当前位置:文档之家› 表面质量检测系统分析

表面质量检测系统分析

表面质量检测系统分析
表面质量检测系统分析

基于机器视觉技术的产品表面质量检测系统

王岩松1章春娥2

(1北京凌云光子集团北京100089 2北京交通大学信息科学研究所北京100044)

摘要:介绍了基于机器视觉技术的表面检测系统的设计方案和系统构成原理,并且针对表面检测系统中广泛应用的高精度定位配准算法以及Blob分析算法从原理上进行了阐述,同时给出了当前通用的表面检测系统的处理单元构成特点。基于本文所介绍的机器视觉技术的表面检测系统已经在工业现场得到了批量推广应用,对于以后开展类似的表面检测系统具有一定的参考价值和指导意义。

关键字:机器视觉表面检测斑点分析(Blob分析)

A Surface Inspecting System Based on

Machine Vision Technology

Wang Yansong Zhang Chun-e

A LUSTER LightTech Group Company,100089

Institute of Information Science, Beijing Jiaotong University, Beijing, 100044

Abstract:An introduction to some general design schemes and constructing principles about surface inspecting system based on machine vision technology. Some algorithms widely used in surface inspecting system such as high resolution Search-alighment algorithm and Blob analysis algorighm are desrcibed in detail theoretically.The constructing way of processing uint in general surface inspecting system is also presented in this paper. Up to now, a great deal of surface inspecting systems based on the technology introduced in this paper have been successfully used in some industrial factory。

KayWords:Machine Vision Surface Inspection Blob Analysis

1.机器视觉及系统

机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品,如CCD、CMOS 和光电管等,将被摄取的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,再根据判别的结果控制现场的设备。典型的工业机器视觉应用系统包括如下部分:光源,镜头,CCD照相机,图像处理单元(或图像采集卡),图像处理软件,监视器,通讯/输入输出单元等[1]。

机器视觉是一项综合技术,其中包括数字图像处理技术、机械工程技术、控制技术、光源照明技术,光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。其中图像处理软件中的图像处理算法是整个机器视觉的核心部分。图像处理技术包含数字图像处理学、计算机图形学中的大量内容,涉及图像分割、图像测量、图像融合、图像匹配、模式识别、计算机神经网络等大量前沿技术。图像处理算法选择的合理性、算法的适用性、算法的处理速度和处理精度等均将直接绝对最终机器视觉质量检测系统的检测结果。

本文设计的表面检测系统使用了上述多项机器视觉技术,特别在图像处理方面使用了高精度子像素定位

配准、斑点(Blob)分析等算法,对于提高检测准确性以及多种类产品自适应检测起到了决定性作用[2]。2.表面质量检测系统设计方案与构成

图1 系统组成原理框图

由于表面质量检测系统所涉及到的行业多,每个系统的设计方案都有着自己的特点,从通用型表面质量检测系统设计角度看,系统可由吹风展平机构、照明光源、CCD相机、镜头、机箱、图像采集、图像处理、控制单元、监视单元、执行机构和报警单元等组成,如图1所示。不同的系统在组成上稍有区别。

图像照明光源采取了线性光源以产生照明能量集中的、光强分布均匀的一条光带;同时吹风展平机构可以使检测对象运动到CCD扫描线附近时保证不产生任何畸变;当产品高速运动时,CCD线扫描相机通过消杂光光路对当前扫描线进行逐行采集,采集到的数据送入图像采集单元进行存储。在经过图像处理单元进行复杂的表面检测运算后,如果发现表面质量缺陷,则控制报警单元进行声光报警,同时执行单元向生产线发送相应的控制指令将质量次品与好品分仓处理。监视器可以醒目的汇报缺陷产生位置、缺陷面积大小等信息,便于用于可以迅速获取信息。

以印刷行业的产品表面质量检测系统为例,系统包含了图像采集卡、I/O输入输出卡、D/A转换卡,PLC 控制系统等部件,以微机系统作为处理和控制的中心单元。这种组成结果可以满足大部分表面检测系统的应用需求。结构组成如图2所示。

图2 印刷质量检测系统结构示意图

3.高精度定位配准算法

高精度定位配准算法在表面检测系统的机器视觉技术中占有重要的地位,是图像与标准模板进行缺陷检测的必要条件。论文中所设计的高精度定位配准算法将金字塔分层思想和互相关计算想结合,定位配准精度可以达到1/64像素。同时算法采用了MMX 方式进行优化,定位时间大大缩短。

该定位配准算法中的金字塔分层思想是:用不同带宽的低通滤波器对原始图像进行低通滤波,得到一组不同“分辨率”的图像;然后从最高级(最粗的“分辨率”)开始,将模板和目标图像进行匹配,将结果作为预测值,对下一级(较高的“分辨率”)的图像进行匹配,在子像素匹配时使用双线性插值算法,最后可以达到要求的定位速度和定位精度。从理论上讲,若每层的收敛范围是m 个像素,则第n 层的收敛范围可达到m ×n 个像素。

在图像定位核与图像坐标中心),(00y x 选取以后,根据初始定位信息可以计算得到实际图像与模板图像的夹角θ信息,然后将实际图像根据),(00y x 进行旋转,此过程可以利用双线性插值实现。设实际图像上某一点),(y x ,经过θ旋转以后为)','(y x ,则

?

