当前位置:文档之家› 连续系统的模拟

连续系统的模拟

连续系统的模拟

第四节 连续系统的模拟

系统模拟是在整个运行过程中对系统的仿真,是非常有效的和广泛使用的分析、研究复杂系统的技术.在一定假设条件下,利用数学运算模拟系统的运行,称为数学模拟.现代的数学模拟都是在计算机上进行的,因此也称为计算机模拟,简称模拟(simulation)

模拟分为静态模拟(static simulation)和动态模拟(dynamic simulation).数值积分中的蒙特卡洛方法是典型的静态模拟.动态模拟又分为连续系统模拟和离散系统模拟.

状态随着时间连续变化的系统,称为连续系统(continuous system).对连续系统的计算机模拟是近似地获取系统状态在一些离散时刻点上的数值.在一定假设条件下,利用数学运算模拟系统的运行过程.连续系统模型一般是微分方程,它在数值模拟中最基本的算法是数值积分算法.例如有一系统可用微分方程来描述

),(y t f dt

dy =已知输出量y 的初始条件,现在要求出输出量y 随时间变化的过程。最直观的想法是:首先将时间离散化,令00)(y t y =)(t y k k k t t h ?=+1,称为第k 步的计算步距(一般是等间距的),然后按以下算法计算状态变量在各时刻上的近似值

)(t y 1+k t ),)(,()(111k k k k k k k t t y t f y y t y ?+=≈+++ 其中初始点按照这种作法即可求出整个的曲线.这种最简单的数值积分算法称为欧拉法.除此之外,还有其他一些算法.

",2,1),,(00=k y t )(t y 因此,连续系统模拟方法是:首先确定系统的连续状态变量,然后将它在时间上进行离散化处理,并由此模拟系统的运行状态.

实验二 连续时间系统的模拟实验报告

信号与系统 实验报告 (信号与系统实验箱) HD-XH-II型 实验二连续时间系统的模拟 学院 专业班级 姓名学号 指导教师 实验报告评分:_______

连续时间系统的模拟 一、实验目的 1.了解用集成运算放大器构成基本运算单元—标量乘法器,加法和计分器,以及它们的组合全加积分器的方法。 2.掌握用以上基本运算单元以及它们的组合构成模拟系统,模拟一阶和二阶连续时间系统的原理和方法,并用实验测定模拟系统的特性。 二、实验内容及步骤 1.一阶模拟系统阶跃响应的观测 (1)对图9-5(c)的实际的电路,在输入端TP901处输入幅度Uim=0.2V,频率=200HZ的方波,观测输入波形及输出(TP903处)响应波形,比较输入波形与输出波形的周期和幅度,测量时间常数τ和放大倍数A。 (2)输入幅度Uim=0.2V的正弦波信号,由低频(20HZ左右)开始,缓慢改变正弦波信号频率,测出低通滤波器的截止频率f0. 2.二阶模拟系统频率特性测试 对图9-6(c)的实际电路,在输入端TP905处输入幅度Uim=0.2V正弦波,改变正弦波的信号频率,此时,应注意保持输入电压不变,记录相应的输出(TP907处)电压值,画出扶贫特性曲线,测定系统的放大倍数A,中心频率f0及其频带宽度Bw,计

算品质因素Q。 三、实验过程 一阶模拟系统 一阶模拟系统输入波形: 输出波形:

(1)放大倍数A=Rf/R1=10K/1K=10 H(s)=(a^2)/(s^2+3*a*s+a^2) 其中a=1/RC,值为4170。 以log f为横坐标,Vo/Vi为纵坐标,绘制滤波器的幅频特性曲线。再以log f为横坐标,Φ(ω)为纵坐标,绘制滤波器的相频特性曲线。 RC低通滤波器幅频响应曲线图如下:

连续系统仿真的方法

第3章 连续系统仿真的方法 3.1 数值积分法 连续系统数值积分法,就是利用数值积分方法对广微分方程建立离散化形式的数学模型——差分方程,并求其数值解。可以想象在数学计算机上构造若干个数字积分器,利用这些数字积分器进行积分运算。在数字计算机上构造数字积分器的方法就是数值积分法,因而数字机的硬件特点决定了这种积分运算必须是离散和串行的。 把被仿真系统表示成一阶微分方程组或状态方程的形式。一阶向量微分方程及初值为 () (),00t Y Y t Y ???? ?????? Y =F = (3-1) 其中,Y 为n 维状态向量,F (t ,Y )为n 维向量函数。 设方程(3-1)在011,,,,n n t t t t t +=…处的形式上的连续解为 ()()()()n+1n+1 t t n+10t t t =Y t +,(),n Y F t Y dt Y t F t Y dt =+ ?? (3-2) 设 n =() n Y Y t ,令 1n n n Y Y Q +=+ (3-3) 则有: ()1n+1t n Y Y += 也就是说, 1 (,)n n t n t Q F t Y dt +≈ ? (3-4) 如果n Y 准确解()n Y t 为近似值,n Q 是准确积分值的近似值,则式(3-4)

