。 ●本公司保留对说明书修改权,如果说明书有改动,恕不另行通知。 本仪器上的标志意思是指为了安全操作本仪器,请使用者参照使用说明书的相关部分操作。 危险—为了避免在某些状态及操作下,有可能引起的严重或致命的损害。 警告—表明避免遭受电击的危险。 注意—表明避免对仪器的损害和进行准确的测量。 ●请勿在易燃性场所测试,火花可能会引起爆炸。 ●如果仪器表面潮湿或操作者手是湿的请勿操作本仪器。 ●当测试电压时,由于金属部分与测试导线不小心短路时,有可能导致人身伤害。 ●测量时不要超过量程允许的最大范围。 ●测量时请勿打开电池盖。 ●执行绝缘测量时,不可触摸待测线路。 ●如果仪器出现异常请停止使用。例如:仪器破损或裸露出金属部分。 ●测试导线插入仪器接口并接入电路测试时,不要旋转功能旋钮。 ●不要对仪器装入替代部件或进行任何未授权的改动,维修时仪器返回公司本部或由公司指定的具有一定技术资质的授权服务商提供维修服务。 ●仪器于潮湿状态下请勿更换电池。 ●确定所有测试导线与仪表的测试端口连接牢固。 ●确保仪器已关机才可以打开电池盖。 ●测量前,确认功能旋钮旋至适当的位置。 ●使用完毕后,将功能旋钮旋至“OFF”位置,若长时间不使用,请将电池取出后存放。 ●请勿在高温、潮湿、有结露可能的场所及光直射下长时间放置。 ●请使用湿布或清洁剂来清洁仪器外壳,请勿使用磨擦物或溶剂擦拭仪器外壳及配件。 ●仪器潮湿时,请先干燥后再使用或存储。 符号

10kV绝缘电阻测试仪

10kV绝缘电阻测试仪 一、概述 1、引言 在GD2136的基础上重新设计GD3126A绝缘电阻测试仪,提供数字绝缘测试,测试电压最高可达10kV,可广泛应用于变电站、发电厂等电气设备的检修,非常适合用于测试各种高电压设备,包括开关设备,变压器、电抗器、电容器、电动机,发电机和电缆等进行绝缘电阻(IR)、吸收比(DAR)、极化指数(PI)的测量。国电西高的绝缘电阻测试仪执行DL/ T845.1-2004,SJ/T 11385-2008,CAT IV 600 V安全等级测试。GD3126是早期识别、发现潜在设备故障的预防性或预测性维护计划的完美测试工具。对保证产品质量和运行中的人身及设备安全具有重要意义,电气产品的绝缘性能是评价其绝缘好坏的重要标志之一,它是通过绝缘电阻的测试来反映的。 2、产品别称 智能双显绝缘电阻测试仪,数字兆欧表,指针兆欧表,电动兆欧表,绝缘表,数字绝缘表,电动绝缘表绝缘电阻测试仪,绝缘测试仪,高压绝缘测试仪,高压绝缘电阻测试仪,绝缘电阻测量仪,高压兆欧表,电动摇表,水内冷发电机绝缘电阻测试仪,数字式自动量程绝缘电阻测试仪,兆欧表,摇表,高阻计。

二、功能特点 1、采用数字处理技术,抗干扰性强,可在强电磁干扰环境下测量; 2、容量大,能满足高压、高阻、大容量负载测试的要求; 3、具有防震、防潮、防尘结构,适应恶劣工作环境; 4、人机交互友好、美观,显示准确结果和数据变化趋势; 5、保护功能完善,能承受短路和被测电容残余电压冲击; 6、测量范围最大可到10TΩ,自动切换量程; 7、各档位高电压从零连续可调; 8、自动测量R15、R60、R600,计算吸收比、极化指数; 9、自动测量环境温度、空气湿度及测试时间; 10、显示测试时间,每15秒有蜂鸣提示,5分钟无操作提示关机; 11、测量完毕自动泄放高压,泄放时间不超过30秒; 12、能保存60组测量结果,且数据可20年不丢失; 13、自带RS232串行接口,可与计算机通信; 14、外接打印机(选配); 15、测试前显示带电试品电压并有相关提示; 16、预设测试时间,自动停止测量; 17、可以检测泄露电流Ix和吸收电容Cx;

