当前位置:文档之家› 2020年整理分光光度计实验报告分光光度 实验报告.doc

2020年整理分光光度计实验报告分光光度 实验报告.doc

2020年整理分光光度计实验报告分光光度 实验报告.doc
2020年整理分光光度计实验报告分光光度 实验报告.doc

实验六 分光光度法测溴酚蓝的电离平衡常数

王思雨 PB12207007

中国科学技术大学生命科学院

摘要 本实验中我们通过使用722型分光光度计测量出了溴酚蓝

(Bromphenalblue)的最大吸收波长,并了解了溶液浓度对λmax 的影响

以及酸度对B.P.B 的影响和用缓冲溶液调节溶液酸度的方法。

关键词 分光光度计 溴酚蓝 电离平衡常数

1.前言

本实验用分光光度法测定弱电解质溴酚蓝的电离平衡常数。溴酚

蓝是一种酸碱指示剂,本身带有颜色且在有机溶剂中电离度很小,所

以用一般的化学分析法或其他物理化学方法很难测定其电离平衡常

数。而分光光度法可以利用不同波长对其组分的不同吸收来确定体系

中组分的含量,从而求算溴酚蓝的电离平衡常数。

溴酚蓝在有机溶剂中存在着以下的电离平衡:

HA H ++A -

其平衡常数为: (6-2)

溶液的颜色是由显色物质HA 与A -引起的,其变色范围PH 在

3.1~

4.6之间,当PH ≤3.1时,溶液的颜色主要由HA 引起的,呈黄

色;在PH ≥4.6时,溶液的颜色主要由A -引起,呈蓝色。实验证明,

对蓝色产生最大吸收的单色光的波长对黄色不产生吸收,在其最大吸

收波长时黄色消光为0或很小。用对A -产生最大吸收波长的单色光

测定电离后的混合溶液的消光,可求出A -的浓度。令A -在显色物质

中所占的分数为X ,则HA 所占的摩尔分数为1-X ,所以

(6-3)

或者写成: lg PH lg 1a X K X

=+- (6-4) 根据上式可知,只要测定溶液的PH 值及溶液中的[HA]和[A -],

就可以计算出电离平衡常数Ka 。

在极酸条件下,HA 未电离,此时体系的颜色完全由HA 引起,溶

液呈黄色。设此时体系的消光度为D 1;在极碱条件下,HA 完全电离,

此时体系的颜色完全由A -引起,此时的消光度为D 2,D 为两种极端条

件之间的诸溶液的消光度,它随着溶液的PH 而变化,则有:

D=(1-X)D 1+XD 2

推出: 12D D X D D

-=- 代入(4)式中得:

(6-5)

在测定D 1、D 2后,再测一系列PH 下的溶液的光密度,以对PH 作

图应为一直线,由其在横轴上的截距可求出PKa ,从而可得该物质的

电离平衡常数。

2.实验部分

(一) 仪器与试剂

药品:

5×10-5mol ·dm -3的溴酚蓝溶液 0.1483mol ·dm -3的HCl 溶液

1 mol ·dm -3的HCl 溶液 0.1 mol ·dm -3NaOH 溶液

0.2 mol ·dm -3NaOH 溶液 0.1 mol ·dm -3邻苯二甲酸氢钾溶液

仪器:

722

型分光光度计(上海第三分析仪器厂) 1台

银河CS501恒温槽(中国重庆银河试验仪器有限公司) 1台

inoLab 740 PH 计(WTW ) 1台 10mL 移液管 3支

25移液管 1支

50mL 移液管 1支

100mL 容量瓶 7个

(二) 实验过程

1、打开超级恒温水浴使之恒温在25℃,打开分光光度计,预热

仪器,同时掀开样品室盖。

2、确定溶液的最大吸收波长。

(1)用10mL 移液管准确移取5×10-5 mol ·dm -3的B.P .B 溶液

20mL ,置于一个洗干净的100mL 的容量瓶中,并用50ml 的移液管

准确加入50mL0.1 mol ·dm -3的邻苯二甲酸氢钾缓冲溶液,加H 2O 稀

释到刻度,得1.0×10-5 mol ·dm -3的B.P.B 溶液。

(2)取1cm 厚度的比色皿两只,分别用H 2O ,1.0×10-5 mol ·dm -3

的B.P.B 溶液洗净,再分别装入2/3体积的H 2O ,1.0×10-5 mol ·dm -3

的B.P.B溶液,把比色皿两光面擦干,正确插入光度计恒温比色槽中,用蒸馏水作空白溶液,用以校正仪器。放在靠内的一个槽内便于测量。

(3)开启仪器,测出最大的吸收光波长。

3、各个不同酸度的溴酚蓝溶液配置。

取7只100mL的干净容量瓶,分别加入20mL 5×10-5 mol·dm-3的B.P.B溶液,再分别加入50mlL0.1 mol·dm-3邻苯二甲酸氢钾溶液。加入的HCl和NaOH的量以书中表为准(注意在不同浓度下对酸碱体积的转换),再加稀释至刻度。可分别得到不同PH值下的B.P.B溶液。

4、将上述七种不同酸度的溴酚蓝溶液用酸度计测量相应的pH值。

5、不同酸度下,溴酚蓝溶液吸光度D的测定。

(1)将波长固定在λmax处,把已经恒温的溶液逐一以蒸馏水作参比,测量其吸光度,可得一系列的D值。

(2)取两只100mL容量瓶,分别加入20mL5×10-5mol·dm-3的B.P.B溶液。在另一支容量瓶中加入50mL0.2 mol·dm-3

的NaOH溶液稀释到刻度,得B.P.B的极碱溶液,在另一

支容量瓶中加入1 mol·dm-3的HCl溶液10mL,稀释至刻

度,得B.P.B的极酸溶液。

(3)在分光光度计上迅速测量极酸溶液、极碱溶液的吸光度D1和D2。

3.结果与讨论

实验结果:

PKa =4.055,Ka =8.825

?,相对误差为1.10%

10-

实验是应从浓度低的开始测量,我在测量中先测了4号,然后依次为3,2,1号。之后是5号,然后依次6,7号。

结果分析:

本次实验的误差较大,这是实验的严密性以及仪器的精密性所决定的,误差有如下主要来源:

1、在测量溶液吸光度时,读数会有较小的波动(一般不大于0.001),这是仪器的精确度所限制的,因为仪器所发出的单色光会随电源电流的波动而有微小变化。PH计使用时并不在恒温槽内,与分光仪的温度有一定差别,但是因为当天的气温较高,使得恒温槽内温