??+?-?=+---=+?+?=+-+-=d d y x y y x x y y y x y x x y y x x x θθθθθθθθsin cos sin )(cos )('sin cos sin )(cos )('000000 (1) 旋转以后两幅图像之间就只存在X 方向和Y 方向上的偏移差异d x 和d y 。定位配准算法采用分层逐步匹配方式可以得到最佳的d x 和d y 。

分层定位配准的过程可以用图3来说明,图3示意了1/4个像素的定位精度,±1个像素范围内的搜索定位过程。如图3(a )所示,首次匹配在9个点中找到相关程度最好的点,结果如图3(a )中的黑点。然后将搜索步长与搜索范围缩小一半,进行第二层搜索,此时搜索精度为1/2像素,在15个点中(最多25个点)找到相关程度最好的匹配点,如图3(b )中黑点;接下来在第三层中找到匹配最好的点,判断此时搜索精度为1/4个象素,已经达到要求的匹配精度,则搜索结束,最后定位到的匹配点为图3(c )中的黑点所示

(a )表面层搜索

(b )第二层搜索 (c )第三层搜索 图3 金字塔思想的定位配准算法示意图

经过大量实验数据测试,仅仅对于求定位偏移距离这一项,采用了金字塔分解及网格扩散方式与普通的全遍历方式相比,搜索区域大大减小,并且能够迅速收敛,同时还能够解决图像互相关搜索中存在的错误相关峰。设搜索步长为S ,搜索范围为W ,找到最佳定位匹配点需要遍历的点数为

S W N S W N 2222

1log *25)1*2()1/*2(-+=+= (2)

上式中第一式为全遍历公式,第二式为采用金字塔思想所需进行的遍历公式。如果两幅图像之间的搜索范围W 为±4个像素,定位精度要求为1/4个像素精度,则定位到最佳匹配点所需遍历点数10891=N 个,而1312=N 个,可以看到,搜索区域大大减少,而且确定搜索路径所需迭代次数仅为1 log 2+=S n 。

该定位配准算法具有很好的适用性,对于图案中的一些变形和缺损的容忍性较好。可以用于表面检测的

下述应用中:

● 正常图像定位配准

● 带噪声图像定位配准

● 带一定旋转的图像定位配准

● 带一定缩放比例的图像定位配准

● 对比度不一致的图像定位配准

● 部分缺损的图像定位配准 4.Blob 分析算法

斑点分析算法,也称为Blob 分析算法,常用于对目标图像进行图形特征提取和分类。通过在图像中寻找一个或多个相似灰度的“斑点”,并将这些“斑点”按照四邻域或者八邻域方式进行连通分析,就可以形成一个Blob 单元。通过对Blob 单元进行图形特征分析,可以将单纯的图案灰度信息迅速转化为图案的形状信息,包括图形质心、图形面积、图形周长、图形外接最小矩形以及其他图形信息。Blob 分析算法在表面检测中扮演着重要的角色,可以将真实缺陷与虚假缺陷根据图形特征不同进行判别。Blob 分析算法也可以用于颗粒计数领域中。

Blob 分析算法中最重要的两个步骤是Blob 图像分割和Blob 特征提取。

4.1 Blob 图像分割

Blob 分析算法首先包含了“图像分割”步骤,只有对于目标图案的有效分割才能进行后续的相似灰度Blob 分析。论文中设计的Blob 分析算法在图像分割方面使用了多种方法,可以针对表面检测的各种领域进行灵活应用,包括:

● 固定阈值分割(Fixed Threshold )

固定阈值分割使用单一阈值将图像分割为Blob 对象和图像背景两部分。固定阈值分割对于高对比度以及背景一致性很好的图像具有较好的效果。

● 可变阈值分割(Adaptive Threshold )

可变阈值分割方法由于采用了一些图像统计方法来预测最佳的分割阈值,因此可以适用于一些对比度和一致性较差的图像,每个像素均对应自己独立的分割阈值。这些统计方法包括:最小均值方式、最大均值方式以及均方差等统计信息等。

经过选择有效的图像分割方式,满足用户检测需求的特征形成了Blob ,而其他非检测目标构成了图像背景,在对于Blob 进行特征提取后,可以设计对应的过滤器来“筛选”出真实的缺陷Blob 。

4.2 Blob 特征提取

在经过图像分割后,图像的灰度信息经过Blob 特征提取过程就可以转化为Blob 信息队列。其中根据表面质量检测应用需求,针对性设置算法,可以提取更多Blob 形状信息。