就是式(3-2)的近似公式。换句话说,连续系统的数值解就转化为相邻两个时间点上的数值积分问题。 因此,所谓数值解法,就是寻求初值问题(3-1)的真解在一系列离散点12n t t t <…<…上的近似解12,,,n Y Y Y ……,相邻两个时间离散点的间隔 1n n n t t +=-h ,称为计算步距或步长,通常取n =h h 为定值。可见,数值积分法的主要问题归结为对函数(,)F t y 的数值积分问题,即如何求出该函数定积分的近似解。为此,首先要把连续变量问题用数值积分方法转化成离散的差分方程的初值问题,然后根据已知的初值条件0y ,逐步地递推计算后续时刻的数值解(1,2,)i y i =…。所以,解初值问题的数值方法的共同特点是步进式的,采用不同的递推算法,就出现各种不同的数值积分方法。 3.2 替换法 基于数值积分的连续系统仿真方法具有成熟、计算精度比较高的优点,但算法公式比较复杂、计算量比较大,通常只有在对速度要求不高的纯数字仿真时使用。当进行实时仿真或在计算机控制系统中实现数字控制器的算法时,要求计算速度快,以便能在一个采样周期内完成全部计算任务,这就需要一些快速计算方法。 用数值积分方法在数字机上对一个连续系统进行仿真时,实际上已经进行了离散化处理,只不过在离散化过程中每一步都用到连续系统的模型,离散一步计算一步。那么,能否先对连续的模型进行离散化处理,得到一个“等效”的离散化模型,以后的每一步计算都直接在这个离散化模型基础上进行,而原来的连续数学模型不再参与计算呢?回答是肯定的。这些结构上比较简单的离散化模型,便于在计算机上求解,不仅用于连续系统数字仿真,而且也可用于数字控制器在计算机上实现。 替换法的基本思想是:对于给定的函数G (s ),设法找到s 域到z 域的的某种映射关系,它将S 域的变量s 映射到z 平面上,由此得到与连续系统传递函数G (s )相对应的离散传函G (z )。进而再根据G (z )由z 反变换求的系统的时域离散模型——差分方程,据此便可以进行快速求解。

实验七 连续时间系统的模拟(硬件实验)

实验七 连续时间系统的模拟(硬件实验) 一、 目的 学习根据给定的连续系统的传输函数,用基本运算单元组成模拟装置。 二、 原理 1. 线性系统的模拟 系统的模拟就是用基本运算单元组成的模拟装置来模拟实际的系统。这些实际的系统可以是电的或非电的物理量系统,也可以是社会、经济和军事等非物理量系统。模拟装置可以与实际系统的内容完全不同,但是两者之间的微分方程完全相同,输入输出关系即传输函数也完全相同。模拟装置的激励和响应是电物理量,而实际系统的激励和响应不一定是电物理量,但它们之间的关系是一一对应的。所以,可以通过对模拟装置的研究来分析实际系统,最终达到在一定条件下确定最佳参数的目的。对于那些用数学手段较难处理的高阶系统来说,系统模拟就更为有效。 2. 传输函数的模拟 若已知实际系统的传输函数为: 10111()()()n n n n n n a s a s a Y s H s F s s b s b --+++==+++ (1) 分子、分母同乘以n s -得: 11011111() ()()()1() n n n n a a s a s P s Y s H s F s b s b s Q s ------+++===+++ (2) 式中1()P s -和1()Q s -分别代表分子、分母的s 负幂次方多项式。因此: 111 ()()()() Y s P s F s Q s --=? (3) 令:11 ()() X F s Q s -= (4) 则111()()n n F s XQ s X b s X b s X ---==+++ (5) 11()n n X F s b s X b s X --??=-++?? (6) 1101()()n n Y s P s X a X a s X a s X ---==+++ (7) 根据式(6)可以画出如图3-1所示的模拟框图。在该图的基础上考虑式(7)就可以画出如图3-2所示系统模拟框图。在连接模拟电路时,1s -用积分器,1b -、2b -、3b -及0a 、1a 、2a 均用标量乘法器,负号可用倒相器,求和用加法器。值得注意的问题是,积分运算单元有积 分时间常数τ,即积分运算单元的实际传递函数为1/s τ-,所示标量乘法器的标量 12,,,n b b b --- 应分别乘以12,,,n τττ 。同理,01,,,n a a a 应分别乘以012,,,,n ττττ 。此外, 本实验采用的积分器是反相积分器,即传递函数为1/s τ--,所以01,,,n a a a 还应分别乘以 012(1),(1),(1),,(1)n ---- ,同理,12,,,n b b b 也应分别乘12(1),(1),,(1)n --- 。对于图3-3(a)

控制系统数字仿真题库

控制系统数字仿真题库 一、填空题 1. 定义一个系统时,首先要确定系统的边界;边界确定了系统的范围,边界以外对系统的作用称为系统的输入,系统对边界以为环境的作用称为系统的输出。 2.系统的三大要素为:实体、属性和活动。 3.人们描述系统的常见术语为:实体、属性、事件和活动。 4.人们经常把系统分成四类,它们分别为:连续系统、离散系统、采样数据系统和离散-连续系统。 5、根据系统的属性可以将系统分成两大类:工程系统和非工程系统。 6.根据描述方法不同,离散系统可以分为:离散时间系统和离散事件系统。 7. 系统是指相互联系又相互作用的实体的有机组合。 8.根据模型的表达形式,模型可以分为物理模型和数学模型二大类,其中数学模型根据数学表达形式的不同可分为二种,分别为:静态模型和动态模型。 9、采用一定比例按照真实系统的样子制作的模型称为物理模型,用数学表达式来描述系统内在规律 的模型称为数学模型。 10.静态模型的数学表达形式一般是代数方程和逻辑关系表达式等,而动态模型的数学表达形式一般是微分方程和差分方程。 11.系统模型根据描述变量的函数关系可以分类为线性模型和非线性模型。 12 仿真模型的校核是指检验数字仿真模型和数学模型是否一致。 13.仿真模型的验证是指检验数字仿真模型和实际系统是否一致。 14.计算机仿真的三个要素为:系统、模型与计算机。 15.系统仿真的三个基本活动是系统建模、仿真建模和仿真试验。 16.系统仿真根据模型种类的不同可分为:物理仿真、数学仿真和数学-物理混合仿真。 17.根据仿真应用目的的不同,人们经常把计算机仿真应用分为四类,分别为: 系统分析、系统设计、理论验证和人员训练。 18.计算机仿真是指将模型在计算机上进行实验的过程。 19. 仿真依据的基本原则是:相似原理。 20. 连续系统仿真中常见的一对矛盾为计算速度和计算精度。 21.保持器是一种将离散时间信号恢复成连续信号的装置。 22.零阶保持器能较好地再现阶跃信号。 23. 一阶保持器能较好地再现斜坡信号。 24. 二阶龙格-库塔法的局部截断误差为O()。 25.三阶隐式阿达姆斯算法的截断误差为:O()。

