当前位置:文档之家› 对如何拍出优质激光全息照片的探讨

对如何拍出优质激光全息照片的探讨

对如何拍出优质激光全息照片的探讨
对如何拍出优质激光全息照片的探讨

全息技术的原理及应用

全息技术的原理及应用 摘要:随着时代的发展,人们对光学的理解与认识更加透彻,关于光学的各种技术发展越来越快,其中全息技术广泛应用于生活中各个领域,如医学领域、军事领域、艺术领域、测量领域等。本文主要介绍全息技术的基本原理,以及全息技术在防伪技术的中的应用,在简要介绍在其他方面的应用。 关键字:振幅,相位,参考光波,全息防伪,全息投影。 1全息技术的原理 1.1物光波面的记录 全息技术的第一步是将光波的全部振幅和相位信息记录在感光材料上。由于感光材料只能接收光的振幅信息,因此必须想法把相位信息转换成强度的变化才能记录下来。,干涉法是将空间相位调制转换为空间强度调制的标准方法,因此采用相干光干涉条纹来记录图像。 设物体散射的物光波为 êo(x,y)=a o(x,y)exp[iφ0(x,y)] 另一个与物光波相干的参考光波为 êr(x,y)=a r(x,y)exp[iφr(x,y)] a o(x,y)、a r(x,y)、φ0(x,y)、φr(x,y)分别表示各波面的振幅和相位, 这两个相干光波在记录平面上叠加形成的光强为 I(x,y)=| êo(x,y)+ êr(x,y)|2 =| êo(x,y)|2+| êr(x,y)|2+êo*(x,y) êr(x,y)+ êo(x,y) êr*(x,y)

=a r2+a o2+2a r a o cos[φr-φo] 其中,第一项和第二项分别表示参考光波和物光波单独到达全息图的强度,它们的和表示干涉条纹的平均强度,第三项包含了物光波和参考光波的振幅和相位信息。参考光波的作用是使物光波波前的相位分布转化为干涉条纹的强度分布。 底片振幅透射系数t(x,y)为 t(x,y)=k o+k1I(x,y) 其中k o,k1是常数,k1<0是负片,k1>0是正片. t=(k0+k1|êr|2)+k1(|êo|2+|êr*êo+ êrêo*|)=t1+t2+t3+t4 1.2 物光波面的重现 全息术的第二步是利用衍射原理有全息图重现物光波。 如果照明光是与全息图记录时的参考光波完全相同的光波êc=êr, 透过全息图的光波的复振幅分布ê,(x,y)为 ê,(x,y)=êr t={(k0+k1|êr|2)}êr+k1|êo|2êr+k1|êr|2êo+ k1êr2êo*| =t1,+t2,+t3,+t4, 其中,第一项和第二项表示衰减的重现光êr方向不变的透过全息图,第三项是透过全息图的+1级衍射光,除了一个常数衰减外,这是一个与原物光波完全相同的重现物光波,第四项是通过全息图的-1级衍射波,这是一个与原物光波的共轭波。 2全息技术的应用 2.1全息防伪技术 全息防伪技术是应用激光全息技术发展起来的一种新型防伪技

完整word版,全息照相实验报告

全息照相实验报告 学院土环学院班级采矿1502 学号41501556 姓名殷苑文 一、实验目的与实验仪器 实验目的 1.了解全息照相的基本原理; 2.掌握全息照相方法及底片冲洗方法; 3.观察物象再现。 实验仪器 激光器,成套全息照相光具原件及隔振光学平台,白屏,硅光电池及电压表,全息干板,被照物体,显影液和定影液等。 二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 全息记录 由光的波动理论知道,光波是电磁波。 一个实际物体发射或反射的光波比较复杂,但是一般可以看成是由许多不同频率的单色光波的叠加。因此,任何一定频率的光波都包含着振幅和位相两大信息。 全息照相的一种实验装置的光路如图1所示。激光器射出的激光束通过分光板分成两束,一束经透镜扩束后照射到被摄物体上,再经物体表面反射后照射到感光底片上,这部分光叫物光。另一束经反射镜改变光路,再由透镜扩大后直接投射到全息干版上,这部分光称为参考光。由于激光是相干光,物光和参考光在全息底片上叠加,形成干涉条纹。因为从被摄物体上各点反射出来的物光,在振幅上和相位上都不相同,所以底片上各处的干涉条纹也不相同。强度不同使条纹明暗程度不同,相位不同使条纹的密度、形状不同。因此,被摄物体反射光中的全部信息都以不同明暗程度和不同疏密分布的干涉条纹形式记录下来,经显影、定影等处理后,就得到一张全息照片。这种全息照片和普通照片截然不同,一般在全息照片上只有通过高倍显微镜才能看到明暗程度不同、疏密程度不同的干涉条纹。由于干涉条纹密度很高,所以要求记录介质有较高的分辨率,通常达1000 条线/毫米以上,故不能用普通照相底片拍摄全息图。

