当前位置:文档之家› 制备氮化硅涂层的方法

制备氮化硅涂层的方法

制备氮化硅涂层的方法
制备氮化硅涂层的方法

石墨烯防腐涂层

5.石墨烯防腐涂料 对于防腐涂料来说,传统防护涂层受限于自身材料性质及工艺,对金属基体的腐蚀防护作用往往不理想,个别性能突出的成本又很高,降低了涂层的性价比,而且相当一部分涂层因含铅锌或铬酸盐等重金属或有毒物质,存在一定的环境污染风险,也消耗了大量的不可再生资源,不利于社会经济的可持续发展。因此,开发各类新型长效环保的海洋重防腐蚀涂料成为新热点。 海洋防腐涂料性能要求 海洋防腐涂料一般要求具有如下性能:①具有良好的物理性能。对腐蚀介质抗渗性好,对钢材表面附着力好;②具有良好的力学性能。耐海水冲刷、耐海冰碰撞、耐船舶停靠的磨损;③具有优异的化学性能。耐海水、耐盐雾、耐油、耐化学品、耐紫外线等的侵蚀;④与电化学保护系统相容性好。飞溅区和全浸区涂料要具有耐阴极剥离性;⑤具有良好施工性能。可在各种环境条件下对不同结构进行高质量涂装施工;⑥符合健康、环保、安全的要求。 海洋工程石墨烯防腐涂料 石墨烯广泛和独特的性能展现了其在金属材料防腐领域的巨大潜力。首先,石墨烯稳定的sp2杂化结构使其能在金属与活性介质间形成物理阻隔层,阻止扩散渗透的进行;其次,石墨烯具有很好的热稳定性和化学稳定性,不论是在高温条件下(可高达1500℃),还是在具有腐蚀或氧化性的气体、液体环境中均能保持稳定。另外,石墨烯良好的导电、导热性能对金属服役的环境提供了有利条件。石墨烯还是目前为止最薄的材料,其对基底金属的影响可以忽略不计。同时还兼具高的强度和良好的摩擦学性能,不仅能提高导电性或耐盐雾性能,还能进一步降低涂层厚度,增加对基材的附着力,提升涂料的耐磨性。在常用的环氧防腐涂料的基础上通过添加石墨烯制备的新型涂料不仅具有环氧富锌涂料的 阴极保护效应、玻璃鳞片涂料的屏蔽效应,更具有韧性好、附着力强、耐水性好、硬度高等特点,其防腐性能超过现有的重防腐涂料,可广泛应用于海洋工程、交通运输、大型工业设备及市政工程设施等领域的涂装保护。用石墨烯制备涂料来提高金属耐腐蚀性方面的潜能,在铜和镍的表面涂上石墨烯的试验证明,用化学气相沉积培育时,铜的腐蚀速度减慢7倍,这是在加氧硫酸钠(Na2SO4)溶液中与裸铜相比的情况。镍的腐蚀速度慢4倍。这些发现说明石墨烯是已知最薄防腐蚀涂层。因此,石墨烯将成为最理想的防腐涂层。 海洋工程石墨烯防腐涂料发展过程中遇到的困难 石墨烯的共轭结构导致其与水有机溶剂以及聚合物的相容性较差,因而增加了其在涂料领域中的应用难度。为解决该问题,将GO功能化改性,再按需要进行还原。如将石墨烯成功应用于防腐涂料,还需对其进行更多的功能化改性或与其他物质进行复合等方面的研究。石墨烯虽具有诸多优异性能,然而作为一个新的研究对象,还有很多未知的性质需要探究,作为防腐材料工业化应用前必须要完善相关的理论与实验研究,避免相反结果发生。同时海洋防腐涂料的研发具有科技含量高、研制周期长、投资大、技术难度高且风险大,国外海洋防腐涂料研发主要集中在实力雄厚的大公司或靠政府支持的部门。例如英国的P、美国的PPG、丹麦的Hemple、挪威的Jotun及日本的关西涂料等几家大公司均有上百年的相关涂料开发历史,在涂料生产供应、质量监督、涂装规范及涂装现场管理等方面形成了一整套十分严格和严密的体系,目前这些公司的产品占据了我国海洋防腐涂料的主要市场。 6.海洋工程石墨烯防腐涂料的工业化进程 我国海上风电发展规划提出,2015年开发建设500万千瓦,2020年开发建设3000万千瓦。 但海上风电设备要经历严苛的环境挑战,长期受到水汽、盐雾侵蚀及海浪的冲击,很容易发生腐蚀问题,因此,为保证风电装备20年的正常服务寿命,必须采取相关的保护措施,而涂料