目前Blob 分析算法中所提取的典型Blob 特征包括:

● Blob 面积与外接矩形面积比例

Height

Width Area BBoxArea Area io AreaBoxRat ?==

(3) ● Blob 延伸率特征 h

FiberLengt Area FiberWidth Area h Perim Lengt h Perim Lengt h FiberLengt FiberWidth

h

FiberLengt Elongation =--== 4

16 2 (4) ● 最小外接椭圆的长轴角度(与X 轴方向夹角)

∑∑∑∑====??????-=-22X Y 2YY YY 21

y 2tan 5.0 i YY i X i Y i X Y X XY XY X XX XX YY XX

XY S x S y S x S Area

S S S M Area S S M Area S S M M M M ,,,,-=,-=,-=θ (5) 除了上述典型Blob 形状参数以外,本Blob 分析算法还可以计算Blob 形状的质心,Blob 中孔洞个数,Blob 周长、外接椭圆长轴和短轴、类圆度以及一些灰度特征,如最大最小灰度、灰度均值、灰度方差等。 当图像灰度信息经过Blob 分析算法处理后,便转化为目视更加直观的Blob 形状信息,用户可以根据这些Blob 特征设计组合式的多级分类器,在经过多个分类器过滤后,可以在一定程度上满足各种表面检测用户的缺陷检测需求。

5.处理单元构成

在表面质量检测的各种系统中,通用的处理方式都是基于PC 机的检测处理系统。作为核心处理单元,计算机负责系统的全部管理动作,系统需要综合考虑与相机、采集卡、编码器、外部PLC 、以及PC 本身外设的连接与通信控制,同时提供各种人机界面;当检测到表面质量瑕疵时,监视器上将显示有瑕疵图像,并明显标识瑕疵位置,启动声光报警装置,同时发出IO 控制指令,将好品与缺陷品分仓控制。

典型的表面检测系统处理单元构成如下图,本系统考虑了两台相机来并行检测表面的质量瑕疵:

图4 表面检测系统处理单元构成

6. 总结

本文探讨了基于机器视觉的产品表面检测系统的各项相关技术,首先介绍了机器视觉和机器视觉系统的基本概念,同时针对通用的表面检测系统,提出了常用的系统设计与构成方案,并结合当前表面检测中常用的高精度定位配准算法以及Blob分析算法的原理进行了介绍。

目前,基于本文所介绍的表面检测系统已经成功应用到印刷行业的表面质量检测现场,并且进行了批量推广使用,说明这些表面检测技术已经比较成熟,对于以后开展其他行业的表面检测系统应用具有较好的参考和指导意义。

参考文献:

[1] 阮秋琦. 数字图像处理学[M]. 北京:电子工业出版社,2000

[2] 王岩松、阮秋琦. 一种基于互相关的图像定位匹配算法研究与应用[J]. 北方交通大学学报,2002,26(2)

基于ArcGIS的排水管网在线监测与分析系统开发与应用

基于ArcGIS的排水管网在线监测与分析系统开发与应用2012-05-08 作者:毛楠聂新宇张志轶赵冬泉来源:北京清华城市规划设计研究院 1 引言 具体情随着城市的发展,城市地下排水管网建设迅速扩张,传统的纸图和经验式管理已经无法满足城市发展和排水系统现代化运营管理的需要。地理信息系统(Geographical Information System,简称GIS)强大的空间分布可视化和海量信息存储管理能力,结合暴雨管理模型(Storm Water Management Model,简称SWMM)专业的排水系统水文水力分析优势,为城市排水管网高效运营和科学决策提供了有效工具。同时,为了及时掌握管网运行状态,需要合理部署管道监测网络。在国外,排水管道流量监测设备的发展已经有三十多年的历史,很多城市建立了流量监控网络,用于排污收费、入流入渗消除和溢流控制等。如:美国马里兰州通过排水管网平台和排水管道流量监测以减少入流和入渗现象的发生;田纳西州诺克斯维尔市建立FlowAlert预警系统,用于监控液位变化以消除污水溢流的发生,该系统利用包含100台流量计的监控网络,指导了223处管道修复工程,减少了77%的合流制管网溢流(CSOs)和78%的污水管网溢流(SSOs)。1990年,澳大利亚悉尼市建成了超过400台流量计的监测网络,有效的保证了悉尼的排水安全。 ArcGIS Engine是一个创建定制的GIS桌面应用程序的开发产品。ArcGIS Engine包括构建ArcGIS产品ArcGIS Desktop和 ArcGIS Server的所有核心组件。ArcGIS Engine 提供了COM、.NET和C++的应用程序编程接口(API)。这些编程接口不仅包括了详细的文档,还包括一系列高层次的组件,使得编程人员能够较快的创建ArcGIS应用程序。所以,排水管网在线监测与分析系统以ArcGIS为开发平台,集成排水管网模型,配合管道在线监测网络的合理部署,能够实现排水管网信息实时采集、动态监测和决策分析,不仅可以为管网应急事故处理处置、管网运行状态评估、运行调度和防洪决策等行为提供技术支持,还可以为排水模型的率定和验证提供数据支撑,实现模拟分析,从而大大提高城市排水设施的安全输配性、管理服务水平和效率,实现排水系统管理的科学化、智能化和联动性。 2 在线监测与分析系统设计开发 基于ArcGIS的排水管网在线监测与分析系统采用C/S结构,以满足对GIS图形数据的大量复杂操作和对系统响应时间的要求,系统逻辑结构如图1所示,管网实时运行数据由现场监测设备进行采集,通过无线或有线方式传至管网数据采集工作站,通过软件平台进行实时显示、控制、数据管理、数据存储等工作,并通过接口程序将实时数据存进管网运行数据服务器的数据库中。根据管网运行数据库的监测数据,向相关部门分发相应的数据,更新频率可以根据程序具体使用要求设定。管理调控人员由监控工作站软件系统通过调用管网运行数据服务器的实时数据库数据进行生产监控和管理工作。系统主要包括监测信息实时查询显示、在线报警和数据统计分析等功能。 图 1排水管网在线监测与分析系统逻辑结构