浅谈全息技术的发展及前景

物 理 小 论 文 程 秋 菊 计 科 B111

浅谈全息技术的发展及前景 摘要:全息技术也称全息照相、全息摄影等,是一种神奇的光信息记录技术。其原理可用八个字来概括“干涉记录,衍射再现”。扥问简单的介绍了全息技术的发展历程,特点,一些突破性的进展,和在现代生活中的应用,以及全息技术的前景。 关键词:全息技术、全息照相、全系信息储存、激光 1、引言 全息技术是一门正在蓬勃发展的光学分支,主要运营用了光学原理,是一种不用透镜,而用相干光干涉得到物体全部信息的二部成像技术。如果说全息技术在照相方面的应用与普通照相技术的最大区别,那就是全息技术能够利用激光的相干性原理,将物体对光的振幅和相位反射(或透镜)同时记录在感光板上,也就是把物体反射光的所有信息全部记录下来,并能够再现出立体的三维图像,儿是光波。全息技术近年来已渗透到社会生活的各个领域并被广泛的应用于近代科学研究和工业生产中,特别是在现代测试。生物工程、医学、艺术、商业、保安、及现代存储技术等方面已显示出特殊的优势。随着全息技术的快速发展,全息技术的产品正越来越走向市场、应用与现代生活中。 2、全息技术的发展简介 全息照相技术是1948年英国科学家丹尼斯伽伯为改善电子显微镜成像质量提出的重现波前的理论,并因此获得诺贝尔奖。但当时由于缺乏纯净的能够相互干涉的光,全息图的质量很差。知道十二年以后的1960年,激光器问世,美国密执安大学的埃梅蒂利斯与朱丽斯尤培妮克拍成了第一张全息照片,全息技术才有了蓬勃快速的发展。 全息技术的发展大约可分同轴全息术、离轴全息术、白光再现全息术、白光全息术等4个阶段。 同轴全息术是伽伯当时采用的技术,这一阶段主要是在1960年激光器出现之前,这种技术获得的物体再现像与照明光混在一起,不易观察。 1948年,伽伯为提高电子显微镜的分辨率,在布拉格的“x射线显微镜”、择尼克的相衬原理的启示下,提出了一种用光波记录物光波的振幅和相位的方法,并用实验证实了这一想法。为了进一步证实其原理,他先后采用了电子波与可见光进行了验证,并在可见光中得到了证实,同时制成了第一张全息图。从那时起至20世纪50年代末期,全息图都是用汞灯作为光源,而且是参考光与物光共轴的共轴全息即同轴全息图。它与4-1级衍射波是分不开的,这是全息术的萌芽时期。这个时期全息图存在2个严重问题,一个是再现的原始像与共轭像分不开;另一个是光源的相干性太差,因此在这10多年中,全息术进展缓慢。 离轴全息术是在激光器出现以后产生的用激光再现的全息术,其特点是获得的物体重现像与照明光分离,易于观察。 1960年激光的出现,提供了一种高相干度光源。1962年,美国科学家利斯和乌帕特尼科斯将通信理论中的载频概念推广到空域中,提出了离轴全息术,就是用立轴的参考光照射全息图,使全息图产生3个在空间相互分离的衍射分量,其中一个复制出原始物光。这样,同轴全息图两大难题宣告解决,产生了激光记录、激光再现的全息图。从而使全息术在沉睡了十几年之后得到了新生并进入了一个极为活跃的阶段。此后,又相继出现了多种全息方法,

激光全息照相

激光全息照相 普通照相记录下来的是物体光波的强度,不能记录相位,因而丢失了物体纵深方向的信息,照片看起来没有立体感。1948年英国科学家盖伯(D. Gabor)在研究电子显微镜的分辨率时,采用了一种两步无透镜成像法,可以提高电子显微镜的分辨本领。他提出的方法,利用了光的干涉原理来记录物光波并利用光的衍射原理来再现物光波,这种方法可以同时记录下物体光波的振幅和相位,这是全息照相的基本原理,为此他在1971年获得诺贝尔物理学奖。 “全息”来自希腊字“holo”,含义是“完全的信息”,即包含光波中的振幅和相位信息。利用激光全息照相得到的全息图,图上的任何一块小区域都能重现整个物体的像。激光全息照相在流场显示、无损探伤、全息干涉计量和制作全息光学元件等领域有着广泛的应用。 一、实验目的 1.加深理解激光全息照相的基本原理; 2.初步掌握拍摄全息照片和观察物体再现像的方法; 3.了解全息照相技术的主要特点,并与普通照相进行比较; 4.了解显影、定影、漂白等暗室冲洗技术。 二、实验原理 1.全息照相与普通照相的主要区别 物体上各点发出(或反射)的光(简称物光波)是电磁波,借助它们的频率、振幅和相位信息的不同,人们可以区别物体的颜色、明暗、形状和远近。普通照相是运用几何光学中透镜成像的原理,把被拍摄物体成像在一张感光底片上,冲洗后就得到了一张记录物体表面光强分布的平面图像,像的亮暗和物体表面反射光的强弱完全对应,但是无法记录光振动的相位,所以普通照相没有立体感,它得到的只能是物体的一个平面像。所谓全息照相,是指利用光的干涉原理把被拍摄物体的全部信息——物光波的振幅和相位,都记录下来,并能够完全再现被摄物的全部信息,从而再现形象逼真的物体立体像。全息照相的过程分两步:记录和再现。全息照相的数学描述见本实验附录A。 2.光的干涉——全息记录 全息照相是一种干涉技术,为了能够清晰地记录干涉条纹,要求记录的光源必须是相干性能很好的激光光源。图1是拍摄全息照片的光路示意图。 由激光器发出的激光束,通过分束镜分成两束相干的透射光和反射光:一束光经反射镜M1反射,再经扩束镜L1扩束后照射到被拍摄物体上,然后从物体投向全息底片H上,这部分光称为物光。另一束光经反射镜M2反射,再经扩束镜L2扩束直接照射到底片上,称为参考光。由于同一束激光分成的两束光具有高度的时间相干性和空间相干性,在照相底片上相遇后,形成干涉条纹。由于被摄物体发出的物光波是不规则的,这种复杂的物光光波是由无数的球面波叠加而成的,因此,在全息底片上记录的干涉图样是一些无规则的干涉条纹,这就是全息图。