第一章系统仿真的基本概念与方法

第一章控制系统及仿真概述 控制系统的计算机仿真是一门涉及到控制理论、计算数学与计算机技术的综合性新型学科。这门学科的产生及发展差不多是与计算机的发明及发展同步进行的。它包含控制系统分析、综合、设计、检验等多方面的计算机处理。计算机仿真基于计算机的高速而精确的运算,以实现各种功能。 第一节控制系统仿真的基本概念 1.系统: 系统是物质世界中相互制约又相互联系着的、以期实现某种目的的一个运动整体,这个整体叫做系统。 “系统”是一个很大的概念,通常研究的系统有工程系统和非工程系统。 工程系统有:电力拖动自动控制系统、机械系统、水力、冶金、化工、热力学系统等。 非工程系统:宇宙、自然界、人类社会、经济系统、交通系统、管理系统、生态系统、人口系统等。 2.模型: 模型是对所要研究的系统在某些特定方面的抽象。通过模型对原型系统进行研究,将具有更深刻、更集中的特点。 模型分为物理模型和数学模型两种。数学模型可分为机理模型、统计模型与混合模型。 3.系统仿真: 系统仿真,就是通过对系统模型的实验,研究一个存在的或设计中的系统。更多的情况是指以系统数学模型为基础,以计算机为工具对系统进行实验研究的一种方法。 要对系统进行研究,首先要建立系统的数学模型。对于一个简单的数学模型,可以采用分析法或数学解析法进行研究,但对于复杂的系统,则需要借助于仿真的方法来研究。 那么,什么是系统仿真呢?顾名思义,系统仿真就是模仿真实的事物,也就是用一个模型(包括物理模型和数学模型)来模仿真实的系统,对其进行实验研究。用物理模型来进行仿真一般称为物理仿真,它主要是应用几何相似及环境条件相似来进行。而由数学模型在计算机上进行实验研究的仿真一般则称为数字仿真。我们这里讲的是后一种仿真。 数字仿真是指把系统的数学模型转化为仿真模型,并编成程序在计算机上投入运行、实验的全过程。通常把在计算机上进行的仿真实验称为数字仿真,又称计算机仿真。

MATLAB仿真之_连续时间LTI系统仿真和时域分析

航空工业管理学院 《电子信息系统仿真》课程设计 级电子信息工程专业班级 题目连续时间LTI系统仿真和时域分析 姓名学号 指导教师 二О一年月日

MATLAB软件简介 MATLAB 是MathWork 公司于1984 年推出的一套面向工程和科学运算的高性能软件,它具有强大的图形处理功能及符号运算功能,为我们实现信号的可视化及系统分析提供了强有力的工具。MATLAB 强大的工具箱函数可以分析连续信号、连续系统,同样也可以分析离散信号、离散系统,并可以对信号进行各种分析域计算,如相加、相乘、移位、反折、傅里叶变换、拉氏变换、Z 变换等等多种计算MATLAB 用于算法开发、数据可视化、数据分析以数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。MATLAB 可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连Matlab开发工作界面接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。

设计目的 掌握信号经过LTI 系统的时域分析方法。根据连续时不变信号处理的基本概念、理论和方法对信号进行分析和处理,实现卷积积分或卷积和,零输入响应和零状态响应,学会应用MATLAB 对实际问题进行仿真,并对仿真结果进行分析。 在本次课程设计中,利用MATLAB 软件对LTI 连续系统时域进行仿真与分析。根据连续时不变信号处理的基本概念、理论和方法对信号进行分析和处理,实现卷积积分或卷积和,零输入响应和零状态响应,熟悉卷积和conv 函数,并会利用卷积求零状态响应,并对输出的波形和仿真结果进行分析。 理论分析 连续时间系统卷积分原理 连续时间信号1()f t 和2()f t 的卷积运算可用信号的分段求和来实现,即: 1212120 ()()*()()()lim ()()k f t f t f t f t f t d f k f t k ττ∞ ∞ -∞ ?→=-∞ ==-=?-???∑ ? 如果只求当t (n )(n 为整数)时f (t )的值f (n ) ,则上式可得: 1212()()()()[()]k k f n f k f t k f k f n k ∞ ∞ =-∞ =-∞ ?= ?-???=??-?∑ ∑ 式中的12()[()]k f k f n k ∞ =-∞ ??-?∑ 实际上就是连续时间信号1()f t 和2()f t 经等 时间间隔均匀抽样的离散序列1()f k ?和2()f k ?的-。当 足够小时, ()f n ?就是卷积积分的结果——连续时间信号f (t )的较好数值近似。