丙烯酸树脂涂料配方技术专题

[CJ32585-0659-0504] 一种可替代电镀装饰铬层的涂料 [摘要] 本发明公开了一种可替代电镀装饰铬层的涂料,其包括以下重量百分含量的组分:丙烯酸树脂20~30%,三聚氰胺树脂5~10%,二甲苯29%,二丙酮醇3~8%,正丁醇3~8%,乙醇1~5%,醋酸丁酯1~5%,醋酸异丁酯1~5%,乙二醇丁醚1~5%,二氧化硅1~5%,环氧树脂1~5%,其他成分5~10%。本发明的目的是为了克服现有技术中的不足之处,提供一种组分简单,可替代电镀装饰铬层的涂料。本发明涂料的装饰效果和电镀铬的效果非常接近,能替代电镀铬外观效果。本发明涂料涂装应用产品上其附着力、硬度、耐磨性、耐蚀性、抗刮性能都比较好。本发明涂料涂覆在经过抛光处理后的金属表面,与金属本身的光泽混合一起可产生与电镀铬类似的外观。 [CJ32585-0184-0505] 全息涂料用丙烯酸树脂的合成工艺 [摘要] 本发明公开了一种适用于全息图文模压复制涂料的丙烯酸树脂的合成工艺。通过单体配比、合成温度、聚合时间以及引发剂的类型和用量对树脂性能的影响,丙烯酸树脂合成工艺条件是:甲基丙烯酸甲酯∶甲基丙烯酸丁酯∶丙烯酸丁酯∶甲基丙烯酸组成质量比为50~70∶20~40∶5∶5,反应温度为120-126℃,反应时间为0.5~5小时,所述的引发剂的用量为单体质量的0.5~1.75%。所得的树脂固含量为49.9%,粘度为5690cP,涂膜铅笔硬度为1H,光泽度高达90.5Gs,适合制备有良好的透明性、流平性、热塑性、光亮度、耐磨性、抗水性、抗酸碱性纸全息图文模压复制涂料。 [CJ32585-0177-0506] 一种UV涂料 [摘要] 本发明揭示了一种UV涂料,其主要包括以下组分,其含量以重量份数表示为:三丙二醇二丙烯酸酯10-25;二季戊四醇六丙烯酸酯0-15;丙烯酸酯磷酸酯3-7;丙烯酸树脂10-20;丙烯酸金属盐5-15;光引发剂2.0-3.0;消泡剂0-0.3;流平剂2.0-4.0;本发明采用丙烯酸酯磷酸酯单体和金属性丙烯酸酯(丙烯酸金属盐)作为附着力促进剂,在镁合金氧化层及钝化层上有很好的附着力和耐腐蚀性。 [CJ32585-0406-0507] 光固化水性丙烯酸环氧树脂乳液及由其制备的涂料 [摘要] 本发明涉及水性环氧树脂涂料领域,尤其涉及一种水性丙烯酸环氧树脂乳液及由其制备的涂料。光固化水性丙烯酸环氧树脂乳液包括自乳化丙烯酸环氧乳化剂,苯乙烯改性丙烯酸环氧酯,稀释剂,光引发剂,其余量为水。本发明的乳液生产成本低,产品性能好,采用光固化即可。本发明另外还提供了由该乳液制备得到的涂料,涂料得到的漆膜性能如下:附着力(划格法)1级;耐50%乙醇>8小时;耐水>72小时;耐硫酸10%>72小时;耐磨性1000克/1000 转<0.03克。 [CJ32585-0447-0508] 一种钢铁用重防腐涂料及其制备方法 [摘要] 本发明属于表面处理技术领域,公开一种钢铁用重防腐涂料及其制备方法。一种钢铁用重防腐涂料,其特征在于包括如下质量百分含量的组分:经硅烷偶联剂包膜的锌粉90~95%,氟碳改性丙烯酸树脂2~5%和/或环氧树脂0.5~3%,防沉浆0.5~2%,纳米磷酸盐0.5~1.5%,助剂0.2~0.6%,其余为溶剂。本发明的重防腐涂料可以用在钢铁表面经至少一遍刷涂或喷涂,既可作为底漆又可作为面漆使用,底面合一;可以在钢铁基面带微锈情况下进行涂装;漆膜附着力优异,耐盐雾,环保自洁,使用寿命长。 [CJ32585-0476-0509] 一种氯醚树脂涂料及其制备方法