绝缘电阻测试仪使用方法

绝缘电阻测试仪使用方法 兆欧表在工作时,自身产生高电压,而测量对象又是电气设备,所以必须正确使用,否则就会造成人身或设备事故。在使用兆欧表前,首先要做好以下各种准备工作: (1)测量前必须将被测设备电源切断,并对地短路放电,决不允许设备带电进行测量,以保证人身和设备的安全。 (2)对可能感应出高电压的设备,必须消除这种可能性后才能进行测量。 (3)被测物表面要清洁,减少接触电阻,确保测量结果的正确性。 (4)测量前要检查兆欧表是否处于正常工作状态下,主要检查其"0"和"∞"两点位置。即摇动手摇发电机手柄,使电机达到额定转速。兆欧表在短路时,指针应指在"0"位置;开路时,指针应指在"∞"位置。 (5)兆欧表使用时应放在平稳、牢固的地方,且远离大的外电流导体和外磁场。 做好上述准备工作后,就可以进行测量了。在测量时,要注意兆欧表的正确接线,否则将引起不必要的误差甚至错误。兆欧表的接线柱共三个;三个"L"即线端,一个"E"即地端,再一个"G"即屏蔽端(也叫保护环)。一般被测绝缘电阻都接在"L"和"E"端之间,但当被测绝缘物表面漏电严重时,必须将被测物的屏蔽环或不须测量的部分与"G"端相联接。这样漏电流就经屏蔽端"G"直接流回发电机的负瑞形成回路,而不再流过兆欧表的测量机构(动圈)。这样就从根本上消除

了表面漏电流的影响。值得注意的是测量电缆线芯和外表之间的绝缘电阻时,一定要接好屏蔽短钮"G"。因为当空气湿度大或电缆绝缘表面又不干净时,其表面的漏电流将很大。为防止被测物因漏电而对其内部绝缘测量所造成的影响,一般在电缆外表办一个金属屏蔽环,使之与兆欧表"G"端相连。 用兆欧表测量电器设备的绝缘电阻时,要注意"L"和"E"端不能接反。正确的接法是"L"线端钮接被测设备导体,"E"地端或连接接地的设备外壳,"G"屏蔽端接被测设备的绝缘部分。如果将"L"和"E"接反了,流过绝缘体内及表面的漏电流经外壳汇集到地,由地经"L"流进测量线圈,使"G"端失去屏蔽作用而给测量带来很大误差。另外,因为"E"端及内部引线同外壳的绝缘程度比"L"端与外壳的绝缘程度要低,当兆欧表放在地上使用,采用正确接线方式时,"E"端对仪表外壳和外壳对地的绝缘电阻相当于短路,不会造成测量误差而"L"与"E"接反时,"E"对地的绝缘电阻同被测绝缘电阻并联,而使测量结果偏小,给测量带来较大的误差。 由此可见,要准确地测量出电器设备等的绝缘电阻,必须对兆欧表进行正确的使用,否则将会失去测量的准确性和可靠性。

VC60B+绝缘电阻测试仪说明书

VC60B +/VC60D +/VC60E + 使用说明书 第一章 1、 概述................................................1 2、 外观说明..........................................1 3、 技术特性..........................................2 4、 操作说明..........................................4 5、 绝缘电阻测量方法..............................5 6、 安全注意事项....................................5 7、 仪表的成套性 (6) 第二章 1、 概述................................................7 2、 外观说明..........................................7 3、 技术特性..........................................8 4、 操作说明..........................................10 5、 绝缘电阻测量方法..............................11 6、 安全注意事项....................................11 7、 仪表的成套性....................................12 8、 故障排除 (12) 第一章 VC60B + 一、概述 VC60B +数字兆欧表,是采用低损耗高变比电感储能式直流电压变换器将9V 电压变换成 250V/500V/1000V 直流电压。采用数字电桥进行电阻测量,用于绝缘电阻的测试,具有使用轻便,量程宽广,背光显示,测试锁定,自动关机等功能,还可以进行市电测量,整机美观高档,性能稳定,使用背带可双手作业,试用于电机、电缆、机电设备、电信器材,电力设施等绝缘电阻检测需要。 二、外观说明 1、2、3、4 。 5、电阻量程选择开关(RANGE )。 6、电源开关:自锁式电源开关(POWER )。 7、高压提示:LED 显示。 8、测试按钮。 9、LCD 显示器:显示测量数据及单位符号。 10、仪表型号。 11、L :接被测线路端插孔。 12、G :保护端插孔,当要求被测对象加保护环消除泄漏效应时,保护环电极导线接至“G ”端插孔。 13、ACV:交流电压测试输入端。 14、E :接被测对象的地端插孔。 15。