实验二 控制系统的数学模型、转换及连续系统的数字仿真

实验二 控制系统的数学模型、转换及连续系统的数字仿真 1、实验目的与基本要求 (1)利用MA TLAB 描述控制系统的各种数学模型; (2)利用MA TLAB 实现系统数学模型间的相互转换; (3)利用MA TLAB 实现控制系统的串联、并联和反馈连接。 (4)掌握面向系统微分方程的连续系统的数字仿真方法及程序; (5)掌握面向系统结构图的连续系统的数字仿真方法及程序; (6)连续系统的快速仿真。 2、实验环境 (1) 微机一台 (2) MATLAB6.5或者MATLAB7软件 3、实验内容 1、MA TLAB 描述控制系统的各种数学模型 例1 若给定系统的传递函数为 将其用MATLAB 语句表示。 num=4*conv([1,2],[1,6,6]) den=conv([1,0],conv([1,1],conv([1,1],conv([1,1],[1,3,2,5])))) printsys(num,den) num/den = 4 s^3 + 32 s^2 + 72 s + 48 ----------------------------------------------------- s^7 + 6 s^6 + 14 s^5 + 21 s^4 + 24 s^3 + 17 s^2 + 5 s 例2 设系统的状态空间表达式为 将其用MATLAB 语句表示。 >> a=[0 0 1;-3/2 -2 -1/2;-3 0 -4];b=[1 1;-1 -1;-1 -3];c=[1 0 0;0 1 0]; >> a=[0 0 1;-3/2 -2 -1/2;-3 0 -4],b=[1 1;-1 -1;-1 -3],c=[1 0 0;0 1 0],d=zeros(2,2) ) 523()1() 66)(2(4)(2332+++++++= s s s s s s s s s G ??? ???????? ????=???? ??????----+??????????-----=)(01000 1)()(311111 )(4032/122/3100)(t x t y t u t x t x

经典的连续系统仿真建模方法学

第二章 经典的连续系统仿真建模方法学 本章讨论经典的连续系统数字仿真的原理与方法,内容包括连续系统数字仿真的基本概念、经典的数值积分法、经典的线性多步法等。在数字计算机上进行连续系统仿真,首先要将连续模型离散化,因此,2.1节首先讨论离散化原理及要求,这是连续系统仿真的基础。然后,2.2节对经典的数值积分法----龙格-库塔法及其它典型的数值积分法仿真建模原理进行详细分析,并通过实例说明其应用要点;而2.3节对经典的线性多步法进行了介绍. 2.1 离散化原理及要求 在数字计算机上对连续系统进行仿真时,首先遇到的问题是如何解决数字计算机在数值及时间上的离散性与被仿真系统数值及时间上的连续性这一基本问题。 从根本意义上讲,数字计算机所进行的数值计算仅仅是“数字”计算,它表示数值的精度受限于字长,这将引入舍入误差;另一方面,这种计算是按指令一步一步进行的,因而,还必须将时间离散化,这样就只能得到离散时间点上系统性能。用数字仿真的方法对微分方程的数值积分是通过某种数值计算方法来实现的。任何一种计算方法都只能是原积分的一种近似。因此,连续系统仿真,从本质上是对原连续系统从时间、数值两个方面对原系统进行离散化,并选择合适的数值计算方法来近似积分运算,由此得到的离散模型来近似原连续模型。如何保证离散模型的计算结果从原理上确能代表原系统的行为,这是连续系统数字仿真首先必须解决的问题。 设系统模型为:),,(t u y f y = ,其中u (t )为输入变量,y (t )为系统变量;令仿真时间间隔为h ,离散化后的输入变量为)(?k t u ,系统变量为)(?k t y ,其中k t 表示t=kh 。如果)()(?k k t u t u ≈,)()(?k k t y t y ≈,即0)()(?)(≈-=k k k u t u t u t e ,0)()(?)(≈-=k k k y t y t y t e (对所有k=0,1,2,…),则可认为两模型等价,这称为相似原理(参见图2.1)。 实际上,要完全保证0)(,0)(==k y k u t e t e 是很困难的。进一步分析离散化引入的误差,随着计算机技术的发展,由计算机字长引入的舍入误差可以忽略,关键是数值积分算法,也称为仿真建模方法。相似原理用于仿真时,对仿真建模方法有三个基本要求: (1)稳定性:若原连续系统是稳定的,则离散化后得到的仿真模型也应是稳定的。关于稳定 性的详细讨论将在2.4节中进行。 (2)准确性:有不同的准确性评价准则,最基本的准则是: 图2.1 相 似 原 理

实验二-连续时间系统的模拟实验报告

实验二-连续时间系统的模拟实验报告

信号与系统 实验报告 (信号与系统实验箱) HD-XH-II型 实验二连续时间系统的模拟 学院 专业班级 姓名学号 指导教师

实验报告评分:_______ 连续时间系统的模拟 一、实验目的 1.了解用集成运算放大器构成基本运算单元—标量乘法器,加法和计分器,以及它们的组合全加积分器的方法。 2.掌握用以上基本运算单元以及它们的组合构成模拟系统,模拟一阶和二阶连续时间系统的原理和方法,并用实验测定模拟系统的特性。 二、实验内容及步骤 1.一阶模拟系统阶跃响应的观测 (1)对图9-5(c)的实际的电路,在输入端TP901处输入幅度Uim=0.2V,频率=200HZ的方波,观测输入波形及输出(TP903处)响应波形,比较输入波形与输出波形的周期和幅度,测量时间常数τ和放大倍数A。 (2)输入幅度Uim=0.2V的正弦波信号,由低频(20HZ左右)开始,缓慢改变正弦波信号频率,测出低通滤波器的截止频率f0. 2.二阶模拟系统频率特性测试 对图9-6(c)的实际电路,在输入端TP905处输入幅度