氮化硅陶瓷制品

题目名称:氮化硅陶瓷的制备 学院名称:材料科学与工程学院 班级: 学号: 学生姓名: 指导教师: 2014 年 4 月

氮化硅陶瓷的制备 1.简介 1.1 应用背景 作为结构陶瓷,氮化硅陶瓷材料具有优良的耐磨、耐腐蚀、耐高温性能以及良好的抗热震性能,广泛应用于航空航天、机械、电子电力、化工等领域。采用适当的烧结助剂可有效提高氮化硅陶瓷材料的热导率,增加材料断裂韧性,促进材料性能完善。 研究结果表明,以 CeO 2为烧结助剂,氮化硅的相变转换率为 100%;当CeO 2 含量 不超过 8mol%时,氮化硅晶界相的构成主要为 Ce 4.67(SiO 4 ) 3 O、Si 2 ON 2 以及 Ce 2 Si 2 O 7 , 其结晶析出状况随烧结助剂含量增加呈规律性变化;晶粒尺寸随烧结助剂含量增加变 化微弱,长柱状晶数目增多。烧结助剂 CeO 2 通过对晶界相及微观结构的影响作用于 氮化硅陶瓷材料相对密度、强度、硬度及断裂韧性,CeO 2 含量变化对氮化硅陶瓷材料 力学性能影响显著。当 CeO 2 含量不超过7mol%时,氮化硅陶瓷材料的热扩散系数及 热导率随 CeO 2含量增加而升高,CeO 2 含量由1mol%增加至 7mol%时,氮化硅陶瓷材料 热扩散系数增加 50%,热导率增加38.7%。且氮化硅热传导导机制为声子导热,其热导率的大小依赖于氮化硅晶粒的净化程度。 1.2 研究意义 作为信息、交通、航空航天等科技领域发展基础之一的电力电子技术,应其对电力的有效控制与转换的要求,电子器件一直向小尺寸、高密度、大电流、大功率的趋势发展。伴随大功率、超大规模集成电路的发展,其所面临的热障问题愈加突出,器件设计中的热耗散问题亟待解决(在温度高于 100℃时,电路失效率会随着温度的升高成倍增长)。较玻璃、树脂等材料,电子陶瓷材料凭借其优异的绝缘性能、化学稳定性以及与芯片最为相似的热膨胀系数使其在基板材料中占据重要地位。降低基板材料热阻的主要途径有两种:减小基板厚度、提高材料热导率,为此对基板材料强度要求升高。高热导率陶瓷材料主要应用于集成电路(IC)衬底,多芯片组装(MCM)基 板、封装以及大功率器件散热支撑件等部位,其中研究较多的有 Al 2O 3 、BeO、AlN、 BN、Si 3N 4 、SiC 等陶瓷材料。其中多晶氧化铝的热导为 25~35Wm-1K-1,其单晶结构热 导为 40Wm-1K-1。而以高热导率著称的氧化铍,热导率在240 Wm-1K-1左右,但因为使用安全问题而被氮化铝替代。SiC 的介电性能远低于其它基板材料,易被击穿,故其使用受到限制。而现今性能较为优异的两种封装材料:氮化铝与氧化铍,前者造价昂贵后者具有毒性。氮化铝的热导率范围为 175~200 Wm-1K-1,但其弯曲强度在 300~350MPa 之间,远低于氮化硅陶瓷材料(600~1500MPa),且氮化硅的热膨胀系数低于以上高热导率陶瓷材料。 高热导率氮化硅陶瓷材料具有其他陶瓷材料无法比拟的高强度、高断裂韧性以及抗热震性能,其作为一种理想的结构材料可以为电子器件的热耗散设计提供一种新的材料选择。具有较高热导率的高性能氮化硅陶瓷的制备需求随着氮化硅陶瓷材料的潜

无缝钢管防腐技术要求

钢管防腐技术要求 一、管道防腐 钢管的防腐按图纸要求,采用环氧煤沥青漆外包玻璃丝布,外涂面漆防腐 外壁施工工艺流程:管道除锈→涂底漆→第一遍面漆→第二遍面漆→缠玻璃丝布→面漆→面漆; 内壁施工工艺流程:管道除锈→涂底漆→第一遍面漆→第二遍面漆→第三遍面漆 1、管道除锈 涂底漆前管子表面应清除油垢、灰渣、铁锈、氧化铁皮。采用喷砂除锈其质量标准达到Sa2.5级。 2、管子表面除锈后涂底漆,之间时间间隔不超过8小时,涂底漆时,基面应干燥。底漆涂刷均匀、饱满,不得有凝块、起泡现象,管两端150~250mm范围内不得涂刷。 3、底漆表干后涂刷面漆和包扎玻璃丝布,底漆和第一遍面漆涂刷的时间间隔不超过24小时。 4、环氧煤沥青涂料采用双组份,常温固化型的涂料;玻璃丝布采用干燥、脱蜡、无捻、封边、中碱、经纬密度为10*12根/cm~12*12根/cm的玻璃丝布。面漆涂刷后立即包扎玻璃丝布,玻璃丝布的压边宽度为30~40mm,接头搭接长度不小于100mm,各层搭接接头相互错开。玻璃丝布油浸透率达95%以上,不得出现大于50mm*50mm的空白,管端

留出150~250mm阶梯形搭茬。 5、管道接口处施工要在焊接试压合格后进行,新旧防腐压边不小于50mm,接头搭接长度不得小于100mm,接茬处应粘接牢固、严密。 6、钢管外壁涂层机构:一底两面一布两面,干膜总厚度400μm。 7、钢管内壁涂层机构:一底三面,干膜总厚度300μm。 8、外防腐施工完毕后按设计要求或?给水排水管道工程施工及验收规范?中表4.3.11中相对应的要求进行质量检测。 9、 二、管道防腐检测 1、涂层检查与验收: ①表面涂装施工时和施工后,应对涂装过的工件进行保