质量体系材料-试验室质量监督计划网上范本

2016年度质量监督二〇一五年十月

2016年度质量监督方案 一、监督目的 为贯彻公司质量方针,确保质量目标得以实现,制定本方案。 二、监督范围及工作职责 (一)监督范围 适用于本公司所有试验检测工作。包括合同评审、人员持证资格及资格保持、检测方法选择、仪器设备使用和维护、设施和环境条件控制、检测样品保管和流转、试剂和消耗性材料采购、采样方法、安全防护、检测报告、结果评价、数据库和其他检测信息存储控制等。 (二)工作职责 1、质量负责人负责组织制定年度质量监督计划,并对质量监督结果进行评价; 2、技术负责人负责组织检测人员的技术考核; 3、质量控制室负责检测标准、规范等文件的跟踪查新; 4、质量监督员负责监督质量监督工作的落实。 三、监督的实施 (一)日常监督 1.质量监督员根据各自分工对被监督对象的某一操作全过程或其中某一完整的重点环节进行监督。 2.监督方式以随机的、预先不通知的动态监督为主。 3.监督频次视实际情况掌握,一般对每名被监督对象的监督不少于2次/年,如出现不符合数据和影响数据质量的不符合工作时应加大监督频次,

确保监督的有效性。 4.对新进/转岗等在培人员和合同制工作人员的监督应作为重点,适当增加监督频次。 (二)特定目的的监督 在客户有特殊要求、客户投诉、方法偏离、新方法/新项目开发、新设备试运行、承担重要的检测任务等情况下,各室质量监督员应按照监督计划对上述工作进行相应监督。 1.客户有特殊要求或客户投诉时,由接受要求或客户投诉部门以书面形式通知相关部门开展监督工作,并明确监督要求。 2.方法偏离时,由实施检测的部门负责人安排质量监督员对检测过程进行监督。 3.开展新方法/新项目时,由本部门负责人安排质量监督员对新方法/新项目承担人员从其开发设计到完成的全过程进行监督。 4.新设备试运行(初期使用)阶段,由设备使用部门负责人安排质量监督员对使用新设备的人员实施操作全过程监督和记录的检查。 5.参加能力验证及其它重要的检测任务,应对检测重点环节进行监督。比对和能力验证的监督由项目承担部门安排。 (三)监督记录 1.质量监督员负责对本室检测人员的工作进行监督检查,每次监督都应有记录,并对被监督对象在监督范围内的胜任能力作出适应性或持续性的评价,监督记录应该详细且真实的反映监督活动。 2.监督过程中发现的不符合应按照管理体系文件的要求及时处理和反馈,采取纠正措施,制定预防措施,并进行汇总分析,作为管理评审的输入。