Uim=0.2V正弦波,改变正弦波的信号频率,此时,应注意保持输入电压不变,记录相应的输出(TP907处)电压值,画出扶贫特性曲线,测定系统的放大倍数A,中心频率f0及其频带宽度Bw,计算品质因素Q。 三、实验过程 一阶模拟系统 一阶模拟系统输入波形: 输出波形:

(1)放大倍数A=Rf/R1=10K/1K=10 H(s)=(a^2)/(s^2+3*a*s+a^2) 其中a=1/RC,值为4170。 以log f为横坐标,Vo/Vi为纵坐标,绘制滤波器的幅频特性曲线。再以log f为横坐标,Φ(ω)为纵坐标,绘制滤波器的相频特性曲线。 RC低通滤波器幅频响应曲线图如下:

离散系统与连续时间系统的根本差别是:离散系统(图)有采样开

离散系统与连续时间系统的根本差别是:离散系统(图3)有采样开关存在,而连续系统则无。连续信号经过采样开关变成离散信号(图4),采样开关起这理想脉冲发生器的作用,通过它将连续信号调制成脉冲序列。 图3 离散系统方块图 图4 离散型时间函数 调制之后的信号中,包含与脉冲频率相关的高频频谱(图5),相邻两频谱不相重叠的条件是: max 2f f s 其中: s f ---采样开关的采样频率 m ax f ---连续信号频谱中的最高频率 这就是采样定理,通常选择采样频率时取四倍连续信号的最大频率。实验中,信号源产生频率可调的周期性信号,计算机通过A/D 板将信号采集入内存,通过软件示波器显示出来,调整采样频率,可以得到不同的采样结果,以波形图直观显示出来。由此,可考察波形失真程度。 三、实验使用的仪器设备及实验装置 1. 装有LabVIEW 软件和PCI-1200数据采集卡的计算机一台 2. 频率计或信号发生器一台 3. 外接端子板、数据采集板、计算机、组态软件 基于LabVIEW 的信号测试系统主要包括信号发生器、DAQ 数据采集卡和计算机软件三部分组成。A/D 数据采集采用NI 公司PCMCIA 接口的PCI-1200型多功能数据采集卡;L abVIEW 7.1软件。 将PCI-1200数据采集卡插到计算机主板上的一个空闲的PCI 插槽中,接好各种附件,其驱动程序就是NI-DAQ 。附件包括一条50芯的数据线,一个型号为CB-50LP 的转接板,转接板直接与外部信号连接。 图5 信号频谱图

四、具体实验步骤 (一)通过LabVIEW进行模拟信号的数据采集 1. 安装数据采集卡,根据数据采集卡接线指示(图6)连接线路,并检查测试。 2. 熟悉LabVIEW软件中与数据采集相关的控件与设置项。 3. 编制DAQ程序,并调试数据采集组态。 4. 应用该组态软件进行波形数据采集并存储,信号种类设置为正弦波,分别设置 信号发生器频率为50,100Hz,观察并记录波形变化。 5. 设置信号种类为方波或锯齿波,重复上述实验。 (二)采样定理验证实验 1. 按图8连接线路,并检查测试。 2. 熟悉GeniDAQ软件中与数据采集相关的控件与设置项。 3. 编制、调试数据采集组态。 4. 应用该组态软件进行波形数据采集并存储,信号种类设置为正弦波,分别设置 信号发生器频率为50,100Hz,采集频率设置为50、100、150、200、300、500Hz,观察并记录波形变化,体验采样定理的正确性。 五、实验准备及预习要求 1.认真阅读实验指导书,在老师答疑和同学讨论的基础上,完成实验准备任务: 1).了解数据采集及其硬件(A/D变换器和数据采集卡)选择的基本知识; 2).熟悉G语言编程环境和虚拟仪器的含义; 1.理解采样定理的意义;

连续系统的数字PID控制仿真

姓名:任明明 班级:机研102 学号:201020122050 连续系统的数字PID 控制仿真 本方法可实现D/A 及A/D 的功能,符合数字实时控制的真实情况,计算机及DSP 的实时PID 控制都属于这种情况。 采用了MA TLAB 语句形式进行仿真。被控对象为一个电机模型传递函数; Bs Js 1 )s (G 2+= 式中,J=0.0067,B=0.10。 采用M 函数的形式,利用ODE45的方法求解连续对象方程,输入指令信号为rin(k)=0.50sin(2πt),采用PID 控制方法设计控制器,其中。PID 正弦跟踪结果如图所示。 控制主程序: clear all; clear all; ts=0.001; %采样时间 xk=zeros(2,1);

e_1=0; u_1=0; for k=1:1:2000 time(k)=k*ts; rin(k)=0.50*sin(1*2*pi*k*ts); para=u_1; %D/A tSpan=[0 ts]; [tt,xx]=ode45('chap1_6f',tSpan,xk,[],para); xk=xx(length(xx),:); %A/D yout(k)=xk(1); e(k)=rin(k)-yout(k); de(k)=(e(k)-e_1)/ts; u(k)=20.0*e(k)+0.50*de(k); if u(k)>10.0 u(k)=10.0; end if u(k)<-10.0 u(k)=-10.0; end u_1=u(k); e_1=e(k); end figure(1); plot(time,rin,'r',time,yout,'b'); xlabel('time(s)'),ylabel('rin,yout');