钢质管道内防腐层技术标准

钢质管道内防腐层技术标准 一.总则 1.1 本技术标准规定了无毒饮用水涂料内防腐层结构、原材料、施工要求及质量检测标准和方法等内容。 1.2 本技术标准适用于我公司所有钢质管道内防腐设计、施工及质量检测过程。 1.3 埋地钢质管道无毒饮用水涂料内防腐层的设计与施工除执行本技术标准外,尚应符合国家现行有关标准(规范)的规定,若低于或与国家相关标准不一致时,须以国家标准为准。 1.4 埋地质钢质管道无毒饮用水涂料防腐层施工过程中的环境保护及劳动保护措施,应按国家现行有关法规执行。 1.5 无毒饮用水防腐涂料应具有:当地省级以上卫生防疫部门的卫生许可证;使用部门所在地省级以上卫生防疫部门对其产品进行毒理学、卫生学及理化指标检验,合格的报告和城市供水水质量鉴测网对其产品安全性、稳定性等进行水质检验的合格报告。 1.6 引用标准 GB 50268-97给水排水管道工程施工及验收规范 SY/T 4057-93液体环氧涂料内防腐层钢管技术条件 CECS 10:89 埋地给水钢管道水泥砂浆衬里技术标准 GB 8923-88 涂装前钢材表面锈蚀等级和除锈等级 二.无毒饮用水涂料内防腐涂层技术要求: 2.1 在进行内防腐施工前,对管道内表面要进行严格的预处理,预处理方法符合SYJ4007的规定:除锈等级应达到GB8923-88规定的Sa2.5级,即钢材表面应无可见的油脂、污垢、氧化皮、铁锈、涂层和附着物,任何残留的痕迹仅是点状或条纹状的轻微色斑,钢材露出本色。 2.2 凡有焊缝的钢管,内表面应无飞溅物、焊瘤、毛刺、棱角。 2.3 钢管内表面经除锈处理后,应采用压缩空气吹扫,管内应无砂粒、尘埃。 2.4 涂层等级及结构应符合表1的规定。 表1 液体环氧涂料内防腐涂层等级及结构 e:涂层质量应符合表2的规定。 表2 涂层质量 钢管道外防腐标准

水性丙烯酸涂料配方设计

1.丙烯酸酯涂料简介 1.1 定义 以丙烯酸酯或甲基丙烯酸酯为主要原料合成的树脂称丙烯酸酯树脂,由丙烯酸酯树脂为主要基料的涂料属丙烯酸酯涂料。 1.2 结构 丙烯酸树脂的化学结构如图1,其中R为-H、-CN、烷基、芳基和卤素等;R为-H、烷基、芳基、羟烷基;其中-COOR也被-CN、-CONH2、-CHO等基团取代。作为涂料用丙烯酸树脂则主要是丙烯酸、甲基丙烯酸及其脂与苯乙烯经共聚而得到的热塑性或热固性丙烯酸系树脂,以及其他树脂(如醇酸树脂、环氧树脂、聚氨酯树脂、聚酯树脂等)改性的丙烯酸树脂。 图1 1.3丙烯酸酯涂料的分类 1.3.1按成膜特性分类 (1)热塑性丙烯酸酯涂料 热塑性丙烯酸酯涂料由丙烯酸树脂溶于有机溶剂制得,如丙烯酸清漆、丙烯酸磁漆,带溶剂挥发后,形成美观而坚固的涂膜。 (2)热固性丙烯酸酯涂料 热固性丙烯酸酯涂料则是通过自交联或与环氧树脂、氨基树脂、

异氰酸酯等交联(常温或烘干)完成成膜过程,交联使漆膜变成巨大的网状结构,提高了涂膜多方面的物理性能及防腐蚀、耐化学品性能。 1.3.2按丙烯酸酯涂料形态分类 按丙烯酸酯聚合物的形态分类和性质分为三种:溶剂型、水性、无溶剂型,如表1-1。 表1-1 丙烯酸酯涂料按形态分类 1.3.3按丙烯酸酯涂料用途分类 ①木器用丙烯酸酯涂料;

②建筑用丙烯酸酯涂料; ③汽车用丙烯酸酯涂料; ④工业防腐蚀用丙烯酸酯涂料; ⑤塑料表面用丙烯酸酯涂料; ⑥家电用丙烯酸酯涂料; ⑦预涂装用丙烯酸酯涂料; 1.4热塑性丙烯酸树脂涂料的优点 ①与硝基清漆、醇酸树脂涂料相比,他的耐候性优良; ②保光性优良,具有深邃的光泽和透明性; ③耐水性优良,耐酸、耐碱性优良,对洗涤剂有较强的抗性; ④只要底漆选择适当,附着力就良好; ⑤抛光性良好; 1.5热塑性丙烯酸树脂涂料的缺点 ①施工性能不好,流动展平性不良,透干性不好,涂料易流挂; ②耐溶剂性差,当遇到溶剂时会发生再溶解容易溶胀; ③相溶性差,难以与其他树脂并用; ④热敏感性差,研磨性不好,糊砂纸。 2.水性丙烯酸酯树脂的合成 2.1合成原理