度与室温相同,故造成的误差应当比较小。

2、人为误差主要体现在移取溶液,清洗润洗各种仪器上,这些可以通过熟能生巧和认真对待实验操作等方法减小误差。

3、因为pH计的测定时间较长,使得药剂不能做到现配现用,造成一定误差,不过对实验的影响应该不大。

4、pH计校准时精度不够,也会带来一定(较大)的误差。

5、在使用PH计时发现PH计上读数是不断变化的,我认为这是由于PH计极其灵敏(PH值后精确到第三位),而测量的体系并不是密闭的,因此由于酸的挥发以及碱与空气中二氧化碳相互作用引起PH的持续变化。而且书中在极酸极碱的PH值测定时也强调指出应迅速测量,也可证明这个观点。所以测量时应该在PH计读数刚开始发生反复时进行。

参考文献

[1]崔献英柯燕雄单绍纯物理化学实验中国科学技术大学出版社 2000

[2]武汉大学编分析化学(第五版)高等教育出版社

Spectrophotometric Determination of BPB ionization equilibrium constants

Wang Siyu PB12207007

Department of life science, University of Science &

Technology of China

Abstract In this experiment we measured the maximum absorption wavelength of BPB (Bromphenalblue) by the use of 722-spectrophotometer We studied the effect on the maximum absorption wavelength made by the solution concentration and the impact on the B.P.B by the acidity and also get the

knowledge of the way to use buffer solution to regulate the acid.

Key words Spectrophotometer Bromphenalblue Ionization equilibrium constants

实验处理附件

(一)数据记录

恒温槽温度初温:27.41℃;末温:27.39℃;

极酸和极碱情况下溶液的吸光度 D1:-0.0185; D2:0.685;

最大吸收波长 max:592.10nm;

不同PH值时B.P.B溶液的吸光度:

以对PH作图, X轴的截距为PKa,读数、计算Ka值:(在Origin中

处理数据的过程在本文件夹的OPJ文件里)

BPB溶液的--PH图象

从图中可以读得X轴的截距为4.645,由知这个值就是PKa,故PKa =4.645,Ka =2.35

?。查资料得到BPB电离平衡常数标准值为

10-

PKa=4.10,所以误差为(4.645-4.10)/4.10=13.3%

紫外-可见分光光度计的检测实验报告

分子光谱实训报告 班级:———— 学号: 姓名: 指导教师: 2015年10月 紫外-可见分光光度计的检测

实训日期______年_____月_____日教师评定:______________ 【仪器概况】 仪器名称:紫外-可见分光光度计 型号:UV1801 厂家:北京瑞利分析仪器公司 编号:090953 二、【仪器结构】 三、【实验项目】 波长准确度检查 仪器零点稳定性检查 光电流稳定度检查 吸光度准确度检查 紫外区透色比检查 杂散光合格性检查 吸收池配套性检查 皿差 四、【仪器及试剂准备单】 1、试剂清单(以1个小组6人为例) H2SO3、K2Cr3O7、HClO4、碘化钠、蒸馏水、亚硝酸钠、无水乙醇、苯、硫酸铜。 2、仪器清单(以1个小组6人为例) UV1801紫外分光光度计、烧杯14个、容量瓶9个、玻璃棒、滤纸、洗瓶、镨钕滤光片、比色皿、胶头滴管、洗耳球、移液管、表面皿、移液管架。

五、【检测步骤】 开机自检(5个ok) (一)、波长准确度 可见分光光度(空气) 1、按1、波长扫描;按F1,参数设置(E、波长范围460--680nm、间隔0.1nm、换灯点800nm)按返回键。 2、按F2,根据显示屏提醒,确定键;出现两个峰,分别记录两个峰值的波长和吸光值。(重复3次;参比和样品都是空气)。 镨钕滤光片 1、按F1,参数设置(A、波长范围500--540nm、间隔1nm、换灯点360nm)按返回键。 2、把镨钕滤光片放在第二格,关盖;按F2,根据显示屏提醒,拉入参比,确定键;再拉入样品,确定键;出现一个峰,记录读数。 紫外分光光度 1、按F1,参数设置(A、波长范围200--270nm、间隔0.1nm、换灯点360nm)按返回键。 2、加3滴苯在石英比色皿中,盖上比色皿盖,放在第二格,关盖;按F2,根据显示屏提醒,拉入参比,确定键;再拉入样品,确定键;出现五指峰,分别记录五个不同峰的波长和吸光值。 (二)、透射比的准确度 将参比溶液0.001mol/L高氯酸加入石英比色皿3/4处(润洗3次)放在第一格;将测定液重铬酸钾加入石英比色皿3/4处(润洗3次)放在第二格;调节测量方式T;返回主页面,按2,光度测量;按F1,参数设置(换灯点360nm、波长数4个,入分别调到235nm、257nm、313nm、350nm);按F2,根据显示屏提醒,拉入参比,确定键;再拉入样品,确定键;记录读数。 (三)、吸光度准确度

紫外可见分光光度计常见故障的排除

紫外可见分光光度计常见故障的排除 光源部分: (1)故障:钨灯不亮; 原因:钨灯灯丝烧断(此种原因几率最高); 检查:钨灯两端有工作电压,但灯不亮;取下钨灯用万用表电阻档检测。 处置:更换新钨灯; (2)故障:钨灯不亮; 原因:没有点灯电压; 检查:保险丝被熔断; 处置:更换保险丝,(如更换后再次烧断则要检查供电电路); (3)故障:氘灯不亮; 原因:氘灯寿命到期(此种原因几率最高); 检查:灯丝电压、阳极电压均有,灯丝也可能未断(可看到灯丝发红); 处置:更换氘灯; (4)故障:氘灯不亮; 原因:氘灯起辉电路故障; 检查:氘灯在起辉的过程中,一般是灯丝先要预热数秒钟,然后灯的阳极与阴极间才可起辉放电,如果灯在起辉的开始瞬间灯内闪动一下或连续闪动,并且更换新的氘灯后依然如此,有可能是起辉电路有故障,灯电流调整用的大功率晶体管损坏的几率最大。 处置:需要专业人士修理; 二.信号部分: (1)故障:没有任何检测信号输出; 原因:没有任何光束照射到样品室内;