连续时间系统模拟

实验名称:连续时间系统的模拟 教材名称:电工电子实验技术(下册) 页码:P146 实验目的: 1、学习如何根据给定的连续系统的传输函数,用基本的运算单元组成模拟 装置。 2、掌握将Multisim 软件用于系统模拟的基本方法。 实验任务: 1、直接测量图9-9和图9-10的幅频、相频传输特性,并测出相应的数据。 测点自定,但是半功率点和谐振点必须在其中。 2、根据预习时计算出的传输函数H (S )分别搭建图9-9和图9-10的系 统模拟测试电路,分别测量幅频和相频特性,并按直接测量时所选的测点进行测量。 3、分别比较图9-9和图9-10 直接测量的传输特性与系统模拟测出的传 输特性数据,如有差异,找出原因并纠正。 设计提示: 1、先写出传输函数,再转换成标准形式。 设计过程: 图9-9传输函数: ()622 2232 61222 11110()1()3113101()()311110()V s RC S S H s V s SCR SCR SRC RC S S S ??====?++++?++? 其中:31110RC K uF -=?= 图9-10传输函数: ()29122 113571.4()1113571.41()11 1.7810R V s R L S S H s R V s R LS CS SL LC S S S ?? ==== ++++?++?? 其中:9203571.45.611 1.78105.60.1R L mH LC mH uF Ω ====?? 实验电路图及实验结果:

半功率点频率59.5 Φ= =;相位差59.5O f Hz φ=- 特性曲线同直接测量,半功率点频率59.5 f Hz =。52o

面向结构图的连续系统数字仿真

课程设计 面向结构图的连续系统数题目 字仿真 学院计算机科学与信息工程学院 专业自动化 班级2010级2班 学生姓名小 指导教师吴诗贤 2013 年12 月20 日

面向结构图的连续系统数字仿真 姓名:陶园班级:10自动化3班学号:2010133330 摘要 根据自动控制系统中面向结构图的数字仿真的基本思想,探讨了仿真过程中典型环节的规范性、系统的连接矩阵、仿真求解、程序框图问题,并应用到实际的范例当中,并分析了结果总结了相关特点和相关结论。 自动控制系统常常是由许多环节组成的,要应用数字仿真方法对系统进行分析和研究,首先需要求出总的传递函数,再转化为状态空间表达式的形式,然后对其求解。当改变系统某一环节的参数时,尤其是要改变小闭环中某一环节的参数时,以上整个过程又需要重新计算,这对研究对象参数变化对整个控制系统的影响是十分不便的,为了克服这些缺点,同时大多数从事自动化工作的科技人员更习惯于用结构图的形式来分析和研究控制系统,为此产生了面向结构图的仿真方法。该方法只需将各个环节的参数及各环节间的连接方式输入计算机,仿真程序就能自动求出闭环系统的状态空间表达式。本课程设计主要介绍典型环节参数和连接关系构成闭环系统的状态方程的方法,而动态响应的计算,仍采用四阶龙格-库塔法。这种方法具有便于研究各个环节参数对系统的影响,并可以得到每个环节的动态响应,以及对多输入输出系统的进行仿真的有点。 关键字:结构图;典型环节;连接矩阵;数字仿真;

1、设计任务 已知某一系统结构如下图所示,编写matlab程序求a分别为2,4,6,8,10,12时输出量y的动态响应。 图1 2、需求分析及概要设计 2.1 需求分析 根据上述设计任务我们可以基本明确在我们课程设计当中应该明确以下几个方面: ?熟悉在数字计算机仿真技术中常用的四阶龙格-库塔算法。 ?明确在面向结构图的连续系统数字仿真,典型环节及其系数矩阵确定。 ?明确各连接矩阵的确定。 ?能够熟练运用MATLAB仿真软件。 2.2 设计思路 自动控制系统常常是由许多环节组成的,要应用数字仿真方法对系统进行分析和研究,首先需要求出总的传递函数,再转化为状态空间表达式的形式,然后对其求解。当改变系统某一环节的参数时,尤其是要改变小闭环中某一环节的参数时,以上整个过程又需要重新计算,这对研究对象参数变化对整个控制系统的影响是十分不便的,为了克服这些缺点,同时大多数从事自动化工作的科技人员更习惯于用结构图的形式来分析和研究控制系统,为此产生了面向结构图的仿真方法。该方法只需将各个环节的参数及各环节间的连接方式输入计算机,仿真程序就能自动求出闭环系统的状态空间表达式。以下是我们课程设计的主要设计思 图2

基于MATLAB的数字模拟仿真..