绝缘电阻测试仪使用标准

绝缘电阻测试仪资料说明 一、该使用规范仅适用于UT512绝缘电阻测试仪。 1、特点 a.自动释放电压功能。 https://www.doczj.com/doc/d215198626.html,B接口数据传输。 c.背光功能便于在阴暗光线下工作。 d.条形图显示测量结果。 e. 高压提示符和红色警示灯。 f. 自动关机功能: 2、UT512是一台智能微型仪器即绝缘测试仪器,整机电路设计采用微机技术设计为核心,以大规 模集成电路和数字电路相组合,配有强大的测量和数据处理软件,完成绝缘电阻、电压等参数测量,性能稳定,操作简便。适用于现场电力设备以及供电线路的测量和检修。 a.当测量结束后15分钟如果不操作会自动关机,自动关机后按ON/OFF键1秒后方可开机。 18组数据存诸功能。 b.设定测试时间TIME功能:在指定时间15分钟内自动执行测量。 https://www.doczj.com/doc/d215198626.html,P测量(比较功能测量) d.PI测量(极化指数测量):PI测量能在任意两点时间里,根据设定自动测量电阻比率。 二、安全警告: 为包括确保仪器的安全使用及保证仪器的安全状态,使用者所使用前请先阅读以下说明,且必须遵守以下的警告和安全条例。 1、危险 1. 切勿测量交/直流电压在600V以上的电路。 2. 请勿在易燃性场所测试,火花可能会引起爆炸。 3 如果仪器表面潮湿或操作者手是湿的请勿操作本仪器。 4.当测量时,不可接触测试笔导电部位。 5 当测试线短路连接在仪器上时,不要按下TEST键。 6.测量时请勿打开电池 7. 执行绝缘测量时,不可触摸待测线路。 2、警告 1.如果仪器出现异常请停止使用。例如:仪器破损或裸露出金属部分。 2. 在电压超过33Vrms,46.7Vacrms或70Vdc工作时一定要小心谨慎。此类电压可能引起电击。

KZC数字高压绝缘电阻测试仪使用说明及注意事项样本

KZC30型数字高压绝缘电阻测试仪 使 用 说 明 书 扬州市菲柯特电气有限公司 地址: 扬州市高新技术开发区 电话: 手机: 一、概述 检查电气设备的绝缘性能, 测量绝缘电阻是最简单快速的基本方法, 第一代和第二 代的手摇式和电动式指针摇表存在测量精度低, 误差大, 抗干扰能力差, 人工计时, 人工计算等, 使用极不方便。公司调查了国内外多种兆欧表, 设计了KZC30型第三代数字兆欧表。该仪器测量原理新颖, 操作简便, 精度高, 整机采用全集成电路, 耐振动, 工作稳定性好, 输出短路电流大, 在现场环境下抗干扰能力强, 能满足当前国内500KV 及以下变电站、发电厂的测试要求。该仪器具有计时, 报时和数据存贮等功能, 测试电压分500V、 1KV、 2.5KV、 5KV四档, 可方便地测量绝缘电阻, 吸收比, 极化指数

等参数。适合各类绝缘设备的测量需要。 二、安全措施 1.使用本仪器前一定要认真阅读本手册。 2.仪器的操作者应具备一般电气设备或仪器的使用常识。 3.本仪器户内外均可使用, 但应避开雨淋、腐蚀气体、尘埃过浓、高温、阳光直射等场所使用。 4.仪器应避免剧烈振动。 5.对仪器的维修、护理和调整应由专业人员进行。 6.测试过程中严禁碰触测试引线! 7.测试完毕后要短路测试端人工放电! 8.严格遵守安全操作规程。 9.非测试人员必须远离高压测试区, 测试区必须用栅栏或绳索、警视牌等明显表示出来。 三、性能特点 1.中文菜单操作, 使用方便。 2.可实现绝缘电阻、吸收比、极化指数等参数的全自动测量。 3.保留15秒及每一分钟数据, 直到第10分钟, 并自动计时。 4.可存贮10组测量数据, 以便随时分析和存档。 5.功能全面, 具有测试、存贮、报警、调阅等功能。 6.测试结束后可自动放电。 7.输出短路电流大, 抗干扰能力强。 四、技术指标 测试范围: 10MΩ~1.5TΩ 分辨率: 最小0.1 MΩ 精度: ±( 3%·R+2字) 测试电压: 500V, 1KV, 2.5KV, 5KV