涂层的制作方法

本技术公开了一种电子或电气装置或其元件,其包括在电子或电气装置或其元件表面上的交联聚合物涂层;其中,交联聚合物涂层通过使电子或电气装置或其元件在包含单体化合物和交联剂的等离子体中暴露足够时间,以允许在其表面上形成交联聚合物涂层而获得;其中,单体化合物具有下式:其中,R1、R2和R4各自独立地选自氢、任意经取代的支链或直链 C1C6烷基或卤代烷基、或可选被卤素取代的芳基,并且R3选自:其中,X各自独立地选自氢、卤素、任意经取代的支链或直链C1C6烷基、卤代烷基或可选被卤素取代的芳基;且n1为1至27的整数;并且交联剂包含借助于一个或多个连接部分连接的两个或多个不饱和键,并且在标准压力下具有小于500℃的沸点。 权利要求书 1.一种电子或电气装置或其电子或电气元件,其包括在所述装置或元件表面上的保护性交联聚合物涂层; 其中,所述保护性交联聚合物涂层通过使所述装置或元件暴露于包含单体化合物和交联剂的等离子体足够允许在其表面上形成所述保护性交联聚合物涂层的一段时间而可获得; 其中,所述单体化合物具有下式: 其中,R1、R2和R4各自独立地选自氢、任选地被取代的支链或直链C1-C6烷基、或卤代烷基、或任选地被卤素取代的芳基,且R3选自: 其中,每个X各自独立地选自氢、卤素、任选地被取代的支链或直链C1-C6烷基、卤代烷基、或任选地被卤素取代的芳基;且n1为1至27的整数;以及其中所述交联剂包含通过一个或更多的连接部分连接的两个或更多的不饱和键并且在标准压力下具有小于500℃的沸点。

2.根据权利要求1所述的装置或元件,其中,所述保护性交联聚合物涂层为针对质量和电子传输的物理屏障,和/或其中所述保护性交联聚合物涂层形成由至少90°的静态水接触角(WCA)限定的抗液表面。 3.一种用于处理电子或电气装置或其电子或电气元件的方法,其包括:使所述装置或元件暴露于包含单体化合物和交联剂的等离子体足够允许在所述装置或元件的表面上形成保护性交联聚合物涂层的一段时间; 其中,所述单体化合物具有下式: 其中,R1、R2和R4各自独立地选自氢、任选地被取代的支链或直链C1-C6烷基、或卤代烷基,或任选地被卤素取代的芳基,且R3选自: 其中,每个X各自独立地选自氢、任选地被取代的支链或直链C1-C6烷基、卤代烷基、或任选地被卤素取代的芳基;且n1为1至27的整数;以及其中所述交联剂包含通过一个或更多的连接部分连接的两个或更多的不饱和键并且在标准压力下具有小于500℃的沸点,所述交联剂任选地以占单体化合物和交联剂总体积的10-60(v/v)%的量存在。 4.根据权利要求3所述的方法,其中,所述电子或电气装置或其元件放置在等离子体沉积腔室中,在所述积腔室中点燃辉光放电,并以脉冲场形式施加电压,且任选地以下一项或多项适用: 所施加的电压的功率为40至500W; 所述电压是序列脉冲,其中接通时间:断开时间的比在1:500至1:1500的范围内; 所述电压是序列脉冲,其中电源接通时为20至50μs,及断开时为1000μs至30000μs; 所述电压是以脉冲场形式施加30秒至90分钟的时期,任选地5至60分钟;

8-增强氮化硅涂层及其在晶体硅铸锭中得应用

第12届中国光伏大会暨国际光伏展览会论文 增强氮化硅涂层及其在晶体硅铸锭中的应用 尹长浩1,钟根香1,黄新明1,2 1.东海晶澳太阳能科技有限公司; 2. 南京工业大学材料科学与工程学院 摘要:本文采用改进溶胶凝胶法(sol-gel)制备增强氮化硅涂层(SG涂层),并将其应用于准单晶硅铸锭及普通多晶硅铸锭。实验结果显示:1)采用溶胶凝胶法制备的氮化硅涂层,早期强度较常规喷涂法制备的涂层有显著的提高;2)氮化硅涂层中有机物的添加会降低硅熔体与涂层间的非浸润性,涂层中有机物在加热过程中的碳化可能是其主要原因。铸锭应用结果显示:完整的SG工艺制备的氮化硅涂层可以满足准单晶硅铸锭脱模需要,同时,免烧结SG涂层可直接应用于普通多晶硅铸锭生产。 关键词:氮化硅涂层;溶胶凝胶法;准单晶硅;多晶硅 Reinforced Si3N4 coatings and its application in silicon demoulding Changhao Yin1, Genxiang Zhong1, Xinming Huang1,2, 1)Donghai JA Solar Technology Co. Ltd. 2)College of Materials Sci. & Engineering, Nanjing Univ. Tech. Abstract: In this paper, the silicon nitride coatings used in silicon casting were prepared by improved sol-gel method (SG), which had been used in quasi-mono crystalline silicon casting and multicrystalline silicon casting successfully. The experiments showed significant reinforcement in hardness of the coatings prepared by SG method compared with the coatings prepared by spraying-sintering method (SS). The remnants of the sol added in the coatings increased the wettability in the interface between silicon melt and coating, and carbonization of the organic contents in the coating during heating process was probably responsible for the result. The silicon casting applications showed that the coatings prepared by SG could be used in quasi-mono crystalline silicon casting, and the coatings prepared by SG without sintering could be used in multicrystalline silicon casting as well. Keywords:silicon nitride coating, sol-gel, quasi-mono silicon, multi-crystalline silicon