检查:将波长设定为530nm,狭缝尽量开到最宽档位,在黑暗的环境下用一张白纸放在样品室光窗出口处,观察白纸上有无绿光斑影像; 处置:检查光源镜是否转到位?双光束仪器的切光电机是否转动了(耳朵可以听见电机转动的声音)? (2)故障:样品室内无任何物品的情况下,全波长范围内基线噪声大; 原因:光源镜位置不正确、石英窗表面被溅射上样品; 检查:观察光源是否照射到入射狭缝的中央?石英窗上有无污染物? 处置:重新调整光源镜的位置,用乙醇清洗石英窗; (3)故障:样品室内无任何物品的情况下,仅仅是紫外区的基线噪声大; 原因:氘灯老化、光学系统的反光镜表面劣化、滤光片出现结晶物; 检查:可见区的基线较为平坦,断电后打开仪器的单色器及上盖,肉眼可以观察到光栅、反光镜表面有一层白色雾状物覆盖在上面;如果光学系统正常,最大的可能是氘灯老化,可以通过能量检查或更换新灯方法加以判断; 处置:更换氘灯、用火棉胶粘取镜面上的污物或用研磨膏研磨滤光片(注意:此种技巧需要有一定维修经验者来实施); (4)故障:样品室放入空白后做基线记忆,噪声较大,紫外区尤甚; 原因:比色皿表面或内壁被污染、使用了玻璃比色皿或空白样品对紫外光谱的吸收太强烈,使放大器超出了校正范围; 检查:将波长设定为250nm,先在不放任何物品的状态下调零,然后将空比色皿插入样品道一侧,此时吸光值应小于0.07Abs;如果大于此值,有可能是比色皿不干净或使用了玻璃比色皿;同样方法也可判断空白溶液的吸光值大小; 处置:清洗比色皿,更换空白溶液; (5)故障:吸光值结果出现负值(最常见); 原因:没做空白记忆、样品的吸光值小于空白参比液; 检查:将参比液与样品液调换位置便知; 处置:做空白记忆、调换参比液或用参比液配置样品溶液; (6)故障:样品信号重现性不良;

紫外可见分光光度计的校正

实训二紫外可见分光光度计的校正 一、实训目的 1、了解紫外-可见分光光度的基本构造。 2、熟悉紫外可见分光光度计的操作技术。 3、熟悉校正波长和测量吸收值精度的原理和方法。 二、仪器与试剂 1、仪器:紫外-可见分光光度计,石英吸收池(1cm),容量瓶(1000m1),烧杯。 2、试剂:0.0600g→1000ml的K2Cr2O7的硫酸标准溶液(0.005mol/L),NaI溶液(10g/L),NaNO2溶液(50g/L)。 三、实训原理 紫外-可见分光光度计是单光束手工操作仪器,备有钨灯及氢灯两种光源,可用于可见及紫外光区。它是具有色散能力较高的单色器,狭缝可调,可得到较纯的单色光,适用于定性鉴别和定量分析。 新仪器启用前或仪器修理后或长期使用后均需对仪器的性能进行检定。仪器的性能主要是波长准确度与重现性、单色器的分辨能力、吸光度的准确性和重现性及杂散光等。 四、实训操作 1、吸收池配对性试验 每次测定前,应先用蒸馏水做吸收池配对性试验。两个吸收池透光率T相差应<0.5%。 2、波长准确性与重现性 校验波长是否准确,可用谱线校正法。在吸收池中置一白纸挡住光路,转动波长至486nm附近,遮光观察白纸上蓝色斑。轻微移动波长,至使此蓝色光斑最亮时止。根据调整的波长范围观察所得到的相应颜色,并进行对比核对,判断波长的准确性。 3、吸收度的准确性与透光率重现性 在紫外-分光光度计中用作读取透光率的电位器的精度可达到0.2%,但是,由于其他原因,例如电压变化等,实际测得的透光率误差大于0.2%。一般要求透光率的精度、稳定性和重现性不超过0.5%。透光率的准确性可用已知吸光系数的物质核对,常用的是重铬酸钾。取在120℃干燥至恒重的基准K2Cr2O7约60mg,精密称定,用H2S04溶液(0.005mol/L)溶解并稀释至1000ml,摇匀。按下表规定的吸收峰与谷波长处测定。 将测得的吸光度,计算出其吸光系数,取平均值与表中规定值核对,如相对偏差在土1%以内,则透光率准确性好。K Cr O的H S0溶液(0.005mol/L)的E cm1% 透光率重现性可结合透光率准确性实验同时进行,即在固定波长、溶液浓度以及狭

可见分光光度计操作规程

722N可见分光光度计操作规程 (IATF16949-2016/ISO9001-2015) 一、使用步骤 1、连接仪器电源线,确保仪器供电电源有良好的接地性能; 2、接通电源,使仪器预热20分钟。(不包括仪器自检时间); 3、用键设置测试方式:透射比(T),吸光度(A),已知标准样品浓度值方式(C)和已知标准样品斜率方式(F); 4、用波长选择旋钮设置您所需的分析波长; 5、将参比样品溶液和被测样品溶液分别倒入比色皿中,打开样品室盖,将盛有溶液的比色皿分别插入比色皿槽中,盖上样品室盖。一般情况下,参比样品放在第一个槽位中。比色皿透光部分表面不能有指印、溶液痕迹,被测溶液中不能有气泡、悬浮物,否则会影响样品测试的精度; 6、将0%T校具(黑体)置入光路中,在T方式下按“0%T”键,此时显示器显示“000.0”; 7、将参比样品推(拉)入光路中,按“0A/100%T”键调0A/100%T,此时显示器显示的“BLA”直至显示“100.0”%T或“0.000”A为止。 8、当仪器显示器显示出“100.0”%T或“0.000”A后,将被测样品推(拉)入光路,便可从显示器上得到被测样品的透射比或吸光度值。 二、注意事项 1、每次使用后应检查样品室是否积存有溢出溶液,经常擦拭样品室,以防废液对部件或光路系统的腐蚀;

2、仪器使用完毕应盖好防尘罩。可在样品室及光源室内放置硅胶袋防潮,但开机时一定要取出; 3、长期不用仪器时,尤其要注意环境的温度、湿度,定期更换硅胶。 4、工作条件:环境温度:5~35℃;相对湿度:不大于85%RH; 三、期间核查 1、波长范围检查:主机正常开机并预热30分钟,模式为“透射比”档, 转动波长旋钮至波长范围两端按100%T健,应能正常调节100%T,开样品室盖时按0%T应能正常调节0%T。 2、透射比重复性检查:将主机波长设定至550nm,仪器调0%T,调100%T。 置入透射比为40%T左右并在附近平坦吸收的样品(例如:中性滤光片)连测三次检查显示值,其最大差值应在±0.3%T内。 3、定点噪声检查:设定波长在550nm,仪器调0%T,调100%T,设定标尺至“吸光度”,观察显示窗内数字跳动在0.002A范围内。 4、波长重复性检查:设置标尺为“透射比”,采用分光光度计通用的镨钕滤光片作样品。以空气为空白,仪器调0%T,调100%T,将样品置入光路,读出在520~540nm波长范围内与样品标准峰值相对应的波长值。重复三次,波长读数误差不应大于±1nm。 5、核查周期:半年一次 四、设备维护 1、为确保仪器稳定工作,电压波动较大的地方,建议用户配备220V稳压器; 2、仪器接地要良好; 3、干燥剂应保持其干燥性,发现变色立即更换或活化后再用;