误差理论与大数据处理作业

第一章绪论 1-1、研究误差的意义就是什么?简述误差理论的主要内容。 答: 研究误差的意义为: (1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量与实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数 据; (3)正确组织实验过程,合理设计仪器或选用仪器与测量方法,以便在最经济条件下,得到理想 的结果。 误差理论的主要内容:误差定义、误差来源及误差分类等。 1-2、试述测量误差的定义及分类,不同种类误差的特点就是什么? 答:测量误差就就是测的值与被测量的真值之间的差;按照误差的特点与性质,可分为系统误差、随机误差、粗大误差。 系统误差的特点就是在所处测量条件下,误差的绝对值与符号保持恒定,或遵循一定的规律变化(大小与符号都按一定规律变化); 随机误差的特点就是在所处测量条件下,误差的绝对值与符号以不可预定方式变化; 粗大误差的特点就是可取性。 1-3、试述误差的绝对值与绝对误差有何异同,并举例说明。 答:(1)误差的绝对值都就是正数,只就是说实际尺寸与标准尺寸差别的大小数量,不反映就是“大了”还就是“小了”,只就是差别量; 绝对误差即可能就是正值也可能就是负值,指的就是实际尺寸与标准尺寸的差值。+多少表明大了多少,-多少表示小了多少。 (2)就测量而言,前者就是指系统的误差未定但标准值确定的,后者就是指系统本身标准值未定。1-6.在万能测长仪上,测量某一被测件的长度为50mm,已知其最大绝对误差为 1μm,试问该被测件的真实长度为多少? 已知:L=50,△L=1μm=0.001mm, 解: 绝对误差=测得值-真值,即: △L=L-L =L-△L=50-0.001=49、999(mm) 测件的真实长度L 1-7、用二等标准活塞压力计测量某压力得100、2Pa,该压力用更准确的办法测得为100、5Pa,问二等标准活塞压力计测量值的误差为多少? 解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。 故二等标准活塞压力计测量值的误差=测得值-实际值, 即: 100.2-100、5=-0、3( Pa)

(完整版)环境监测系统解决方案

环境监测系统解决方案 一、系统概要 本综合管控云平台是一套基于云计算的物联网综合管控云服务平台。平台可适配于各种物联网应用系统,实时监控管理接入设备的状态与运行情况,并对设备进行远程操作,通过云平台对接物联网设备做到精确感知、精准操作、精细管理,提供稳定、可靠、低成本维护的一站式云端物联网平台。环境监测系统通过对现场温度、湿度、光照、风向、风速、PM2.5、气压等参数的数据采集,将参数数据远传至物联网云平台,实现现场各个设备的数据实时监测,用户可以通过电脑网页或是手机app实时查看,可以自由设置各个参数的标准值上下限,如果数据超限可以给相关的工作人员发送短信或是微信报警提醒,做到提前预警,避免造成不必要的损失,实现在远程就能值守现场设备。 二、拓扑图 现场传感器数据通过物联网中继器上传云平台,客户通过电脑网页或是手机app可以实时监控现场设备数据。

三、系统构成 3.1系统登陆 ①PC端登陆: 本系统采用B/S架构,PC端用户只需打开浏览器通过IP地址进入管理系统,凭管理员分配的用户名密码进行登陆管理。(登陆界面可定制企业logo及信息)如下图: ②手机端登陆: 用户可在任何有本地局域网信号的地方,通过IOS或Android版本APP登陆系统,登陆账号与PC端账号相同。IOS 版本APP请在Apple Store搜索“易云系统”进行下载,安卓版本请在“易云物联网系统”公众号或PC端系统中扫描二维码进行下载。 3.2数据监控 能够便捷监控实时数据,并且可通过数据变化自动启停其他设备,各项数据可用数值、图片、文字分别展示,并通过短信等功能向用户发送报警信息。另外,可设定不同的监控点,更直观的监测每个测温点实时情况,模拟真实的设备位置分布。如下图:

空气质量在线监测系统

空气质量在线监测系统 各模块性能特点: 粉尘监测模块以激光为光源,通过激光光散射原理监测分析粉尘颗粒物数量。 能够实时在线监测,通过光学原理达到更快的响应速度。以激光为光源,使质量浓度转换系数不受颗粒物颜色的影响,保证了测量的准确度。 温湿度传感器可用来精确测量土壤、空气、液体温湿度,传感器的精度和稳定 性依赖于感温元件的特性及精度级别。 噪声监测模块采用了国外先进的传感技术,可通过检测探头对噪声进行连续监 测,响应时间快,工作可靠稳定。 雨量传感器适用于气象站、水文站、农林、国防等有关部门,用来遥测液体降 水量、降水强度、降水起止时间。 日照传感器采用高精度感光元件可以用来测量光谱范围为0.3-3μm太阳总辐射, 具有线性好、精度高、稳定可靠等特点。 系统监控平台软件为全中文操作语言,具有记录、存储、显示、数据处理、输出、打印、故障维护指示及有线/无线传输功能。通过网络通讯技术为以后多个子站点向中心站数据汇总预留了扩展空间,具有较强的实用性。监测软件可任意添加包括:粉尘、噪声、温湿度、风速风向、负氧离子、大气压力、气体等参数(需定制),还可将监测数据形成报表并打印上报远程数据。 系统整体具有测量精度高,量程范围宽,稳定性好,功耗低,抗干扰能力强等 特点。 系统组成: 现场采集端:粉尘分析模块、噪声采集模块、风速风向分析模块、温湿度采集 模块、总辐射监测设备、降雨量检测设备。