2021新版埋地钢管外防腐层直接检测技术与方法

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021新版埋地钢管外防腐层直接 检测技术与方法

2021新版埋地钢管外防腐层直接检测技术与 方法 导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 摘要:根据多年检测地下管道外防腐层的实践经验,系统地论述了地下管道外防腐层检测前沿的几种理论方法。通过对这些理论方法和检测技术的分析,以期能对我国油气等埋地管网腐蚀评价的技术规范制定、实际管道腐蚀检测的实施、埋地管网腐蚀评价起到指导和借鉴作用。 关键词:外防腐层直接检测和评价;交流电流法;直流电压法 1埋地钢管的腐蚀类型 ①管道内腐蚀 这类腐蚀影响因素相对来说比较单一,主要受所输送介质和其中杂质的物理化学特性的影响,所发生的腐蚀也主要以电化学腐蚀为主。例如:如果所运输的天然气的湿度和含硫较高时,管道内就容易发生电化学腐蚀。对于这类腐蚀的机理研究比较成熟,管道内腐蚀所造成的结果也基本上可预知,因此处理方法也规范。比如通过除湿和脱硫,

层状氮化硅陶瓷的性能与结构

第25卷第5期硅 酸 盐 学 报V ol.25,N o.5 1997年10月JO U RN A L O F T HE CHIN ESE CERA M IC SO CIET Y O ct ober,1997  层状氮化硅陶瓷的性能与结构 郭 海 黄 勇 李建保 (清华大学材料科学与工程系) 摘 要 从结构设计的角度出发研究了层状复合Si3N4陶瓷材料。利用轧膜工艺使层内的晶粒、晶须产生定向增韧,通过调整外部层状复合结构得到材料的两级增韧效果,并实验制备了高韧性层状复合Si3N4基陶瓷材料。主层内加入一定量的SiC晶须,层状氮化硅陶瓷的断裂韧性可达到20.11M Pa?m1/2。 关键词 氮化硅,层状复合,晶须,定向 1 前 言 制备高韧性的陶瓷材料,克服陶瓷灾难性的破坏,常用增韧方法的增韧效果非常有限。为了提高增韧效果,降低增韧成本,新的增韧方法的探索是十分必要的。 近年来,国内外学者从生物界得到了启示。贝壳具有的层状结构可以产生较大的韧性这一特点给了我们一些启发,除了从组分设计上选择不同的材料体系以外,更重要的一点就是可以从材料的宏观结构角度来设计新型材料。目前国内外已有人从结构设计的角度出发,开始了层状复合陶瓷材料的探索性研究[1,2]。对于层状复合陶瓷材料来讲,如果把每层看成块体材料的结构单元,则关键的技术问题在于:(1)材料各结构单元的强度、韧性优化;(2)界面结合层的选择及与结构单元的匹配。层状结构单元基本上都是高强硬质的陶瓷材料如氮化硅、氧化铝等,通常是通过流延、干压等工艺方法制备的陶瓷薄片[3,4]。而界面结合层的选择则种类繁多,如石墨、延性金属等,它们对陶瓷薄片起到一定的分隔作用[5]。但总的来说,目前的研究结果并不令人满意,尚未达到单纯块体材料的性能水平。 针对层状复合陶瓷材料的两个关键问题,可以分别进行研究。首先是改善材料结构单元的性能,由于层状复合材料具有明显的各向异性,因此可以设计结构单元具有同样的各向异性性能,如引入可能导致各向性能差异的晶须、纤维、晶种等,并使之按指定方向分布,就有可能在特定方向上得到较高的性能[6],对晶须定向陶瓷材料的各方向的性能差异的研究证实了这一假设。其次是结构单元之间界面的选择,对层状复合陶瓷材料,界面的选择要同时考虑界面的高温性能、与陶瓷薄片的结合性能以及热匹配等多种因素,对不同的基片进行综合考虑,选择合适的界面组分及所占的比例。 1996年7月15日收到。 通讯联系人:郭 海,清华大学材料科学与工程系,北京 100084。 532

设备防腐技术要求

设备表面油漆防腐技术要求 1.主要标准规范 《石油化工设备和管道涂料防腐蚀技术规范》 SH/T3022-2011 《涂装前钢材表面锈蚀等级和除锈等级》 GB8923-88 2. 一般规定 2.1涂料的选择 (1) 与被涂物的使用环境相适应; (2) 与被涂物表面的材质相适应; (3) 各层涂料正确配套; (4) 安全可靠,经济合理; (5) 具备施工条件。 2.2 设备表面油漆防腐范围: 碳钢,低合金钢制的塔器、容器、储罐表面及相应的平台梯子等结构。其中塔器、容器表面油漆防腐由制造厂按照JB/T4711-2003标准及业主要求完成。 2.3 除另有规定外,下列表面不需要防腐 (1) 不需隔热的不锈钢的表面; (2) 镀锌材料的表面; (3) 已精加工的表面; (4) 涂塑料或涂变色漆的表面; (5) 铭牌及其它标志板或标签。 3. 防腐要求 3.1 设备外表面防腐除锈等级 储罐外表面除锈等级为Sa2.5级,设备平台梯子表面除锈等级为St3级,防腐蚀涂层使用寿命应不少于两年。 3.2 不保温设备表面防腐要求 当设备设计温度≤100℃时,选用无机富锌底漆(两道)+各色环氧防腐漆(两道),涂层干膜总厚度应大于等于200μm。当设备设计温度100℃