紫外分光光度法测定蛋白质含量实验报告

紫外分光光度法测定蛋白质含量 一、实验目的 1.学习紫外光度法测定蛋白质含量的原理; 2.掌握紫外分光光度法测蛋白质含量的实验技术。 二、实验原理 1.测蛋白质含量的方法主要有:①测参数法:折射率、相对密度、紫外吸收等;②基于化学反应:定氮法、双缩脲法、Folin―酚试剂法等。本实验采用紫外分光光度法。 2.蛋白质中的酪氨酸和色氨酸残基的苯环中含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同蛋白质略有不同)。在最大吸收波长处,吸光度与蛋白质溶液的浓度服从朗伯―比尔定律。 利用紫外吸收法测蛋白质含量的准确度较差,原因有二:①对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;②样品中含有的嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。 三、仪器与试剂 TU―1901紫外可见分光光度计、标准蛋白质溶液3.00mg·mL-1、0.9%NaCl 溶液、试样蛋白质溶液。 10mL比色管、1cm石英比色皿、吸量管。 四、实验步骤 1.绘制吸收曲线 用吸量管吸取2mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在190~400nm间每隔5nm测一次吸光度Abs,记录数据并作图。 2.绘制标准曲线 用吸量管分别吸取1.0、1.5、2.0、2.5、3.0mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在波长280nm处分别测其吸光度,记录数据并作图。 3.样品测定 取适量浓度试样蛋白质溶液,在波长280nm处测其吸光度,重复三次。在已经得到标准曲线的情况下,为了使测量结果准确度高,待测溶液的浓度需在标准曲线的线性范围内,所以,先测定试样蛋白质原液的吸光度(1.363),估算浓度为2.0960 mg·mL-1,再将原试液稀释至5倍(即取2mL试液,用0.9%NaCl溶液稀释至刻度,摇匀),估算浓度为0.4192 mg·mL-1,测吸光度,重复三次 五、数据处理与结果分析

紫外可见分光光度计 文档

紫外可见分光光度计 一.基本简介 紫外可见分光光度计简介1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的比尔朗伯定律。1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人将此理论应用于定量分析化学领域,并且设计了第一台比色计。到1918年,美国国家标准局制成了第一台紫外可见分光光度计。此后,紫外可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,使光度法的灵敏度和准确度也不断提高,其应用范围也不断扩大。 [1]从仪器理论上讲,各种紫外可见分光光度计,都是根据比耳定律设计的;而比耳定律研究的是在平行光、单色光的条件下,物质对光的吸收。但是,紫外可见分光光度计的单色器不可能得到真正的单色光。并且,单色器系统不同,它产生的单色光的纯度(光谱带宽)也不同,并且光通过物质时,也不可能是真正的平行光。因此,严格地说,实际工作中,任何紫外可见分光光度计,都不可能真正满足比耳定律。所以,紫外可见分光光度计都是针对近似平行光、近似单色光的条件设计的。所以,就看谁设计、制造仪器最能满足或接近比耳定律(或产生的比耳定律的偏离最小),谁的仪器到了使用者手里,由于非平行光或非单色光产生的分析误差最小,谁的仪器就最好(当然还有杂散光、噪声、稳定性等要求)。这就是从仪器学理论,去看紫外可见分光光度计的设计、制造误差的最根本、最本质的问题;也是使用者从仪器学理论去看紫外可见分光光度计的分析误差的最根本、最本质的问题。 二.工作原理 吸收光谱 物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。

752紫外可见分光光度计使用方法解析

752紫外可见分光光度计 一、仪器的工作原理 分光光度计的基本原理是溶液中的物质在光的照射激发下,产生了对光的吸收效应,物质对光的吸收是具有选择性的。各种不同的物质都具有其各自的吸收光谱,因此当某单色光通过溶液时,其能量就会被吸收而减弱,光能量减弱的程度和物质的浓度有一定的比例关系,也即符合于比色原理—一比耳定律。 τ=I/Io log I/Io=KCL A= KCL 从以上公式可以看出,当入射光、吸收系数和溶液的光径长度不变时.透过的光是根据溶液的浓度而变化的,752紫外可见分光光度计的基本原理是根据上述物理光学现象而设计的。 二、仪器的安装、使用、安装 1 仪器在安装使用前应对仪器的安全性进行检查,电源电压是否正常,接地线是否牢固可靠,在得到确认后方和接通电源使用。 2 仪器经过运输和搬运等原因,会影响波长准确度,应进行仪器调校后使用。 使用:仪器使用前需开机预热30min。 本仪器键盘共有4个键,分别为; 1 A /τ/C/F 1SD 2 ▽/0% 3?/100% 4 A /τ/C/F键:每按此键来切换A、τ 、C、F之间的值。 A——吸光度(Absorbance) T——透射比(Trans) C——浓度(conc) F——斜率(Factor) (2)F值通过按键输入(后面介绍如何设置) 5SD键:该键具有2个功能 a)用于RS232串行口和计算机传输数据(单向传输数据,仪器发向计算机)。 b)当处于F状态时,具有确认的功能,即确认当前的F值,并自动转到C,计算当前的C 值(C=F*A)。 6 ▽/0%键:该键具有2个功能 a)调零;只有在τ状态时有效,打开样品室盖,按键后应显示0.000。 b)下降键:只有在F状态时有效,按本键F值会自动减1,如果按住本键不放,目动减1会加快速度;如果F值为0后,再按键它会自动变为1999。而按键开始自动减1。 7 ?/100%键;该键具有2个功能 a)只有在A、τ状态时有效,关闭样品室盖,按键后应显示0.000、100.0。 b)上升键:只有在F状态时有效,按本键F值会自动加1,如果按住本键不放,自动加1会加快速度,如果F值为1999后,再按键它会自动变为0,再往键开始自动加l。 例如:设置斜率为1500。 方法一 T)按A/τ/C/F键切换到F状态。 b)如果当前F值为1000,则按?/100%键,直到F值为1500。 C)再按SD键,表示当前的F值为1500,然后自动回到C状态,假如所测的A值为0.234,则此时显示C值为0351。

紫外-可见光分光光度计

紫外-可见光分光光度法 一、技术原理 紫外-可见分光光度法是在190?800mn波长范围内测定物质的吸光度,用于鉴别、杂质检查和定量测定的方法。当光穿过被测物质溶液时,物质对光的吸收程度随光的波长不同而变化。因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被测物质的吸收光谱。从吸收光谱中,可以确定最大吸收波长λmax和最小吸收波长λmix。物质的吸收光谱具有与其结构相关的特征性。因此,可以通过特定波长范围内样品的光谱与对照光谱或对照品光谱的比较,或通过确定最大吸收波长,或通过测量两个特定波长处的吸收比值而鉴别物质。用于定量时,在最大吸收波长处测量一定浓度样品溶液的吸光度,并与一定浓度的对照溶液的吸光度进行比较或采用吸收系数法求算出样品溶液的浓度。 二、浓度测定基本原理 朗伯一比尔(Lambert - Beer)定律是分光光度法的基本原理。当一束单色光通过一均匀的溶液时,一部分被吸收,一部分透过,设入射光的强度为I0,透射光强度为I,则I/I0为透光度,用T表示。 当溶液的液层厚度不变时,溶液的浓度越大,对光的吸收程度越大,则透光度越小。 即:-lgT=a1*c(式中a1为常数,c为浓度) 当溶液浓度不变时,溶液的液层厚度越大,对光的吸收程度越大,则透光度越小。