三大独家全息投影显示技术解析

三大独家全息投影显示技术解析 昨日,小编跟大家简单说了几个全息投影系统的微显示 模组几个大厂的方案。德州仪器的 DLP Pico 1080p 高清投 影、奇景光电的 Lcos 发射式投影系列、 3M 面向消费级家 庭娱乐公共设置的投影系统。那么今天,小编还是继续跟大 家分享关于全息投影显示技术相关内容。 要知道,在之前的投影机市场,投影光源主要以 led 主,自 06 年三菱推出首款 40 英寸激光电视样机以来, 14 年国际激光显示技术产业化前期创新发展与技术沉淀, 16 年的时候, 激光投影市场才逐渐被打开, 就去年的市场数 据显示,激光投影产品销量已经达到 11 万台,相比上一年 增长了 4 倍之多。激光显示作为第四代显示技术,在我国以 中科院光电研究院为首提前 20 多年布局研发抢占先机,逐 步引导了全球激光显示技术的发展。 在“中国制造 2025“战略 ,未来极有可能由中国品牌引领全球激光显示产业创 新。 目前,微投影技术正在向着光电集成芯片的方向发展,从而 衍生出各式各样的微投影集成显示芯片,其中最常见的就包 括: MEMS 光扫描微投影、 LCD (液晶微型投影技术)透射 微投影、 DLP (由德州仪器开发的数字光学处理技术)以及 LCoS (硅基液晶)反射式微投影 四种主要的显示技术。 光源为 经过

、微视(MicroVision )MEMS 扫描镜及Pico 激光束扫描系统微视(MicroVision )发明的单个微型MEMS 扫描镜组 从16 年底,美国微视公司就与意法半导体(ST )宣布合作开发、生产、销售及推广激光束扫描(LBS )技术,其中LBS 解决方案开发的内容就包括微型投影仪和平视显示器 HUD )。目前,在微电机系统(MEMS )技术已经在硅基片中构成了完整的微显示器,无须再制造附加的上层结构。 MicroVision MEMS 扫描镜结构与原理MEMS 扫描镜内部构造 MEMS 镜组件中有一个反射镜悬浮在常平架(Gimbal Frame )内,常平架上有一个微加工的通电线圈。MEMS 裸片周围安装有永磁体,用于提供磁场。在MEMS 镜组件工作时,只要给MEMS 线圈施加一个电流,就能在常平架上产生一个磁力扭矩,并沿旋转轴的两个方向产生分量。扭矩的两个分量分别负责常平架围绕挠曲悬架旋转和扫描镜谐振模式振

全息照相实验的报告材料

全息照相实验报告 程子豪 2010035012 少年班01 一、实验目的: 1.了解全息照相记录和再现的基本原理和主要特点; 2.学习全息照相的操作技术; 3.观察和分析全息图的成像特性。 二、实验原理: 2.1全息照相原理的文字表述: 普通照相底片上所记录的图像只反映了物体上各点发光(辐射光或反射光)的强弱变化,显示的只是物体的二维平面像,丧失了物体的三维特征。全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。 全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。伽伯也因此而获得了1971年度的诺贝尔物理学奖。 全息照相在记录物光的相位和强度分布时,利用了光的干涉。从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。 具体来说,全息照相包括以下两个过程: 1、波前的全息记录 利用干涉的方法记录物体散射的光波在某一个波前平面上的复振幅分布,这就是波前的全息记录。通过干涉方法能够把物体光波在某波前的位相分布转换成光强分布,从而被照相底片记录下来,因为我们知道,两个干涉光波的振幅比和位相差决定着干涉条纹的强度分布,所以在干涉条纹中就包含了物光波的振幅和位相信息。典型的全息记录过程是这样的:从激光器发出的相干光波被分束镜分成两束,一束经反射、扩束后照在被摄物体上,经物体的反射或透射的光再射到感光底片上,这束光称为物光波;另一束经反射、扩束后直接照射在感光底片上,这束光称为参考光波。由于这两束光是相干的,所以在感光底片上就形成并记录了明暗相间的干涉条纹。干涉条纹的形状和疏密反映了物光的位相分布的情况,而条纹明暗的反差反映了物光的振幅,感光底片上将物光的信息都记录下来了,经过显影、定影处理后,便形成与光栅相似结构的全息图—全息照片。所以全息图不是别的,正是参考光波和物光波干涉图样的记录。显然,全息照片本身和原来物体没有任何相似之处。 2、衍射再现 物光波前的再现利用了光波的衍射。用一束参考光(在大多数情况下是与记录全息图时用的参考光波完全相同)照射在全息图上,就好像在一块复杂光栅上发生衍射,在衍射光波中将包含有原来的物光波,因此当观察者迎着物光波方向观察时,便可看到物体的再现像。这是一个虚像,它具有原始物体的一切特征。此外还有一个实像,称为共轭像。应该指出,共轭波所形成的实像的三维结构与原物并不完全相似。

激光全息检测技术资料

激光全息检测技术 1.激光全息检测技术概述 全息术或称全息照相(Holography )的思想是英国科学家丹尼斯·伽柏(Dennis Gabor )在1948年首先提出来的。由于他的发明和对全息技术发展的巨大作用,他于1971年被授予诺贝尔物理学奖。 全息术与普通照相术的区别是,普通照相术只记录物体表面光波的振幅信息,而把相位信息丢掉了,这样只记录物体表面光波部分信息(二维信息)的照片无论从什么角度看都是一样的。而全息术是利用光的干涉和衍射原理,将物体发射的特定光波以干涉条纹的形式记录下来,在一定条件下使其再现,形成物体逼真的三维像。由于记录了物体的全部信息(振幅、相位、波长),因而成为全息术或全息照相。如图,比较了全息照相与普通照相的区别: 激光全息无损检验是全息干涉分析的一种应用,它可以用来监视一个复杂的物体在两种不同时刻里所发生的变形,不管物体表面是光洁还是粗糙,都可以观测到光学公差水平几分之一微米以下,由于它是利用全息技术再现原理,因此是无接触地进行三维立体观测。 同其他检测方法比较,激光全息检测的方法有如下优点: 1. 激光全息检测是一种干涉测量技术,干涉测量精度与激光波长同数量级,微小(微米数量级)的变形均能被检测出来,检测灵敏度高; 2.由于激光的相干度很高,因此,可以检测大尺寸工件,只要激光能够充分照射到这个工件表面,都能一次检测完成; 3.对被检对象没有特殊要求,可以检测任何材料和粗糙表面; 4.可对缺陷进行定量分析,根据干涉条纹的数量和分布确定缺陷的大小、部位、深度。 5.非接触测量、直观、检测结果便于保存。 但是,物体内部缺陷的检测灵敏度,取决于物体内部的缺陷在外力作用下能否造成物体表面的相应变形。如果物体内部缺陷过深或过于微小,那么激光全息照相这种检测方法就无能为力了。对于叠层胶接结构来说,检测其脱粘缺陷的灵敏度取决于脱粘面积和深度比值,在近表面的脱粘缺陷面积,即使很小也能检测出来,而对于埋藏的较深的脱粘缺陷,只有在脱粘面积相当大时才能够被检测出来。另外,激光全息检测目前多在暗室中进行,并需要采用严格的隔震措施,因此不利于现场检测。 综上,激光全息检测具有如下缺点: 1.对内部缺陷的检测灵敏度较低:灵敏度取决于内部缺陷在外力作用下所造成的物体表面的变形大小。 2.对工作环境要求较高:暗室中进行,严格的隔振措施。 图1:全息照相与普通照相的区别