400℃时,选用无机富锌底漆(两道)+有机硅耐高温防腐面漆(两道),涂层干膜总厚度应大于等于200μm。 3.3 保温设备表面防腐要求 当设备设计温度0℃

管道内防腐技术要求(SEI发业主)20110919

管道内防腐技术要求 项目号: 文件号: 修改: 第 1 页 共 6 页 项目名称 中国石化股份有限公司石家庄炼化分公司 装置名称油品质量升级及原油劣质化改造工程 业主文件号 主项 防渗设计 设计阶段详细设计 修 改 0 1 2 3 4 5 6 7 8 日 期 编 制 校 核 审 核 中国石油化工股份有限公司石家庄分公司 油品质量升级及原油劣质化改造工程 防渗设计部分 管道内防腐技术要求

目录1概述 2编制原则 3埋地污水管道主动防渗措施 4埋地污水管道内防腐设计要求 5埋地污水管道内防腐施工要求 6埋地污水管道内防腐检验要求

1.概述 本设计范围包括中国石油化工股份有限公司石家庄炼化分公司油品质量升级及原油劣质化改造工程范围内埋地污水管道内防腐设计,其余见项目防渗设计方案。 2.编制原则 根据中国石油化工股份有限公司石家庄炼化分公司油品质量升级及原油劣质化改造工程基础设计审查专家意见及2011年8月25 日本项目给排水防渗专题会议纪要要求编制。 施工验收除执行本规定外,尚应符合《钢制管道液体环氧涂料内防腐层技术标准》SY/T0457-2010的有关规定。 3.埋地污水管道主动防渗措施 本工程设计在基础设计防渗方案的基础上,结合专家审查意见,优化了防渗措施,埋地污水管道加大主动防渗设计力度。主动防渗措施设计原则如下: 3.1 本项目地下污水管道设计应尽量减少工艺排水点,尽量减少污水管道的埋地敷设,尽量减少管道接口,提高埋地污水管道的管材选用标准及接口连接形式要求。 3.2 埋地污水管道全部采用内防腐设计,取消防渗管沟、检漏井等设施。 4.埋地污水管道内防腐设计要求 4.1管道材质及接口连接形式 z重力流含油、含盐污水管道、压力流含油、含盐污水管道、污染雨水管道均选用钢管。DN>500选用螺旋缝埋弧焊钢管,管材标准SY/T5037-2000,材质Q235B。DN≤500选用无缝钢管,管材标准GB/T8163-2008,材质20#; z管道直径应大于等于100mm,并尽量减少90°弯头; z应均选用对焊连接; z管道壁厚等级规定见统一规定。 4.2 埋地钢管内防腐材料性能要求: z内防腐涂料应为无溶剂型,不含任何挥发性有机溶剂和活性稀释剂,符合环保和安全要求; z内防腐涂料应含耐磨石英粉; z内防腐涂料性能指标:

丙烯酸树脂涂料综述..

丙烯酸树脂涂料综述 摘要:丙烯酸树脂漆在建筑涂料领域中广泛应用,已经成为全球最流行的墙面涂料。对丙烯酸树脂漆的发展历史进行了研究,报告了丙烯酸树脂漆的发展现状,并且调查了丙烯酸树脂的合成技术与应用。 关键词:丙烯酸树脂;发展历史;发展现况和趋势;应用 前言:丙烯酸树脂漆是由丙烯酸酯或甲基丙烯酸酯的聚合物制成的涂料,这类产品的原料是石油化工生产的,其价格低廉,资源丰富。为了改进性能和降低成本,往往还采用一定比例的烯烃单体与之共聚,如丙烯腈,丙烯酰胺、醋酸乙烯、苯乙烯等。不同共聚物具有各自的特点。所以可以根据产品的要求,制造出各种型号规格的涂料品种。 丙烯酸酯涂料由于性能优良,已广泛用于汽车装饰和维修、家用电器、钢制家具,铝制品、卷材、机械、仪表电器、建筑、木材、造纸,粘合剂和皮革等生产领域。其应用面广,是一种比较新型的优质涂料。

、丙烯酸树脂涂料简介 1.1定义 丙烯酸树脂漆是由丙烯酸酯或甲基丙烯酸酯的聚合物制成的涂料,这类产品的原料是石油化工生产的,其价格低廉,资源丰富。 1.2特点 不同共聚物具有各自的特点.所以可以根据产品的要求,制造出各种型号规格的涂料品种。它们有很多共同符点: (1)具有优良的色泽,可制成透明度极好的水白色清漆和纯白的白磁漆; (2)耐光耐候性好,耐紫外线照射不分解或变黄; (3)保光、保色、能长期保持原有色泽; (4)耐热性好; (5)可耐一般酸,碱,醇和油脂等; (6)可制成中性涂料,可调入铜粉、铝粉,使其具有金银一样光耀夺目的色泽,不会变暗; (7)长期贮存不变质 1.3分类 1.溶液型丙烯酸酯胶黏剂:可以粘塑料。 2.乳液型丙烯酸酯胶黏剂:可合成多种共聚乳液,供无纺布、织物、植绒、复合薄膜,纸张上光、建筑密封及涂料应用。 3 .a —氰基丙烯酸酯:为单液型,粘度低,固化特别快,见潮即可在几十秒内聚合,常称为瞬干胶。强度高、透明、毒性小、使用方便;但脆性大、耐久性差、价格昂贵。可粘各种材料,最适于应急修补。 4.厌氧胶:是由丙烯酸和甲基丙烯酸的双酯或某些特殊的丙烯酸酯,如甲基丙烯酸羟丙酯为主构成的,在隔绝空气下(无氧)可自行室温固化的胶黏剂。现已发展成几百个品种,具有单组分、无溶剂、低粘度、使用方便、常温快速固化、耐热、耐溶剂、耐酸碱性好、适用期长、贮存稳定的特点。 主要用于管道螺纹、法兰面及机械箱体防漏;螺纹螺栓紧固;轴承、插件、嵌件固定。5.丙烯酸结构胶黏剂:70年代杜邦公司开发的新型二液型改性丙烯