即:- lgT=a2*b(b为液层厚度) 将以上两式合并可用下式表示:lgT=a*b*c 研究表明:溶液对光的吸收程度即吸光度(A)又称消光度(E)或光密度(OD)与透光度(T)呈负对数关系,即:A=-lgT 故A=a3*b*c(a3为吸光系数)。 上式为朗伯比尔定律,其意义为:当一束单色光通过一均匀溶液时,溶液对单色光的吸收程度与溶液浓度和液层厚度的乘积成正比。 三、仪器的矫正和检定 1.波长矫正 常使用高氣酸钦溶液校正双光束仪器,以10%高氯酸溶液为溶剂,配制含氧化钬(Ho2O3 ) 4 % 的溶液,该溶液的吸收峰波长为241. 13nm,278. 10nm,287. 18nm,333. 44nm,345. 47nm,361. 31nm,416. 28nm,451. 30nm,485. 29nm,536. 64nm和640. 52nm。仪器波长的允许误差为:紫外光区±1nm,500nm附近±2nm。 2.吸光度的准确度 可用重铬酸钾的硫酸溶液检定。取在120℃干燥至恒重的基准重铬酸钾约60mg,精密称定,用0.005mol/L硫酸溶液溶解并稀释至1000mL,在规定的波长处测定并计算其吸收系数,并与规定的吸收系数比较,应符合表中的规定。

722N分光光度计使用方法

722N可见分光光度计使用说明书 目次 1仪器的主要用途--------------------------------------------------1 2仪器的工作环境--------------------------------------------------1 3仪器的主要技术指标及规格----------------------------------------1 4仪器的工作原理--------------------------------------------------2 5仪器的光学原理--------------------------------------------------2 6仪器的安装、使用与维护------------------------------------------3 7 仪器的调校和故障分析--------------------------------------------5 8 仪器的成套性----------------------------------------------------6 9 仪器的保管及免费修理期限----------------------------------------7 制造计量器具许可证编号: 产品执行标准的编号:Q/YXLZ50-2004

1仪器的主要用途 722N可见分光光度计能在近紫外、可见光谱区域对样品物质作定性和定 量的分析。该仪器可广泛地应用于医药卫生、临床检验、生物化学、石油化工、环境保护、质量控制等部门,是理化实验室常用的分析仪器之一。 2仪器的工作环境 仪器应安放在干燥的房间内,使用温度为5℃~35℃,相对湿度不超过 85%。 使用时放置在坚固平稳的工作台上,且避免强烈的震动或持续的震动。 室内照明不宜太强,且避免直射日光的照射。 电扇不宜直接向仪器吹风,以免影响仪器的正常使用。 尽量远离高强度的磁场、电场及发生高频波的电器设备。 供给仪器的电源电压为AC220V22V,频率为50Hz1Hz,并必须装有良好的接地线。 推荐使用交流稳压电源,以加强仪器的抗干扰性能。使用功率为1000W以上的电子交流稳压器或交流恒压稳压器。 2.7避免在有硫化氢、亚硫酸氟等腐蚀气体的场所使用。 3仪器的主要技术指标及规格 仪器类别:2类 光学系统:单光束、衍射光栅。 波长范围:330nm~800nm。 光源:钨卤素灯12V30W。 接收元件:光电池。 波长准确度:2nm。 波长重复性:≤1nm。 光谱带宽: 5nm。 杂光:≤%(在360nm处)。 透射比测量范围:%~%。 吸光度测量范围:~。 浓度直读范围:0000~1999。 透射比准确度:%。 透射比重复性:≤%。 噪声:100%噪声≤%,0%噪声≤%。 稳定性:亮电流≤%/3min, 暗电流≤%/3min。 电源:AC220V22V, 50Hz1Hz。

实验报告-紫外-可见分光光度法测铁的含量-

一、实验目的: 了解朗伯-比尔定律的应用,掌握邻二氮菲法测定铁的原理;了解分光光度计的构造;掌握分光光度计的正确使用方法;学会吸收曲线的绘制和样品的测定原理。 二、实验原理 邻菲啰啉是测定微量铁的较好试剂。在pH=2~9 的条件下,邻菲啰啉与Fe2+生成稳定的橙红色配合物,其反应式如下: Fe3+能与领二氮菲生成淡蓝色配合物(不稳定),故显色前加入还原剂:盐酸羟胺使其还原为Fe2+。。 三、仪器及试剂 紫外可见分光光度计、铁标准溶液:含铁0.01mg/mL、0.1%邻菲罗啉水溶液、10%盐酸羟胺水溶液、1mol/lNaAc缓冲溶液(pH4.6)。 四、实验步骤 1.吸收曲线的绘制和测量波长的选择 吸取0.0mL和6.0mL 铁标准溶液分别注入两个50 mL容量瓶中,依次加入5mlNaAc溶液,2.5ml盐酸羟胺溶液,5ml邻菲罗啉溶液,用蒸馏水稀释至刻度,摇匀。用1cm比色皿,以试剂空白为参比,在440~560nm之间,每隔0.5nm测吸光度。然后以波长为横坐标,吸光度A 为纵坐标,绘制吸收曲线,找出最大吸收波长。 2、标准曲线的绘制

分别吸取铁的标准溶液0.0、2.0、4.0、6.0、8.0、10.0ml于6只50ml容量瓶中,依次分别加入5ml醋酸-醋酸钠缓冲溶液,2.5ml盐酸羟胺溶液,5ml邻菲罗啉溶液,用蒸馏水稀释至刻度,摇匀,放置10分钟,在其最大吸收波长下,用1cm比色皿,以试剂溶液为空白,测定各溶液的吸光度,以铁含量(mg/50ml)为横坐标,溶液相应的吸光度为纵坐标,绘制标准曲线。 五、实验记录及数据处理 波长/nm 吸光度 标准溶液(0.01g/L)未知液容量瓶编号 1 2 3 4 5 6 7 吸取的体积0 2.0 4.0 6.0 8.0 10.0 吸光度A (1)绘制曲线图。