光数字绝缘电阻测试仪充电和注意事项

光数字绝缘电阻测试仪充电和注意事项光数字绝缘电阻测试仪充电和注意事项 充电 关机后将电源线插入防水充电电源插座,接至AC 220V电源。接通电源后,电源充电器指示灯红灯,充电完毕, 电源指示灯绿灯。建议每次充电时间不少于10小时。 不要使电池处于完全放电状态。经常性地充电将最大限度地延长电池寿命。 1)充电应在干燥的环境下进行。 2)当在室内充电时,应保持环境通风良好。 3)充电必须应在0℃- 40℃温度下进行。 4)若保持电池处在充电状态对电池只有好处,不会对其造成损害。 5)若仪器长期闲置不用,应每半年对其充电24小时。(若保存温度大于40℃,应增加充电频率) 8. 注意事项 ●仪表应在电池约50%充电态存放,电池过放欠压,应及时充电,否则无法开机。 ●在测试和检定中应使用随仪表配置的测试线,以保工作正常。 ●应经常保持仪表与测试线的清洁。 ●不得受潮、雨淋、暴晒、跌落。 ●仪器对大电容量试品测量后,用户必须按有关高压操作规程对试品进行再次放电。 9.故障及现象 常见现象说明及处置 开机后液晶屏无显示。开机电源按钮长按 电池电量不足,接入AC220V给电池充电,电源指示灯应

闪亮,充电完毕电源指示灯长亮。 测试无数据显示。用万用表检查L、E测试线是不是正常。 L、E短接后是不是显示电阻值MΩ 测试线和被测试品间可能接触不良。 被测试品的绝缘电阻值超过了仪表量程的上限值或开路。 测试数据极不稳定或可信度不高。 检查被测试品是否安全接地,确认试品不带电。 检查G端(保护环)是否可靠有效连接。 (为了得到更准确的测试数据,电池电压显示有小数点显示,测试时注 电压数值波动不能太大,否则测试有误差,请及时充电)

绝缘电阻测试仪

绝缘电阻测试仪 型号显示交流电 压 交流电流直流电压直流电流电阻钳口 KT200数字式400/60040/400400/600--- 2002PA数字式200/750200/2000------20055 2003A数字式200/750200/200020/100020/2000 1.5千欧55 2004数字式50020/20020020/20020019 2005数字式---2/200---------19 2006数字式2/2002/200------2千欧19 2007A数字式400/750400/600------40033 2009A数字式200/750200/200020/1000200/2000 1.5千欧55 2010数字式---200m/20---2/20---7.5 2017数字式200/600200/600------20033 2020数字式---200---------14 2027数字式200/600200/600------20033 2031数字式---20/200---------24 2033数字式---40/300---40/300---24 2037数字式40/400/ 600 400/60040/600100/10004千欧33 2103指针式150/75010/1000------2千欧60 2412数字式60020m/500------20040 2413F数字式---200m/1000---------68 2414数字式50020m/100---------30 2415数字式50020m/2/100---------30

绝缘电阻测试仪解决方法

目录 一、概述 (1) 二、产品介绍 (1) 1、产品特性 (1) 2、技术指标 (2) 3、仪表结构 (2) 三、使用方法 (5) 1、准备工作 (5) 2、开始测试 (5) 3、查询测试结果 (7) 4、删除测试结果 (7) 5、测试时间设置 (7) 6、屏蔽端使用方法 (8) 7、电池充电 (9)

MS-2000绝缘电阻测试仪 一、概述 我公司生产的MS-2000绝缘电阻测试仪采用嵌入式工业单片机实时操作系统,数字模拟指针与数字段码显示完美结合,该系列表具有多种电压输出等级(250V、500V、1000V、2500V、5000V、10000V)、容量大、抗干扰强、模拟指针与数字同步显示、交直流两用、操作简单、自动计算各种绝缘指标(吸收比、极化指数)、各种测量结果具有防掉电功能等特点。是测量大容量变压器、互感器、发电机、高压电动机、电力电容、电力电缆、避雷器等绝缘电阻的理想测试仪器。 二、产品介绍 1、产品特性 1.有多种电压输出选择MS-2000(250V/500V/2500V/5000V),测量电阻量程范围可达0~400GΩ。 2.两种方式同步显示绝缘阻值。模拟指针的采用可容易观察绝缘电阻的变化范围,数字显示的采用可精确得出测量结果。 3.采用嵌入式工业单片机和实时操作软件系统。自动化程度高、抗干扰能力强,仪器可自动计算吸收比和极化指数,无须人工干预。 4.操作界面友好,各种测量结果具有防掉电功能,可连续存储19次的测量结果。 5.仪表产生高压时,有提示音输出并有相应显示。 6.内置残留高压放电电路,测试完毕可自动放掉被测设备上的残留高压。 7.交直流两用,配置可充电池和交流适配器。 8.仪表采用便携式设计,便于野外操作。

相关主题
文本预览
相关文档 最新文档