基于MATLAB的数字模拟仿真 摘要:本文阐述了计算机模拟仿真在解决实际问题时的重要性,并较为系统的介绍了使用计算机仿真的原理及方法。对于计算机模拟仿真的三大类方法:蒙特卡罗法、连续系统模拟和离散事件系统模拟,在本文中均给出了与之对应的实例及基于MATLAB模拟仿真的相关程序,并通过实例深入的分析了计算机模拟解决实际问题的优势及不足。 关键词:计算机模拟;仿真原理;数学模型;蒙特卡罗法;连续系统模拟;离散事件系统模拟 在实际问题中,我们通常会面对一些带随机因素的复杂系统,用分析方法建模常常需要作许多简化假设,这样进行处理过后的模型与我们面临的实际问题可能相差很远,以致求解得到答案根本无法应用,这时,计算机模拟几乎成为唯一的选择。本文通过对计算机模拟仿真进行系统地介绍,寻求利用模拟仿真来解决问题的一般方法,并深入探讨了这些方法的长处和不足。我们定义一些具有特定的功能、相互之间以一定的规律联系的对象所组成的总体为一个系统,模拟就是利用物理的、数学的模型以系统为问题解决对象,来类比、模仿现实系统及其演变过程,以寻求过程规律的一种方法。模拟的基本思想是建立一个实验的模型,这个模型包含所研究系统的主要特点,这样做的目的就是通过对这个实验模型的运行,获得所要研究系统的必要信息。另外,系统的运行离不开算法,仿真算法是将系统模型转换成仿真模型的一类算法,在数字仿真模型中起核心和关键作用。 1、所谓计算机仿真 计算机仿真是利用计算机对一个实际系统的结构和行为进行动态演示,以评价或预测该系统的行为效果。它是解决较复杂的实际问题的一条有效途径。针对一个确定的系统,根据运行的相似原理,利用计算机来逼真模仿研究对象(研究对象可以是真实的系统,也可以是设想中的系统),计算机仿真是将研究对象进行数学描述,建模编程,且在计算机中运行实现。 对比于物理模拟通常花费较大、周期较长,且在物理模型上改变系统结构和系数都较困难的诸多缺陷,计算机模拟不怕破坏、易修改、可重用,有更强的系统适应能力。但是计算机模拟也有缺陷,比如受限于系统建模技术,即系统数学模型不易建立、程序调试复杂等。 计算机仿真可以用于研制产品或设计系统的全过程中,包括方案论证、技术指标确定、设计分析、生产制造、试验测试、维护训练、故障处理等各个阶段。 2、计算机仿真的目的 对于一个系统,是否选择进行计算机模拟的问题,基于判断计算机模拟与非计算机模拟方法孰优孰劣的问题。归纳以下运用计算机模拟的情况: (1)在一个实际系统还没有建立起来之前,要对系统的行为或结果进行分析研究时,计算机仿真是一种行之有效的方法。 (2)在有些真实系统上做实验会影响系统的正常运行,这时进行计算机模拟就是为了避免给实际系统带来不必要的损失。如在生产中任意改变工艺参数可能会导致废品,在经济活动中随意将一个决策付诸行动可能会引起经济混乱。 (3)当人是系统的一部分时,他的行为往往会影响实验的效果,这时运用系统进行仿真研究,就是为了排除人的主观因素的影响。

连续时间系统的模拟

实验三 连续时间系统的模拟 一、 实验目的 学习根据给定的连续系统的传输函数,用基本运算单元组成模拟装置。 二、 实验原理 1. 线性系统的模拟 系统的模拟就是用基本运算单元组成的模拟装置来模拟实际的系统。这些实际的系统可以是电的或非电的物理量系统,也可以是社会、经济和军事等非物理量系统。模拟装置可以与实际系统的内容完全不同,但是两者之间的微分方程完全相同,输入输出关系即传输函数也完全相同。模拟装置的激励和响应是电物理量,而实际系统的激励和响应不一定是电物理量,但它们之间的关系是一一对应的。所以,可以通过对模拟装置的研究来分析实际系统,最终达到在一定条件下确定最佳参数的目的。对于那些用数学手段较难处理的高阶系统来说,系统模拟就更为有效。 2. 传输函数的模拟 若已知实际系统的传输函数为: 10111()()()n n n n n n a s a s a Y s H s F s s b s b --+++==+++ (1) 分子、分母同乘以n s -得: 11011111() ()()()1() n n n n a a s a s P s Y s H s F s b s b s Q s ------+++=== +++ (2) 式中1()P s -和1()Q s -分别代表分子、分母的s 负幂次方多项式。因此: 111 ()()()() Y s P s F s Q s --=? (3) 令:11 ()() X F s Q s -= (4) 则111()()n n F s XQ s X b s X b s X ---==++ + (5) 1 1()n n X F s b s X b s X --??=-+ +?? (6) 1101()()n n Y s P s X a X a s X a s X ---==+++ (7) 根据式(6)可以画出如图1所示的模拟框图。在该图的基础上考虑式(7)就可以画出如图2所示系统模拟框图。在连接模拟电路时,1s -用积分器,1b -、2b -、3b -及0a 、1a 、2a 均用标量乘法器,负号可用倒相器,求和用加法器。值得注意的问题是,积分运算单元有积分 时间常数τ,即积分运算单元的实际传递函数为1/s τ-,所示标量乘法器的标量12,, ,n b b b ---应分别乘以12,, ,n τττ。同理,01,, ,n a a a 应分别乘以012,,, ,n ττττ。此外, 本实验采用的积分器是反相积分器,即传递函数为1/s τ--,所以01,,,n a a a 还应分别乘以

连续系统的Simulink仿真

电子科技大学中山学院学生实验报告 院别:电子信息学院 课程名称:信号与系统实验 一、实验目的 1.掌握连续系统Simulink 的建模方法。 2.掌握连续系统时域响应、频域响应的Simulink 仿真方法。 二、实验原理 连续系统的Simulink 仿真分析包括系统模型的创建和仿真分析两个过程。 利用Simulink 模块库中的有关功能模块创建的系统模型,主要有S 域模型、传输函数模型和状态空间模型等形式。 若将信号源子模块库(Sources )中某种波形的信号源(如正弦或阶跃信号源)加于系统模型的输入端,则在系统模型的输出端用示波器观察零状态响应的 图1 系统时域响应Simulink 仿真的模型 以Sources 子模块库中的“lnl ”、Sinks 子模块中的“Outl ”分别作为系统模型的输入端和输出端,如图2所示。 ln1 out1 图2 系统响应Simulink 仿真的综合模型 建立图2形式系统模型并保存之后,利用如下响应的命令,可得到系统的 状态空间变量、频率响应曲线、单位阶跃响应和单位冲激响应的波形。 [A,B,C,D]=linmod(‘模型文件名’) %求状态空间矩阵,注意:‘模型文件名’不含扩展名 bode(A,B,C,D);%绘制系统的频率特性曲线 bode(A,B,C,D,l u :ω :ωω:?1); %绘制系统在10~ωω频率范围内,歩长为ω?的频率特性曲线;u i 为输入