通讯:有线232通讯或无线GPRS通讯设备 环境监控中心软硬件建设:包括数据库及通讯服务器、服务器、系统监控平台 软件等组成。 PM2.5粉尘检测仪技术参数: 可直读粉尘质量浓度(mg/m3) 可进行全天候连续在线监测或定时监测; 带有自校准系统,可有效消除仪器的系统误差。 显示器:大屏液晶,中文菜单 检测灵敏度0.01mg/m3(低灵敏度); 0.001mg/m3(高灵敏度)。 重复性误差:±2% 测量精度:±10% 测量范围: 0.01~100 mg/m3或0.001~10 mg/m3。 工作条件 a) 环境温度:(0~40)℃; b) 相对湿度:<90%; c) 大气压:86kPa~106 kPa。 测定时间:标准时间为1分钟,设有0.1分及手动档(可任意设定采样时间)。 具有公共场所监测模式、大气环境监测模式以及劳动卫生模式。可计算出时间加权平均值(TWA)和短时间接触允许浓度(STEL)等。 存贮:可循环存储999组数据。 定时采样:可设定测量时间(1~9999)秒,关机时间(0~9999)秒,预热时间(0~10)秒及采样次数(1~9999)次。 粉尘浓度超标报警阈值设定:浓度阈值及采样周期可自行设定

工程质量检测机构管理系统

工程质量检测机构管理系统 建设工程质量检测管理软件系统(TCMS)是我公司依据GB/T15481《检测和校准实验室能力的通用要求》开发的系列软件,产品适用于建筑、公路交通、铁路、水利水电、军队等行业的各级建设工程质量检测站、检测中心,适用于各建材厂商、大专院校、科研机构的质量检测实验室。TCMS系统的全面应用将从技术上确保检测过程的公平、公正、公开。 1、工程质量检测机构业务系统 建设工程质量检测管理系统----业务系统 >> 包括指纹登记、收样登记、合伙收费、检验、校核、审批、报告打印等模块,构成本系统的前台功能。 办理委托时,见证人、取样人进行指纹验证

所见即所得的检测报告审批 严格的检测过程管理,对任何操作做到“落笔有痕”

按“最小二乘法”自动计算的土工击实报告>> 基于二维条码的文档安全认证 来源:工地现场的特殊性,为各种假文档的产生提供了便利

2、液压试验机数据自动采集系统 材料试验机是检测机构力学性能检测的主要设备,本系统的目的就是通过各种信息技术的应用,实现计算机自动从材料试验机采集相关检测数据,将检测过程中人为因素的干扰降到最低。 本产品共有以下四种实现方式: 1)材料试验机数据自动采集系统——计算机方式 材料试验机上加装压力、位移等传感器,计算机自动从检测仪器设备上动态 采集检测数据; 计算机采集检测数据信号,实时绘制相关的检测曲线; 计算机后台软件自动计算相关原始数据,并生成检测报告。

材料试验机数据自动采集系统----数显方式 材料试验机上加装压力、位移等传感器,控制箱自动从检测仪器设备上动态采 集检测数据; 控制箱显示检测数值,示值精度达到国家I级精度; 广泛适用于交通、水电工程的工地临时试验室的试验机精度改造。 材料试验机恒速加荷系统----全自动控制 料试验机上加装压力、位移等传感器,计算机自动从检测仪器设备上动态采集 检测数据; 计算机采集检测数据信号,实时绘制相关的检测曲线; 计算机根据检测样品的试验方法,自动调整材料试验机的加荷速度,完全淘汰 人工操作试验机; 计算机后台软件自动计算相关原始数据,并生成检测报告。

误差理论与数据处理答案

《误差理论与数据处理》 第一章绪论 1-1.研究误差的意义是什么?简述误差理论的主要内容。 答:研究误差的意义为: (1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于 真值的数据; (3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下, 得到理想的结果。 误差理论的主要内容:误差定义、误差来源及误差分类等。 1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。 系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化); 随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;

粗大误差的特点是可取性。 1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。 答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量; 绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。+多少表明大了多少,-多少表示小了多少。 (2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定 1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差 解: 绝对误差等于: 相对误差等于: 1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少? 解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm , 测件的真实长度L0=L -△L =50-0.001=49.999(mm ) 1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少? 21802000180''=-'''o o %000031.010*********.00 648002066018021802≈=''''''??''=''=o