3 第3节 光的偏振 第4节 激光与全息照相

第3节光的偏振 第4节激光与全息照相 1.了解振动中的偏振现象,知道只有横波才有偏振现象,知道光是一种横波. 2.知道偏振光和自然光的区别,知道光的偏振说明光是横波.(重点+难点) 3.知道激光的产生原理和主要特点,了解激光的特性和应用.(重点) 4.知道激光在全息照相中的应用原理和特点. 一、光的偏振 1.偏振现象 (1)如果横波只沿某一个特定的方向振动,在物理学上就叫做波的偏振.只有横波才有这种特性.因为纵波的振动方向和传播方向始终在同一直线上,所以纵波不存在偏振. (2)光波属于电磁波,是横波,具有偏振性.太阳、电灯、蜡烛等普通光源发出的光不显示偏振性. 2.偏振片:只让某一方向振动的光通过,而不让其他方向振动的光通过的一种光学元件. 3.光的分类 (1)自然光:太阳、电灯等普通光源发出的光,在垂直于传播方向的平面内,光波可沿任何方向振动,光的振动在平面内是均匀分布的. (2)偏振光 ①自然光通过偏振片(起偏器)之后,只有振动方向与“狭缝”方向相同的光波才能完全通过.自然光通过偏振片后,就能获得偏振光. ②起偏器和检偏器:用于获得偏振光的偏振片叫起偏器,用于检查通过起偏器的光是不是偏振光的偏振片叫检偏器. ③偏振器的偏振化方向:偏振光能完全通过的方向. 4.偏振现象的应用 (1)立体电影. (2)在照相机镜头前装一偏振片,并适当旋转偏振镜片,能够阻挡偏振光,消除或减弱光滑物体表面的反光或亮斑.

(3)利用偏振光通过受力的塑料或玻璃时,偏振化方向会发生变化这一现象,检查应力的分布情况以及用于地震预报. 1.(1)只有横波才能发生偏振,纵波不能发生偏振.() (2)光的偏振现象证明光是横波.() (3)自然界不存在偏振光,自然光只有通过偏振片才能变为偏振光.() 提示:(1)√(2)√(3)× 二、激光与全息照相 1.激光及其特性 (1)激光是原子受激辐射产生的光.发光的方向、频率、偏振方向均相同,两列相同的激光相遇可以发生干涉.激光是人工产生的光. (2)激光具有相干性好、单色性好、亮度高、方向性强等特点. (3)激光用途很广,在农业领域可以用来育种,在医疗领域可以用激光作为手术刀来切割组织,在军事领域可以制作各种激光武器,在工业领域可以利用激光进行切割金属等难熔物质. 2.激光与全息照相 (1)全息照相是利用光的干涉来实现的. (2)作为光源的激光被分成两部分:一部分通过凹透镜发散后射到照相胶片上,另一部分射向一个平面镜,经反射后通过另一个凹透镜发散后射向被拍照的物体,该物体把光线反射到照相胶片上并与第一束光发生干涉,两束光干涉的结果就在照相胶片上记录下被拍摄物体的三维图像信息,这就是全息照相. 2.(1)激光用于光纤通信是利用了它亮度高的特点.() (2)激光可用做“光刀”来切开皮肤,是利用了激光的相干性好.() (3)全息照相技术只能记录光波的强弱信息.() 提示:(1)×(2)×(3)×

激光全息三维显示技术

激光全息三维图像的研究已经进行了40多年,在工业、经济、生活等方面已具有多种应用。传统的全息摄影技术本质上是一种模拟的非实时性的繁琐的纯光学技术,近年来兴起的数字信息处理技术及其有关器件设备(计算机、数码摄像机、CCD 器件、新型液晶显示屏、空间光调制器、因特网等)和自动化控制技术不断冲击传统的全息摄影技术,使它有了新发展。 一、什么是全息三维? 全息三维显示包括文物,人像,标本,模型,图象的三维逼真空间显示,在这方面传统全息图(彩虹,反射,模压,银盐,明胶,光刻胶等全息图)已有不少的应用,但由于传统全息图的缺点(面积小,视场小景深不够大,颜色不逼真,拍摄处理过程繁琐。不易进行实时处理,模拟成像的局限性,等等。)妨碍了三维显示全息技术的进一步发展和市场化。 二、ZEBRA全息图的原理与优势 1999年美国ZEBRA IMAGING公司推出了、真彩色数字化大面积大视场大景深光聚合物反射全息图,推动了三维显示全息图的进一步发展和市场化。ZEBRA 全息图将全息技术和计算机技术结合起来,形成新的数字化自动化象素全息图技术,全息图颜色鲜艳逼真不变,水平和垂直动态视场分别可达100度,全息图面积可以任意大,使全息三维显示技术在空间显示,广告宣传,文物,人像,标本,模型,实物图象,抽象图象,工业数据,工业设计等等方面的三维逼真空间显示前进了一大步,显示了全息图应用光辉灿烂的前景。 本文出自:https://www.doczj.com/doc/d114868509.html,/ 深圳市通发激光设备有限公司,专业从事模具激光焊机的开发、销售与维护和模具激光焊技术的推广。转载请注明出处,谢谢 日常生活和工作中常见的图像多半是一维或二维的,例如照片、画片、荧光屏、液晶显示屏、大屏幕上呈现出来的图像文字或信号等等。本文中所研究的图像是指呈现在空间的三维图像,在普通室内漫射光照射下并不呈现明显图像,但用定向白光照明(多媒体投影机灯泡发出的白光)后可在空间再现出三维图像,可看到不同侧面和不同深度,犹如原物一样。