722可见光分光光度计操作规程

722可见光分光光度计操作规程 环境要求 1、仪器应安装在无震动,无强烈电磁场干扰、无强光照射的室内工作台上,避免灰尘及腐蚀性气体。 2、室内环境温度为5-35℃,相对湿度小于85%。 3、电源电压220V±22V,频率50HZ±1HZ。 操作要点: 1、插上电源,打开开关,打开试样室盖,按“A/T/C/F”键,选择“T%”状态,选择测量所需波长,预热20分钟。 2、调节波长旋钮至测定波长,并稍等几分钟。 3、开始测量前要先调节仪器的零点,方法为: 保持在“T%”状态,使光路通畅,当关上试样室盖时,屏幕应显示“100.0”,如否,按“T100%”键;打开试样室盖,屏幕应显示“000.0”,如否,按“0%”键,重复2-3次,仪器本身的零点即可调好,可以开始测量。 以标准对比法为例: 3、用空白溶液润洗一个比色皿,装样到比色皿的3/4处(必须确保光路通过空 白溶液中心),用吸水纸吸干比色皿外部所沾的液体,将比色皿的光面对准光路 放入比色皿架,用同样的方法将所测样品装到其余的比色皿中并放入比色皿架中。4、将装有待测溶液的比色皿拉入光路,关上试样室盖,按“A/T/C/F”键,调 到“Abs”,按“Abs0”键,屏幕显示“0.000”,将其余测试样品一一拉入光路,记下测量数值即可(不可用力拉动拉杆)。 5、测量完毕后,将比色皿清洗干净(最好用乙醇清洗),擦干,放回盒子,关 上开关,拔下电源,罩上仪器罩,并打扫卫生,才可离开。 6、本操作要点只针对测量吸光度而言。 注意事项: 1、仪器使用前需开机预热20分钟。 2、开关试样室盖时动作要轻缓。 3、不要在仪器上方倾倒测试样品,以免样品污染仪器表面,损坏仪器,一定 要将比色皿外部所沾样品擦干净,才能放进比色皿架进行测定。 4、每套仪器所配套的变色皿,不能与其它仪器上的比色皿单个调换。 5、如大幅度改变测试波长,在调整“0”和“100%”后稍等片刻,稳定后重新调整即可工作。 6、仪器表面宜用温水擦拭,请勿使用酒精、丙酮等溶剂清洁,不使用时请加防尘罩。比色皿每次使用后应清洗干净,并用镜头纸轻拭干净,存于比色皿盒中备用。 7、有任何疑问请报告指导老师。

紫外分光光度计实验报告

UV-2550紫外分光光度计的使用和分光光度法测定对苯二酚姓名:XXX 专业:有机化学学号:312070303004 时间:2012.10.21 1.目的 (1)了解UV-2550紫外光谱仪的基本使用方法。 (2)了解测定对苯二酚的紫外光谱实验方法。 2. 试剂和仪器 2.1试剂: 标准溶液0.10m g/mL,准确称取0.25g对苯二酚溶于250ml容量瓶中,用水稀释至刻度,从中取出10ml于100ml容量瓶中,用水稀释至刻度,摇匀;pH=4.1的乙酸-乙酸钠缓冲溶液。 2.2 仪器: UV-2550型分光光度计。 3. 实验步骤 3.1 测量波长的选择 用吸量管吸取5.0ml对苯二酚标准溶液于25ml容量瓶中,加入0.5ml pH=4.1的乙酸-乙酸钠缓冲溶液,用二次蒸馏水定容,振荡混匀。15分钟后用1cm比色皿,275-330nm波长范围, 进行扫描。从吸收曲线上读出对苯二酚的最大吸收波长λmax。 3.2 对苯二酚含量的测定 (1)标准曲线的制作 在6个25ml容量瓶中,用吸量管分别加入0,1.0, 2.0, 3.0,4.0,5.0ml 对苯二酚标准溶液,加入0.5ml pH=4.1的乙酸-乙酸钠缓冲溶液,用二次蒸馏水定容,振荡混匀。用1cm比色皿,以试剂空白为参比溶液,在最大吸收波长处,用光度模块作标准曲线。 (2)试样中对苯二酚含量的测定 准确吸取一定体积的样品于40ml容量瓶中,加入0.5ml pH=4.1乙酸-乙酸钠,用水稀释至刻度,摇匀。在光度模块中直接读出试样中对苯二酚含量。 4. 实验结果 4.1 测量波长的选择 从吸收曲线上读出对苯二酚的最大吸收波长λmax=288.80。 见图1 吸收曲线 4.2 对苯二酚含量的测定 (1)标准曲线的制作 见图2 标准曲线 (2)试样中对苯二酚含量的测定 对苯二酚含量0.354 相对误差为11.5%

紫外可见分光光度计及其应用

紫外可见分光光度计及其应用 科技论文写作期末作业 西北民族大学生命科学与工程学院 11级生物技术(1)班 符朝方 学号:P112114841 紫外可见分光光度计及其应用 李诗哲 西北民族大学生命科学与工程学院兰州 730100 摘要:紫外可见分光光度计对于分析人员来说是最有用的分析工具之一,几乎每一个分析实验室都离不开紫外可见分光光度计。下面介绍了紫外分光光度计的原理、结构及其特点,并介绍了它在生物领域的应用及其他方面的应用1引言:紫外可见分光光度计是一类很重要的分析仪器,无论在物理学、化学、生物学、医学、材料学、环境科学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理行业,紫外可见分光光度计都获得了日益广泛的应用。 2原理:紫外可见分光光度法 【1】紫外可见分光光度法是根据物质分子对波长为200~760nm的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。操作简单、准确度高、重现性好。波长长的光线能量小,波长短的光线能量大。分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。物质的吸收光谱本质上就是物质中的分子和原子吸收了人射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有不同的分子、原子和不同的分

子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的 某些特征波长处的吸光度的高低判别或测定该物质的含量,这是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。 【2】2.1有机化合物的紫外可见吸收光谱 有机化合物的电子跃迁 与紫外可见吸收光谱有关的电子有三种[[4],即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。 跃迁类型有:σ?σ*、n?σ*,π?π*、n?π四种。 饱合有机化合物的电子跃迁类型为σ?σ*,n?σ*跃迁,吸收峰一般出现在真空紫外区,吸收峰低于200nm,实际应用价值不大。不饱合机化合物的电子跃迁类型为n?π*,π?π*跃迁,吸收峰一般大于200nm. 2.2有机化合物的吸收带 吸收带(absorption band):在紫外光谱中,吸收峰在光谱中的波带位置。根据电子及分子轨道的种类,可将吸收带分为四种类型。 (1)R吸收带 (2)K吸收带 (3)B吸收带 (4)E吸收带 2.3无机化合物的紫外可见吸收光谱 无机化合物的UV-Vis光谱吸收光谱主要有:电荷 迁移跃迁及配位场跃迁。 (1)电荷迁移光谱