在线监测系统运营解决方案

在线监测系统运营解决方案 污染源在线监测系统是环保监测与环境预警的信息平台。系统采用先进的无线网络,涵盖水质监测、烟气自动监测(CEMS)、空气质量监测、以及视频监测等多种环境在线监测应用;系统以污染源在线监测为基础,充分贯彻总量管理、总量控制的原则,包含了环境监理信息系统的许多重要功能,充分满足各级环保部门环境信息网络的建设要求,支持各级环保部门的环境监理与环境监测工作,满足不同层级用户的管理需求。 1.污染源在线监测系统的构成 一套完整的污染源在线监测系统能连续、及时、准确地监测排污口各监测参数及其变化状况;中心控制室可随时取得各子站的实时监测数据,统计、处理监测数据,可打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图、多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储指定的监测数据及各种运行资料、环境资料备检索。系统具有监测项目超标及子站状态信号显示、报警功能;自动运行,停电保护、来电自动恢复功能;维护检修状态测试,便于例行维修和应急故障处理 污染源在线监测系统特点 ?整合污染源在线监测系统与视频监测系统,在全面监测企业污染物排放状况的同时,还可以将企业现场的实时画面传送到环保局,实现污染源可视化管理。 ?采用GPRS无线数据传输方式,彻底摆脱“有线”的束缚,适用范围广,运行成本低。 ?利用GPRS无线网络实时在线的特点,建立污染源在线监测系统(环境监理信息系统)的无线网络,及时准确地掌握各个企业污染物排放口的实际运行情况和污染物排放的发展趋势与动态。 ?人性化的报警和预警功能,可以提醒管理人员及时地关注和处理可能发生或已经发生的事件。 ?监测仪表的类型不受限制,只要在系统中进行相应的设置即可对任意仪表类型自动进行识别,从而扩大了系统的监测种类和应用范围。 ?涵盖在线监测的多种应用,包括水质在线监测、烟尘在线监测。

管道检测设备介绍及检测方案

1、需求分析: 根据本次的总体系统规划需求,充分考虑**地区“智慧城管”整体规划的特点,设备将提供的功能模块涵盖排水管道地理空间位置信息采集、排水管道属性信息采集、排水管道内部检测视频、声纳数据采集。 利用雷达检测排水管道地理空间信息以及排水管道属性信息;利用管道机器人采集管道内部视频;利用全景镜头采集管道2D图像,可进行量化分析管道各种缺陷尺寸;利用管道声纳检测系统,用于检测在管道水量达到一半以上时的管道内部状况检测,检测管道的变形、破碎、淤泥含量,利用软件技术,还原管道三维声纳图,直观展示管道淤积、变形、破碎等特种状况。 2、设备设计方案 2.1设备信息表 2.2设备详细资料方案介绍 2.2.1载车 车辆改装总则:

车身表面为工程黄涂装,并安装有作业警示灯,整车结构及外形不进行大的改动。主要将车厢分为二大部分三个区域,即操作区(设备安装室)、监控区(设备操控室)、驾驶区(驾驶室),其中监控区和驾驶区为一个部份并配置空调,操作区为独立部份,拆除了部份空调风道。如下图所示: 2.2.1.1操作区 1、车厢改装(如上图所示) 车厢通过中间隔板分为二个部份,三个区域。中间隔板的中间开有过道门(用户可选)以便操作人员进入操作区,并开有观察窗及电源控制盒。 中间隔板在顶上隔断二侧空调通风道进入操作区并利用监控区二侧空调通风道中间的空间加设顶隔窗以便工作人员放置办公或私人用品。 为了更好利用空间,将操作区地板将通过钢架结构抬高至车轮挡泥板齐平。并设置三个底隔窗以便放置2米的伸缩梯、长杆等辅助操作工具。 操作区地板采用3mm铁板加铺防绣铝板。

2、工作台、旋转吊臂及电动钢丝绳绞盘(如下图所示) 工具箱安装在操作区的右前侧,主要用来放置一些维修工具备件。 旋转吊臂安装在操作区的左后侧,车底安装加强骨和埋铁,保证其刚底工强度。收藏时旋转吊臂向后门靠近并固定,工作状态时转向后车门,吊臂梁可自由伸缩,吊臂的转动半径内不得有干涉物。 电动钢丝绳绞盘配置左右各一个(用户可选择)。 3、可移动部件的放置或固定(如下图所示)