全息照相实验实验报告

物理与光电工程学院 光电信息技术实验报告 姓名:张皓景 学号:20111359069 班级:光信息科学与技术专业2011级2班实验名称:全息照相实验 任课教师:裴世鑫

一、实验目的 1.了解光学全息照相的基本原理及其主要特点。 2.学习全息照相的拍摄方法和实验技术。 3.了解全息照相再现物像的性质、观察方法。 二、实验仪器 三、实验装置示意图 5底片 图1 全息照相光路 四、实验原理 全息照相是一种二步成像的照相技术。第一步采用相干光照明,利用干涉原理,把物体

在感光材料(全息干版)处的光波波前纪录下来,称为全息图。第二步利用衍射原理,按一定条件用光照射全息图,原先被纪录的物体光波的波前,就会重新激活出来在全息图后继续传播,就像原物仍在原位发出的一样。需要注意的是我们看到的“物”并不是实际物体,而是与原物完全相同的一个三维像。 1.全息照相的纪录——光的干涉 由光的波动理论知道,光波是电磁波。一列单色波可表示为: 2cos(t )r x A πω?λ =+- (1) 式中,A 为振幅,ω 为圆频率,λ 为波长,φ 为波源的初相位。 一个实际物体发射或反射的光波比较复杂,但是一般可以看成是由许多不同频率的单色光波的叠加: 1 2cos(t )n i i i i i r x A πω?λ==+- ∑ (2) 因此,任何一定频率的光波都包含着振幅(A )和位相(ωt+φ-2πr/λ)两大信息。 全息照相的一种实验装置的光路如图(1)所示。激光器射出的激光束通过分光板分成两束,一束经透镜扩束后照射到被摄物体上,再经物体表面反射(或透射)后照射到感光底片(全息干版)上,这部分光叫物光。另一束经反射镜改变光路,再由透镜扩大后直接投射到全息干版上,这部分光称为参考光。由于激光是相干光,物光和参考光在全息底片上叠加,形成干涉条纹。因为从被摄物体上各点反射出来的物光,在振幅上和相位上都不相同,所以底片上各处的干涉条纹也不相同。强度不同使条纹明暗程度不同,相位不同使条纹的密度、形状不同。因此,被摄物体反射光中的全部信息都以不同明暗程度和不同疏密分布的干涉条纹形式记录下来,经显影、定影等处理后,就得到一张全息照片。这种全息照片和普通照片截然不同,一般在全息照片上只有通过高倍显微镜才能看到明暗程度不同、疏密程度不同的干涉条纹。由于干涉条纹密度很高,所以要求记录介质有较高的分辨率,通常达1000 条线/毫米以上,故不能用普通照相底片拍摄全息图。 2.全息照相的再现——光的衍射 由于全息照相在感光板上纪录的不是被摄物的直接形象,而是复杂的干涉条纹,因此全息照片实际上相当于一个衍射光栅,物象再现的过程实际是光的衍射现象。要看到被摄物体的像,必须用一束同参考光的波长和传播方向完全相同的光束照射全息照片,这束光叫再现光。这样在原先拍摄时放置物体的方向上就能看到与原物形象完全一样的立体虚像。如图2 所示把拍摄好的全息底片放回原光路中,用参考光波照射全息片时,经过底片衍射后有三部分光波射出。 0 级衍射光——它是入射再现光波的衰减。 +1 级衍射光——它是发散光,将形成一个虚像。如果此光波被观察者的眼睛接收,就等于接收了原被摄物发出的光波,因而能看到原物体的再现像。

激光全息照相

实验32 激光全息照相 【实验目的】 1、学习全息照相的基本原理和方法。 2、了解全息照相的主要特点。 3、学习观察全息照片的方法。 【实验装置】 全息照相的整套装置(PHYWE),如图1所示: 【全息照相的特点】 全息照相与普通照相无论在原理上还是方法上都有本质上的差别。普通照相是以几何光学的折射定律为基础,利用透镜把物体成像在平面上,记录各点的光强或振幅分布,物象之间各点一一对应,但却是二维平面像上的点与三维物体各点之间的对应,因此并不完全逼真,即使一般所谓的“立体照相”也多是利用双目视差的错觉,而不是物体的真正三维图象。而全息照相是以光的干涉、衍射等物理光学的规律为基础,借助于参考光波记录物光波的振幅与位相的全部信息, 在记录介质(如感光干版)上得到的不是物体的像,而只有在高倍显微镜下才能观察得到的细密干涉条纹,称之为全息图。(在感光版上看见的同心环,斑纹之类不是原来物体的真正信号,而是由给出参考光的发射镜上的灰尘微粒及其它散射物引起的。)条纹的明暗程度和图样反映了物光波的振幅与位相分布,好象是一个复杂的衍射光栅,只有经过适当的再照明才能重建原来的物光波。 与普通照片相比,全息照片还具有如下几个特点: 1)全息照片在适当的照明下重建物光波与原来的物光波具有相同的深度和视差。改变观察的位置,就可以看到景物被遮拦的物体,观察近距离的物体,眼睛必须重新调焦。 2)把全息照片分成小块,其中每一小块都可以再现整个图象。因为照片上每一点都受到参考光和被摄物体所有部分的光的作用,所以这些点就用编码的形式包含了整个图象的信息。但是当小块逐渐减小时,分辨率逐渐变差。这是因为分辨率是成像系统孔径的函数。 3)全息照片可以用接触法复制,但无正负片之分,不论是原来的还是复制的都再现被摄物体的正像。而且无论照明乳剂的反差特性如何,再现影象的反差同原物体的反差都非常接近。 4)全息照片绕垂直轴线转,引起一个倒转的像,让全息照片绕一水平轴线旋转,也产