端口编号,一般取1 Impulse(A,B,C,D) %绘制系统冲击响应的波形 Impulse(A,B,C,D,i u ,t : 1 :t t?) %绘制系统在时间范围内、歩长为的冲击 响应的波形 Step(A,B,C,D) %绘制系统阶跃响应的波形 Step(A,B,C,D,i u ,t : 1 :t t?) %绘制系统在 1 ~t t时间范围内、歩长为t?的 阶跃响应的波形 以上命令,可以逐条在命令窗口输入、执行,也可编写成M文件并运行,获得所需结果。 三、实验内容 1 、已知连续系统的系统函数为。用系统函数的形式建立系统 模型,进行Simulink仿真,(1)绘出阶跃响应波形(2)绘出系统的频率特性图。 2、已知连续系统的微分方程为 建立系统模型,进行Simulink仿真。(1)若f(t)=,绘出系统零状 态响应波形(2)分析系统的频率特性 3、线性系统如图17-13所示。要求:建立系统的S域模型,编写执行Simullink 仿真命令的M文件,求系统的状态空间变量,绘出系统的冲击响应波形和频率响应特性曲线。

信号与系统报告 实验2 连续时间系统的模拟

信号与系统 实验报告 实验二连续时间系统的模拟 实验报告评分:_______ 连续时间系统的模拟 一、实验目的 1.了解用集成运算放大器构成基本运算单元—标量乘法器,加法和计分器,以及它们的组合全加积分器的方法。 2.掌握用以上基本运算单元以及它们的组合构成模拟系统,

模拟一阶和二阶连续时间系统的原理和方法,并用实验测定模拟系统的特性。 二、实验内容及步骤 1.一阶模拟系统阶跃响应的观测 (1)对图9-5(c)的实际的电路,在输入端TP901处输入幅度Uim=0.2V,频率=200HZ的方波,观测输入波形及输出(TP903处)响应波形,比较输入波形与输出波形的周期和幅度,测量时间常数τ和放大倍数A。 (2)输入幅度Uim=0.2V的正弦波信号,由低频(20HZ左右)开始,缓慢改变正弦波信号频率,测出低通滤波器的截止频率f0. 2.二阶模拟系统频率特性测试 对图9-6(c)的实际电路,在输入端TP905处输入幅度Uim=0.2V正弦波,改变正弦波的信号频率,此时,应注意保持输入电压不变,记录相应的输出(TP907处)电压值,画出扶贫特性曲线,测定系统的放大倍数A,中心频率f0及其频带宽度Bw,计算品质因素Q。 三、实验过程 一阶模拟系统 一阶模拟系统输入波形:

输出波形:

(1)放大倍数A=Rf/R1=10K/1K=10 H(s)=(a^2)/(s^2+3*a*s+a^2) 其中a=1/RC,值为4170。 以log f为横坐标,Vo/Vi为纵坐标,绘制滤波器的幅频特性曲线。再以log f为横坐标,Φ(ω)为纵坐标,绘制滤波器的相频特性曲线。 RC低通滤波器幅频响应曲线图如下:

控制系统数字仿真习题.doc

控制系统数字仿真题库 填空题 1.定义一个系统时,首先要确定系统的;边界确定了系统的范围,边界以外对系统的作用称为系统的,系统对边界以为环境的作用称为系统的。 1.定义一个系统时,首先要确定系统的边界;边界确定了系统的范围,边界以外对系统的作用称为系统的输入,系统对边界以为环境的作用称为系统的输出。 2.系统的三大要素为:、和。 2.系统的三大要素为:实体、属性和活动。 3.人们描述系统的常见术语为:、、和 3.人们描述系统的常见术语为:实体、属性、事件和活动。 4.人们经常把系统分成四类,分别为:、、和 4.人们经常把系统分成四类,它们分别为:连续系统、离散系统、采样数据系统和离散-连续系统。 5、根据系统的属性可以将系统分成两大类:和。 5、根据系统的属性可以将系统分成两大类:工程系统和非工程系统。 6.根据描述方法不同,离散系统可以分为: 和。 6.根据描述方法不同,离散系统可以分为:离散时间系统和离散事件系统。 7. 系统是指相互联系又相互作用的的有机组合。 7. 系统是指相互联系又相互作用的实体的有机组合。 8.根据模型的表达形式,模型可以分为和数学模型二大类,期中数学模型根据数学表达形式的不同可分为二种,分别为:和。8.根据模型的表达形式,模型可以分为物理模型和数学模型二大类,期中数学模型根据数学表达形式的不同可分为二种,分别为:静态模型和动态模型。 9.连续时间集中参数模型的常见形式为有三种,分别为:、和。 9.连续时间集中参数模型的常见形式为有三种,分别为:微分方程、状态方程和传递函数。 10、采用一定比例按照真实系统的样子制作的模型称为,用数学表达式来描述系 统内在规律的模型称为。 10、采用一定比例按照真实系统的样子制作的模型称为物理模型,用数学表达式来描述系统 内在规律的模型称为数学模型。 11.静态模型的数学表达形式一般是方程和逻辑关系表达式等,而动态模型的数学表达形式一般是方程和方程。 11.静态模型的数学表达形式一般是代数方程和逻辑关系表达式等,而动态模型的数

相关主题
文本预览
相关文档 最新文档