硅在氮化硅涂层上的形核SiO2

Nucleation of silicon on Si3N4coated SiO2 I.Brynjulfsen?,L.Arnberg Department of Materials Science and Engineering,Norwegian University of Science and Technology,7491Trondheim,Norway a r t i c l e i n f o Article history: Received30May2011 Received in revised form 6July2011 Accepted8July2011 Communicated by P.Rudolph Available online19July2011 Keywords: A1.Nucleation A1.Solidi?cation A2.Undercooling B1.Silicon a b s t r a c t Control of the nucleation during directional solidi?cation of solar cell silicon is important in order to be able to control the growth and number of grains formed.A certain amount of undercooling is required to obtain dendritic growth with faceted twins(which has shown promising results for structure control),but a too high undercooling will lead to extensive nucleation which will oppose the positive effect of a small number of large grains with controlled growth directions.In the present experiments, the nucleation undercooling of silicon on Si3N4coated SiO2with variation in coating parameters has been investigated.Experiments were performed with the sessile drop method,and with differential thermal analysis,with a cooling rate of20K/min.There were no signi?cant differences in nucleation undercooling between the different variations in coating.The undercooling does not seem to be dependent on coating thickness,oxygen concentration,wetting angle or roughness at the given cooling rate. &2011Elsevier B.V.All rights reserved. 1.Introduction The solar cell industry is developing fast in several directions,and in order for the multicrystalline solar cell to be able to compete with monocrystalline cells and other new alternatives,the ef?ciency has to be improved.The solidi?cation process of multicrystalline silicon is important for the?nal ef?ciency of the solar cell.Grain size,grain orientation,and impurity distribution/concentration are all proper- ties dependent on solidi?cation parameters.Some of these char- acteristics like the number of,the size,and orientation of grains are again dependent on the nucleation of silicon,and it is therefore important to be able to control this mechanism. Recently several solidi?cation experiments have been per- formed by Fujiwara et al.[1–4].They studied grain growth,and were able to increase the crystals size by an initial faceted dendritic growth followed by traditional planar front directional solidi?cation.The dendritic growth results in fewer and larger grains,which again lead to less grain boundaries were recombi- nation can take place.Fujiwara et al.[1]investigated how different cooling rates in?uenced the size of undercooling needed to obtain faceted dendritic growth.The present work has been performed in order to study how/if the substrate on which the silicon grows will in?uence the undercooling and nucleation of silicon.Si3N4coated SiO2has been chosen as a substrate since multicrystalline silicon ingots are normally cast in Si3N4coated SiO2crucibles. Nucleation is the dominant process in the beginning of solidi?ca- tion and leads to the establishment of the?nal grain number. Heterogeneous nucleation undercooling depends strongly on the wetting angle between the nucleus and the nucleating substrate. This implies that the nucleation is dependent on the substrate roughness,composition,thickness,etc.[5].Another aspect is impu- rities.Impurities in the bulk have been studied by several authors, and it has been shown that silicon often nucleate from Si3N4-or SiC-particles[6].This nucleation can cause the formation of an equiaxed zone instead of the desired columnar zone[7,8].It has been documented that particles like this are present in the bottom of the ingot[9]. The substrate’s in?uence on undercooling for solidi?cation of silicon has not been studied thoroughly,but some investigations in the area has been done.Appapillai et al.[10]investigated nucleation undercooling for silicon samples coated with different materials among others Si3N4.They found?nely spaced nuclea- tion sites near the edge of the samples coated with dry oxides (high undercooling),which indicated that the nucleation started in this region.For the silicon nitride coated samples the nuclea- tion sites were further apart.This resulted in the conclusion that a lower undercooling gave fewer grains,which is consistent with classical nucleation theory.This shows the importance of the ability to control the nucleation more precisely.They also showed that the chemical composition played an important role in nucleation.The oxides had a higher interfacial stability resulting in a higher undercooling than the Si3N4. The present work has been performed to investigate which coating parameters in?uence the nucleation undercooling of silicon on Si3N4coated SiO2.This is done in order to be able to Contents lists available at ScienceDirect journal homepage:https://www.doczj.com/doc/d315104716.html,/locate/jcrysgro Journal of Crystal Growth 0022-0248/$-see front matter&2011Elsevier B.V.All rights reserved. doi:10.1016/j.jcrysgro.2011.07.003 ?Corresponding author.Tel.:t4773594903;fax:t4773550203. E-mail address:ingvild.brynjulfsen@material.ntnu.no(I.Brynjulfsen). Journal of Crystal Growth331(2011)64–67

相关主题
文本预览
相关文档 最新文档