全息投影技术:虚拟成像背后的原理

全息投影技术:虚拟成像背后的原理 全息投影技术(front-projected holographic display)也称虚拟成像技术,是利用干涉和衍射原理记录并再现物体真实的三维图像的技术。不仅可以产生立体的空中幻像,还可以使幻像与表演者产生互动,一起完成表演,产生令人震撼的演出效果。操作者可以通过自己的肢体去控制系统,并且实现与互联网玩家互动,分享图片、影音信息。 随着上世纪60年代激光被发现之后,全息投影技术也迎来了快速的发展。如今全息投影的实现主要依靠水雾投影、全息膜投影等几种方式,其中全息膜投影技术凭借较低的成本已经实现了大规模商业化,我们在舞台上看到的立体影像大都是通过这种方式实现的。

全息技术,被业界誉为显示领域的另一项革命性新技术。全息技术是利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。 成像原理 全息技术第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的相位和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间

隔将物体光波的全部信息记录下来。记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片。 显像过程 显像过程,就是利用参考光对物光的完全重现,全息显成像过程光路图如下。 全息技术第二步是利用衍射原理再现物体光波信息,这是成象过程:全息图犹如一个复杂的光栅,在相干激光照射下,一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。再现的图像立体感强,具有真实的视觉效应。全息图的每一部

全息照相原理及应用

1引言 我们看到的世界是三维的、彩色的,这是因为每个物体发射的光被人眼接受时,光的强弱、射向和距离、颜色都不同。从波动光学的观点看,是由于各物体发射的特定的光波不同,光的特征主要取决于光波的振幅、相位、和波长。如果能看到景物光波的完全特征,就能看到景物逼真的三维像,这就是全息术。全息术诞生到现在60年来取得了很大的进展,已经被广泛应用于近代科学研究和工业生产中。 1948年,丹尼斯·盖伯提出一种记录光波振幅和相位的方法,随后用实验验证了这一想法,即全息术,并制成世界上第一张全息图。全息术在刚开始的十多年中进展缓慢,直到激光的出现使得全息术获得巨大进展。总结全息照相的发展,可以分为四个阶段:第一阶段是用水银灯记录同轴全息图,这时是全息照相的萌芽时期,主要原因是没有好的相干光源,再现像和共轭像不能分离;第二阶段是用激光记录、激光再现的全息照相,能够把原始像和共轭像分离;第三阶段是激光记录、白光再现的全息照相,主要有反射全息、象全息、彩虹全息及合全息;第四阶段是当前所致力的方向,就是白光记录全息图。[1]

2 全息照相的原理 全息照相是一种二步成像的照相技术,它利用物光和参考光在感光胶片上进行干涉叠加形成全息照片,在运用衍射原理使之再现,因此全息照相的过程包括全息记录和全息再现两个过程。 2.1 全息记录 2-1图 全息记录 如图1所示,激光器射出的激光束通过分束镜分成两束,一束光经扩束镜扩束后直接投摄到感光底片上,这束光称为参考光,另一束光经反射镜反射及扩束镜扩束后射到被摄物体上,在经过物体反射到感光板上,这束光称为物光。两束光将在感光板上产生干涉,形成干涉条纹。设 物光波:()()()1,00,=A ,i x y U x y x y e ?-?% 参考光波:()()()2,,=A ,i x y R R U x y x y e ?-?% 式中012,,,R A A ??分别为物光波参考光波的振幅和初相位。当两束光波发生干涉,其合成光波为:

激光全息技术及其发展

激光全息技术及其发展 所谓全息照片就是一种记录被摄物体反射(或透射)光波中全部信息的先进照相技术。全息照片不用一般的照相机,而要用一台激光器。激光束用分光镜一分为二,其中一束照到被拍摄的景物上,称为物光束;另一束直接照到感光胶片即全息干板上,称为参考光束。当光束被物体反射后,其反射光束也照射在胶片上,就完成了全息照相的摄制过程。全息照片和普通照片截然不同。用肉眼去看,全息照片上只有些乱七八糟的条纹。 可是若用一束激光去照射该照片,眼前就会出现逼真的立体景物。更奇妙的是,从不同的角度去观察,就可以看到原来物体的不同侧面。而且,如果不小心把全息照片弄碎了,那也没有关系。随意拿起其中的一小块碎片,用同样的方法观察,原来的被摄物体仍然能完整无缺地显示出来。全息照相的原理是利用光的干涉原理,利用两束光的干涉来记录被摄物体的信息。 1948年,英国人丹尼斯·加拍正在研究光的干涉现象,以提高电子显微镜的分辨率。光的干涉在日常生活中常能见到:吹几个肥皂泡,给阳光一照,能呈显艳丽的色彩;在一张纸屏上戳两个小孔,让光透射到墙上,便可看到明暗相间的条纹。原来,光是一种波,包含有振幅与位相两个物理要素。当两束相干光迭加时,在位相相同的地方波幅相加,出现亮纹,位相相反的地方就为暗纹。加拍从这些若明若暗的干涉图中,得到了启发。既然光的干涉现象是光波位相不同所造成的,那么,换句话说,在光的干涉图中,就记录有光的位相信息。而这不正是照相技术渴望以求的吗? 原来,普通照片是根据景物所反射的光波亮度强弱感光而成的,它只能记录光的振幅信息,拍摄的景物是平面图像,没有立体真实感。只有当光的位相信息也能被同时记下来,并重新表现出来时,照片才能给人以远近深浅的立体感。加柏在光干涉的现象中,找到了解决普通照相缺陷的途径,提出了全息照相的理论。激光解决难题,加拍的方法看来似乎极为简单,但要完全解决拍摄全息照相的难题并非轻而易举,因为当时缺乏理想的单色相干光源。60年代激光的问世,才为全息术提供了理想的相干光源。1963年,在美国密执安大学从事雷达工作的利思和乌巴特尼克斯两个人首先做出了第一张成功的全息照相。 激光全息照相用不着普通照相机所用的透镜,只要把激光分为两束,一束照明物体,使其反射成物波;一束作为参考光直接射向底片。由于从景物上反射的物波,到达底片所经历的光程各不相同,因而位相千差万别,与参考光相干涉的结果,便在底片上同时记下了全部信息。 全息照相的底片上面尽是干涉花纹。只有用与记录时相同的参考光照明全息底片时,才能将原始物波重现出来。而且,在我们眼睛中,这个立体的再现现象与真实的物体简直无法区分了。 激光全息摄影很快得到了广泛应用。前面讲到的那家珠宝店,就是把最吸引人的珠宝拍摄在一帧围成圆筒形状的全息照相底片上,再套置在一盏清晰明亮的白炽照明灯上,放进橱窗,就此以假乱真。同样地,对于收藏珍贵的历史文物、稀有动物标本、各种精制器件、复杂的分子结构模型、医学或生物学的图像等都可以制作成全息照片加以展示。全息术的重要作用