721可见分光光度计使用方法

721可见分光光度计使用方法 一、开机预热 仪器在使用前应预热30分钟。 二、波长调整 转动波长旋钮,并观察波长显示窗,调整至需要的测试波长。 注意事项:转动测试波长调100%T/0A后,以稳定5分钟后进行测试为好(符合行业标准及质监局检定规程要求)。 三、设置测试模式 按动“功能键”,便可切换测试模式。相应的测试模式循环如下:*开机默认的测试方式为吸光度方式 四、结果打印(721型无此功能) 在得到测试结果后按动“打印”键便可打印结果(需外接标准串行打印机)。 五、光源切换(适用于752、754、755B型) 因为仪器在紫外区和可见区使用不同的光源,所以需要波动光源切换杆来手动的切换光源。建议的光源切换波长为340nm,即200nm-339nm适应氘灯,340nm-1000nm使用卤素灯。 注意事项:如果光源选择不正确,或光源切换杆不到位,将直接影响仪器的稳定性。特殊测试要求除外。 六、比色皿配对性 仪器所附的比色皿是经过配对测试的,未经配对处理的比色皿将影响样品的测试精度。适应比色皿一套两只,供紫外光谱区使用,置入样品架时,两只石英比色皿上标记Q或箭头方向要一致。玻璃比色皿一套四只,供可见光谱区使用。 石英比色皿和玻璃比色皿不能混用,更不能和其他不经配对的比色皿混用。用手拿比色皿应握比色皿的磨砂表面,不应该接触比色皿的头光面,即透光面上不能有手印或溶液痕迹,待测溶液中不能有气泡、悬浮物,否则也将影响样品的测试精度。比色皿在使用完毕后应立即清洗干净。 七、调T零(0%T) 1.在T模式时,将遮光体置入样品架(如图七所示),合上样品室盖,并拉动样品架拉杆使其进入光路。然后按动“调0%T”键,显示器上显示“00.0”或“-00.0”,便完成调T零,完成调T零后,取出遮光体。 注意事项:1.测试模式应在透射比(T)模式; 2.如果未置入遮光体合上样品室盖,并使其进入光路便无法完成调T零;

72型分光光度计工作原理

72型分光光度计工作原理 72型分光光度计是可见光分光光度计,波长范围为420nm~700nm,它由三大部分组成:磁饱和稳压器、光源、单色光器和测光机构、微电计。 72型分光光度计的基本依据是朗伯—比耳定律,它是根据相对测量原理工作的,即先选定某一溶剂作为标准溶液,设定其透光率为100%,被测试样的透光率是相对于标准溶液而言的,即让单色光分别通过被测试样和标准溶液,二者能量的比值就是在一定波长下对于被测试样的透光率。如图所示,白色光源经入射狭缝、反射镜和透光镜后,变成平行光进入棱镜,色散后的单色光经镀铝的反射镜反射后,再经过透镜并聚光于出射狭缝上,狭缝宽度为0.32nm。反射镜和棱镜组装在一可旋转的转盘上并由波长调节器的凸轮所带动,转动波长调节器便可以在出光狭缝后面选择到任一波长的单色光。单色光透过样品吸收池后由一光量调节器调节为适度的光通量,最后被光电电池吸收,转换成电流后由微电计指示,从刻度标尺上直接读出透光率的值。 分光光度计已经成为现代分子生物实验室常规仪器。常用于核酸,蛋白定量以及细菌生长浓度的定量。 分光光度计的简单原理 分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光源透过测试的样品后,部分光源被

吸收,计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。 核酸的定量 核酸的定量是分光光度计使用频率最高的功能。可以定量溶于缓冲液的寡核苷酸,单链、双链DNA,以及RNA。核酸的最高吸收峰的吸收波长260 nm。每种核酸的分子构成不一,因此其换算系数不同。定量不同类型的核酸,事先要选择对应的系数。如:1OD的吸光值分别相当于50μg/ml的dsDNA,37μg/ml的ssDNA,40μg/ml的RNA,30μg/ml的Olig。测试后的吸光值经过上述系数的换算,从而得出相应的样品浓度。测试前,选择正确的程序,输入原液和稀释液的体积,尔后测试空白液和样品液。然而,实验并非一帆风顺。读数不稳定可能是实验者最头痛的问题。灵敏度越高的仪器,表现出的吸光值漂移越大。 事实上,分光光度计的设计原理和工作原理,允许吸光值在一定范围内变化,即仪器有一定的准确度和精确度。如EppendorfBiophotometer的准确度≤1.0%(1A)。这样多次测试的结果在均值 1.0%左右之间变动,都是正常的。另外,还需考虑核酸本身物化性质和溶解核酸的缓冲液的pH值,离子浓度等:在测试时,离子浓度太高,也会导致读数漂移,因此建议使用pH值一定、离子浓度较低的缓冲液,如TE,可大大稳定读数。样品的稀释浓度同样是不可忽视的因素:由于样品中不可避免存在一些细小的颗粒,尤其是核酸样品。这些小颗粒的存在干扰测试效果。为了最大程度减少颗

722型分光光度计检测

分光光度计性能检测 【实验原理】 1、波长检测:⑴可见光区域的黄光波段比较狭窄,适用于光度计波长的粗测;⑵镨钕滤光片在529nm±1~2nm处有较好的吸收峰,适用于光度计波长的细测。 2、杂光检测:镨钕滤光片在585nm处吸光度A最大,透光率T最小,所产生的透光与杂光成正比,因此可用其透光率表示杂光的大小。 3、比色皿配对:一套比色皿之间的材质、厚薄、色泽、空白吸收等应该一致,误差小于0.5%才能配套使用。 【操作步骤】 一、操作 1、波长检测 (1)粗测:调仪器波长旋纽至580nm处,打开遮光板,在比色槽中光路经过处放一白纸条,观察是否有均匀的黄光。 (2)细测:调波长至529nm处,打开遮光板,调0%T,盖上遮光板以空气调100%T,将镨钕滤光片插入光路,测出A值。再在529nm附近每隔1~2nm,各测其A值。 2、杂光检测 (1)调波长为585nm,盖上遮光板,用黑纸挡住比色皿光路,调0%T。 (2)盖上遮光板,用空气作空白调100%T。 (3)插入镨钕滤光片,盖上遮光板,测出585nm时的T%,即为杂光水平 3、比色皿配套 (1)选取几支大小、材质、色泽相同的比色皿,洗净,装入占比色皿体积2/3的蒸馏水(D.W.),擦干,放入比色槽。 (2)在585nm处,调第1支比色皿透光度为100%T,依次测出其他几支比色皿的T%。 不合格的需反复剔除极端值,或重新配对,直至有2个以上的比色皿合格。 【参考范围】 1、波长的检测:在529nm ± 1nm 处有最大吸收值为合格。 2、杂光的检测:T% ≤ 5%为合格。 3、比色皿配套:Tmax % –Tmin% ≤ 0. 5% 为合格比色皿配套。 【注意事项】 1、722型分光光度计的使用方法:选定检测波长,置调节模式为透光率T,将某一盛装参比介质的空白比色皿置于光路,打开遮光板,调0%T,盖上遮光板调100%T,再将盛装待测液体的比色皿置于光路,测出T值,或置调节模式为吸光度A,即可测出A值。注意每次测定均需重新调0%T、100%T。 2、在杂光检测中,用于调0%T的黑纸片应完好无孔洞,否则会导致假合格现象。 3、使用比色皿时,其盛装液体不能超过总体积的2/3,也不宜少于1/2,且在检测前必须用擦镜纸将比色皿外的液体擦拭干净