激光全息照相(大物实验总结)讲解

激光全息照相 摘要:全息的意义在于记录光波的全部信息。自从20世纪60年代激光出现以来,全息照相得到了全面的发展和广泛的应用。本文简述了全息照相的实验原理及实验技巧,并给出了其应用前景。 关键词:激光全息照相,原理,技巧,应用 引言 光是一种电磁波,它的全部信息包含:振幅(反映物体上各点发出的光的强弱,决定像的强度,位相(反映物体上各点在空间的相对位置,决定像的形状和频率(反映光的颜色。普通照相只记录了振幅,得到的是二维平面像,而全息照相在记录振幅信息的同时还记录了位相信息,即记录了光波的全部信息。因而这种照相称为全息照相。全息照相得到的是三维空间的立体像,它所依据的基本原理通常概括为“干涉记录,衍射再现”。全息摄影技术的应用十分广泛,目前,已应用于精密测量、无损探伤、指纹识别、高速摄影、全息显微术、信息处理和信息储存等许多领域。 1.全息照相术的起源 早在1948年.全息照相的奥秘由Denis Gabor所发现.它通过光的衍射使图象由平面变为立体.因而获得诺贝尔物理奖.1982年.美国加里福尼亚物理学家Steve Mc Grew 开发了从玻璃版转移到镍薄片上的操作方法。使得全息图能够以高速而低成本地压印在塑料薄膜上成为可能.八十年代中,Steve Mc Grew遇到了英国John Brown.他们合伙在英国建立了欧洲光压印公司(Light Impressions Europe。该公司在发展浮雕式全息照相工业起到了先锋作用.例如礼品业、时装业都采用了该公司的全息图标贴,作为市场促销的工具.1987年.该公司的乙烯基压敏胶全息图获得了促进应用全息图的Fasson奖. 2.实验原理及技巧

激光全息细胞成像系统讲解

激光全息细胞成像及分析系统应用 细胞活力 激光全息细胞成像及分析系统可以实时监测细胞死亡过程,以及通过图像进行记录。全息技术再不需要荧光标记的情况下可以得到细胞形态学数据。Khmaladze A. et al(2012和Pavillion N. et al(2012使用DHM 研究细胞死亡过程,观察到死亡过程中细胞体积显著减小。Kuhn et al(2013使用DHM 研究活/死细胞特点时得到实验结果和和基于荧光标记方法结果相一致。他们使用PI 和Hoechst 标记细胞。染料法鉴定细胞死活是目前常见的鉴定方法,其中台盼蓝染色方法最常见。台盼蓝可穿透变性的细胞膜,与解体的DNA 结合,使其着色,而活细胞能阻止染料进入细胞内,故可以鉴别死细胞与活细胞。鼠成纤维细胞L929接种在μ-slide(Ibidi,Germany 上,肿瘤药物依托泊苷etoposide(100μM处理细胞,使用激光全息细胞分析系统(M3 分析细胞的死亡,并与台盼蓝染色法进行比较。图1中左图为台盼蓝染色结果,右图为全息结果,细胞越白,细胞越厚。死细胞是圆的,薄的。两种方法得到的结果是 一样的。

图1

图2细胞厚度VS 细胞体积,死亡细胞集中在绿色区域 细胞凋亡 细胞死亡起码有两种方式,即细胞坏死(necrosis)与细胞凋亡(apoptosis。细胞坏死是细胞受到强烈理化或生物因素作用引起细胞无序变化的死亡过程。表现为细胞胀大,胞膜破裂,细胞内容物外溢,核 变化较慢,DNA 降解不充分,引起局部严重的炎症反应。细胞凋亡是指为维持内环境稳定,由基因控制的细胞自主的有序的死亡。在这两种过程中,细胞体积都会减少,形态学都会发生变化。 前列腺癌细胞DU145和小鼠成纤维细胞L929分别接种在IBIDI-micro slides (IBIDI)上,接种24h 后,50μM依托泊苷(etoposide 处理细胞,HoloMonitor M3分析细胞死亡过程。

全息照相技术

全息照相技术 建电131 徐芳勤 02

内容摘要: 全息照相是应用光的干涉来实现的,它用激光作光源,通过全息记录和再现过程实现,全息照相较之普通照相有许多优点,它既记录光波的振幅,又记录位相的全部信息,是一种利用波的干涉记录被摄物体反射(或透射)光波中信息(振幅、相位)的照相技术。全息摄影是通过一束参考光和被摄物体上反射的光叠加在感光片上产生干涉条纹而成。全息摄影不仅记录被摄物体反射光波的振幅(强度),而且还记录反射光波的相对相位。为了满足产生光的干涉条件,通常要用相干性好的激光作光源,而且光和照射物体的光是从同一束激光分离出来的。感光片显影后成为全息图。所以全息照相技术有重要的实际应用。 关键词: 全息照相,波的干涉,全息照片,全息摄影 引言: 我们看到的世界是三维的、彩色的,这是因为每个物体发射的光被人眼接受时,光的强弱、射向和距离、颜色都不同。从波动光学的观点看,是由于各物体发射的特定的光波不同,光的特征主要取决于光波的振幅、相位、和波长。如果能看到景物光波的完全特征,就能看到景物逼真的三维像,这就是全息术。全息术诞生到现在60年来取得了很大的进展,已经被广泛应用于近代科学研究和工业生产中。

1947年匈牙利出生的英国物理学家D.伽柏(D.Gabor)最先提出全息术的设想,意图提高电子显微镜的分辨本领。方法是完全撇开电子显微物镜,用胶片纪录经物体衍射的末聚焦的电子波,得到全息图。 1962年苏前联科学家U.丹尼苏克(Denisyuk)提出了反射全息图的方法,第一次用普通的白织灯照明全息图观察到全息像。 1965年,R.L.鲍威尔,K.A.斯泰特森提出全息干涉术。物体在施加应力前后经过两次全息曝光,再现的全息像上的等高线显示物体变形的状况。 1968年,S.A.本顿发明彩虹全息术,由于可用白光观察全息图,看到记录物体的彩虹像,成为显示全息术的重要进展。它使后来通过模压技术批量生产全息图成为现实。从此全息术才真正的走出实验室,在生产实践和科学研究领域中成为了重要角色,以全息电影和全息电视,全息储存、全息显示及全息防伪商标等各种形式存在。 全息照相原理: 全息照相分为两步。第一步利用干涉法拍摄全息图(全息照片),如图1(a)所示。从激光器发出的相干光束,被分束镜分成两束光,一束光照明到被摄物体,从物体上反射或散射的物光射到感光胶片上。另一部分光束投射到反射镜,被反射的光波直接照射到感光胶片上,这束光称为参考光。物光与参考光在胶片上迭加干涉,产生的干涉图样即记录了物体振幅和位相的全部信息。这张具有干涉图样的胶片经过适当曝光与冲洗处理后,就是一张全息图(全息照片)。这一拍摄

激光全息印刷技术特点及全息材料应用

激光全息印刷技术特点及全息材料应用 【深圳盾牌防伪讯】激光全息标识在包装印刷领域的应用逐年增加,烟、酒、医药、化妆品等产品的包装防伪都离不开激光全息标识。 激光全息印刷即激光彩虹全息印刷,是一种利用光学技术的高新印刷工艺。它不仅可以再现原物的主体形象,还可以随观察视线方位的变化,显现原物不同的侧面形状,激光全息图像利用白光衍射光栅的原理,使图像效果多变、五光十色、绚丽多彩、色彩神气、层次明显、生动逼真、信息及技术含量高,激光全息图像的制作和复制技术含量高,需要专业人才,加工工艺复杂,设备昂贵,图像本身具有难以仿制的特点,因此,它在20世纪80年代就开始广泛用于防伪领域。目前随着加密全息、三维全息和真彩色全息等高新技术的引入,以及用防揭型和烫印型两种电化铝薄膜制作模压的全息图的推广应用,更加大了激光全息材料的防伪力度。 激光全息材料是一种高新技术的新型材料,在包装和防伪印刷上广泛应用。激光全息膜使用的原材料主要有PVC、PET、OPP、BOPP等,品种有激光镀铝膜、激光透明上光膜、激光烫金纸、激光转移纸等系列,颜色有金、银、红、蓝、绿、黑等。激光全息材料将具有良好防伪效果的激光全息图像防伪技术与烫印、模压等印刷装饰技术融为一体,使产品在提高整饰装潢效果的同时更增添了防伪性能。此外,激光全息技术还与其它技术结合,产生出诸如激光全息加荧光防伪膜、柔性透明激光全息防伪膜、原子核机密防伪激光全息膜等高新技术的产品,更提高了激光全息膜的质量和防伪效果。 激光全息图是根据激光干涉原理,利用空间频率编码的方法制作而成。激光全息标识在包装印刷领域的应用逐年增加,烟、酒、医药、化妆品等产品的包装防伪都离不开激光全息标识。目前,已研制开发出多种激光全息材料,应用于不同的包装和防伪印刷领域。但由于激光全息标识印刷不仅有印刷方面的内容,还涉及到激光等高科技的领域,因此,对于在印刷中出现的一些问题无从下手,从而影响了印刷速度和产品质量,下面就简单介绍一些激光全息标识印刷的知识。 激光全息标识印刷是利用激光全息成像技术发展而来的一种防伪印刷技术。用一束激光及从这束激光分出的参照光从不同角度照射一个立体模型。模型反射的光线通过一个狭缝形成包含模型全息信息的干涉条纹。将这种干涉条纹记录在感光胶片上,翻制成镍版,然后压制在镀铝薄膜上就可在普通光照下再现模型的全息图案。这就是激光全息印刷的制作原理。第一个激光全息膜标识的使用是威士忌酒,后来这种标识便风靡世界,广泛应用于各种票证、信用卡、产品包装等方面的防伪印刷。 激光全息材料是模压全息技术与光学、化学、机械及真空技术相结合的当代高新技术产品。激光全息模压技术属于一种全息光栅技术,它是利用激光全息原理,将成像物体或多级的印刷设备的材料进行快速复制的全过程。激光全息包装材料的制作技术高,设备精良,工艺复杂,经加工后产品极易破坏,因此它具有很高的装饰性和观赏价值,并且由此使包装具有很好的防伪效果。激光全息材料拓展了激光模压全息的技术和用途,把栩栩如

相关主题
文本预览
相关文档 最新文档