(完整版)紫外可见分光光度计--原理及使用

应用 分光光度计已经成为现代分子生物实验室常规仪器。常用于核酸、蛋白定量以及细菌生长浓度的定量。我们实验室主要是用来测物质的光度以求得物质的浓度或者酶活。 基本原理 分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。它是带状光谱,反映了分子中某些基团的信息,可以用标准光谱图再结合其它手段进行定性分析。 朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,溶液的吸光度与吸光物质浓度、液层厚度乘积成正比,即 A= kcl 式中比例常数k与吸光物质的本性,入射光波长及温度等因素有关。c为吸光物质浓度,l为透光液层厚度。 组成 各种型号的紫外-可见分光光度计,就其基本结构来说,都是由五个基本部分组成,即光源、单色器、吸收池、检测器及信号指示系统。 1.光源 在紫外可见分光光度计中,常用的光源有两类:热辐射光源和气体放电光源。热辐射光源用于可见光区,如钨灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。 2.单色器 单色器的主要组成:入射狭缝、出射狭缝、色散元件和准直镜等部分。 单色器质量的优劣,主要决定于色散元件的质量。色散元件常用棱镜和光栅。 3.吸收池 吸收池又称比色皿或比色杯,按材料可分为玻璃吸收池和石英吸收池,前者不能用于紫外区。吸收池的种类很多,其光径可在0.1~10cm之间,其中以1cm光径吸收池最为常用。 4、检测器 检测器的作用是检测光信号,并将光信号转变为电信号。现今使用的分光光度计大多采用光电管或光电倍增管作为检测器。 5、信号显示系统 常用的信号显示装置有直读检流计,电位调节指零装置,以及自动记录和数字显示装置等。

分光光度计说明

722可见分光光度计使用说明书 1.仪器的主要用途 722可见分光光度计能在近紫外、可见光谱区域对样品物质作定性和定量的的分析。仪器可广泛地应用于医药卫生、临床检验、生物化学、石油化工、环境保护、质量控制等部门,是理化实验室常用的分析仪器之一 2.仪器的工作环境 2.1仪器应安放在干燥的房间内,使用温度为5℃~35℃,相对湿度不超过85%。 2.2使用时放置在坚固平稳的工作台上,且避免强烈的震动或持续的震动。 2.3 室内照明不宜太强,且避免直射日光的照射。 2.4 电扇不宜直接向仪器吹向,以免影响仪器的正常使用。 2.5 尽量远离高强度的磁场、电场及发生高频波的电器设备。 2.6供给仪器的电源电压为AC220V±22V,频率为50Hz±1Hz,并必须装有良好的接地线。推荐使用交流稳压电源,以加强仪器的抗干扰性能。使用功率为1000W以上的电子交流稳压器或交流恒压稳压器。 2.7 避免在有硫化氢、亚硫酸氟等腐蚀气体的场所使7 避免在有硫化氢、亚硫酸氟等腐 蚀气体的场所使用。 3 仪器的主要技术指标及规格 3.1 光学系统:单束光、衍射光栅。 3.2 波长范围:330nm~800nm。 3.3 光源:钨卤素灯12V30W。 3.4 接收元件:光电池。 3.5 波长准确度:≤±2nm。

3.6 波长重复性:1nm。 3.7 光谱带宽:<6nm。 3.8 杂散光:0.7%τ(在360nm处)。 3.9 透射比测量范围:0.0%τ~100.0%τ。 3.10 吸光度测量范围:0.000A~1.999A。 3.11 浓度直读范围:0000~1999。 3.12 透射比准确度:±1.0%τ。 3.13 透射比重复性:0.5%τ。 3.14 噪声:≤0.3%τ。 3.15 稳定性:亮电流≤0.5%τ/3min, 暗电流≤0.2%τ/3min。 3.16 电源:AC220V±22V,50Hz±1Hz。 3.17 外型尺寸:570mm×400mm×260mm。 3.18 净杂散光测量范围:18 净重:22kg。 4.仪器的工作原理 分光光度计的基本原理是溶液中的物质在光的照射激发下,产生了对光的吸收效应,物 质对光的吸收是具有选择性的。各种不同的物质都具有其各自的吸收光谱,因此当某单色光通过溶液时,其能量就会被吸收而减弱,光能量减弱的程度和物质的浓度有一定的比例关系,也即符合于比色原理--比耳定律。 τ=I/I0 logI0/I=KCL A=KCL

荧光分光光度计实验

实验2 荧光分光光度计实验 一、实验目的 1、了解发光材料的激发和发射过程; 2、掌握用荧光分光光度计测量发光材料激发光谱和发射光谱的测量方法。 二、仪器用具 F-4600荧光分光光度计,发光材料 三、实验原理 光吸收和辐射与发光材料中的能级结构密切相关。紫外光激发荧光粉发光是研究发光材料发生性能和发光中心在基质晶格中能级结构的重要手段。本实验采用F-4600荧光分光光度计来研究发光材料的激发光谱和发射光谱。 F-4600荧光分光光度计的光学系统从功能上划分为两大部分,即激光光路和发射检测光路。激发光路将光源发出的光分解为单色光输出,照射到发光材料上激发荧光粉发光。发光材料发出的光进入发射光检测光路,被分解为单色光照射到光电倍增管上,光电倍增管输出信号的强度与照射到其上面的光强度呈正比。 由氙弧灯发出的光变色单色光后,即为荧光物质的激发光。被测的荧光物质在激发光照射下所发出的荧光,经过单色器变成单色荧光粉后照射于测样品用的光电倍增管上,由其所发生的光电流经过放大器放大输到记录仪,将激发光单色器的光栅,固定在最适当的激发光波长处,而让荧光单色器凸轮转动,将各波长的荧光强度讯号输出至记录仪上,所记录的光谱即发射光谱,简称荧光光谱。 当测绘荧光激发光谱时,将激发光单色器的光栅固定在最适当的荧光波长处,而让激发光单色口的凸轮转动,将各波长的激发光讯号输出至记录仪上,所记录的光谱即激发光谱。 四、实验内容 按实验要求,连接好计算机后开始实验。首先测试发射光谱,设置激发波长460nm,得到该样品的发射光谱,即

峰值波长出现在540nm左右。 加入1个310nm长波通型滤波片, 在测试激发光谱,输入检测波长540nm,得到激发光谱: 利用检测波长波长460nm,得到发射光谱:

相关主题
文本预览
相关文档 最新文档