智能家居空气质量检测系统

44 Innovation 创新家电科技 空气质量分析软件,是一套环境软件,是整套系统的中枢,也是技术含量比较高的部分。这套软件会根据传输过来的数据进行分析处理,并得出结论和应该采取的措施以减少空气对人们身体的伤害。 语音播报器,也是不可或缺的一部分,它是利用语音合成技术,嵌入语音合成芯片,如中文语音合成芯片,把空气质量分析软件得出的结论和应采取的措施合成语音播报出来,及时地提醒我们采取措施减少危害。 空气净化器,是整个系统的净化终端,可以净化花粉、烟等可吸入颗粒物;活性炭滤网能够减少甲醛含量;而光触媒滤网能够高效降解空气中的有毒有害气体,有效杀灭多种病菌;UV 紫外光可以杀灭多种自然菌,预防感冒,增加臭氧和离子群,增强人体抵抗力。 智能家居空气质量检测系统最重要的功能就是保证新鲜空气和人们身体的健康,预防有害气体对我们造成的危害,具体功能如下。 预防甲醛中毒。甲醛广泛用于建筑材料,是无色、具有强烈刺激性气味的气体,更是高致癌物质。对于刚装修好的房子或者是刚刚换了新家具的房子,很容易甲醛超标。这是一个很重要的检测指标,一旦甲醛超标,语音播报器就会播报,甲醛超标了多少,如轻度超标,可以采取开窗通风,多放置一些植物和竹炭去除甲醛;如果浓度超标严重,就要考虑先换个地方住,采取更加专业的措施去除甲醛了。 预防煤气泄漏。一旦有煤气泄漏,语音播报器就会马上报警,提醒主人,关紧煤气,打开窗户。 避免因花粉、烟等可吸入颗粒物易导致花粉过敏、呼吸道疾病和哮喘病的发生。可以检测屋内不同的粉尘含量,例如春天的花粉,如果超标,就要采取措施增加空气湿度,尽量减少户外活动等。 高效降解空气中的有毒有害气体,采用UV 紫外光空气灭菌技术有效杀灭多种病菌,预防一些传染病或者流行性感冒。某种细菌突然产生或者含量集聚增加,预示着可能某种传染病或者流行病在盛行,要让我们及时防范和治疗。 此外还可以增加空气含氧量和被誉为“空气中的维生素”的负离子的含量,从而提高人体的抵抗力。 智能家居已经成为越来越热门的话题,但是人们享受生活的前提是家人的平安、身体的健康。智能家居空气质量检测系统可以为我们创造了一个良好的生活环境,让人们的生活品质与幸福并重。 (供稿: 北京宇音天下科技有限公司 畅新爱) 智能家居空气质量检测系统 随着人们生活水平的不断提高,对健康的重视程度和要求越来越高。每当新居装修完毕,家具及装修材料中散发出的有毒气体对老人和孩子会带来很严重的伤害,也因此智能家居空气质量检测系统被越来越多的家庭所关注和接受。 空气质量检测系统——Air Quality Detecting System (AQDS )是利用传感技术,zigbee 技术等短距离无线通信技术,通过语音合成技术(TTS 技术)和空气质量智能分析软件来实现对室内的空气质量进行检测、分析和报警提示,并智能开启空气净化器,给家人打造一个健康的空气环境。 它的原理是通过在室内安装不同的空气质量传感模块,检测空气质量情况,利用zigbee 模块或者蓝牙模块传输到计算机。由于计算机上装有空气质量分析软件,可以自动分析出家居环境的质量如何,可以采取何种措施提高空气质量等。这些信息能够通过语音播报器播报出来,提示主人需采取空气净化措施,并智能开启空气净化器。 具体来说,空气质量检测系统由空气质量传感模块,zigbee 或者蓝牙模块,空气质量分析软件和语音播报器和空气净化器五部分组成。 空气质量传感模块。不同的模块有不同的检测功能,例如甲醛传感器检测空气中甲醛的含量有没有超标;煤气传感器检测煤气有没有泄露的情况;粉尘传感器检测春天粉尘浓度;空气综合质量传感器检测空气中每种应有气体的含量,如果氧气的含量下降,细菌的含量增加,会提示开窗通气等。针对不同的家庭需要,传感器的数量和种类也不尽相同。 Zigbee 模块或者蓝牙模块等都是采用短距离无线通信技术,特点是传输距离近,功耗低,成本低。 科技前沿 智能家居已经成为越来越热门的话题,但是人们享受生活的前提是家人的平安、身体的健康。智能家居空气质量检测系统可以为我们创造了一个良好的生活环境,让人们的生活品质与幸福并重。

误差理论与数据处理第7版费业泰习题答案

《误差理论与数据处理》(第七版) 习题及参考答案

第一章 绪论 1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差 解: 绝对误差等于: 相对误差等于: 1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。 % 108.66 % 1002.31 1020 100% max max 4-6 -?=??=?= 测得值 绝对误差相对误差 1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格? %5.22%100%100 2 100% <=?= ?= 测量范围上限 某量程最大示值误差 最大引用误差 该电压表合格 1-12用两种方法分别测量L1=50mm ,L2=80mm 。测得值各为50.004mm ,80.006mm 。试评定两种方法测量精度的高低。 相对误差 L 1:50mm 0.008%100%5050 004.501=?-= I L 2:80mm 0.0075%100%80 80 006.802=?-= I 21I I > 所以L 2=80mm 方法测量精度高。 1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射 21802000180''=-'''o o %000031.010*********.00648002066018021802≈=' '' '''??''=''=o

排水管网排口监测系统方案

排水管网排口监测系统解决方案 系统概述 排水管网排口监测系统通过在雨污水排口布设排口流量计、水质监测仪等设备,实时掌握排口流量、水质、河道液面高度以及现场视频状况,实现雨污水排口状态的实时感知和城域化汇集管理,并通过传输网络将采集到的数据接入到各个应用系统中,实现实时监测告警,通过现场真实画面反馈排口运行情况。 系统架构 1、感知层 感知层的设备通过传感网络获取感知信息。感知层是物联网的核心,是信息采集的关键部分。 2、网络层 网络层是数据通信的核心,是数据传输的主要通道,网络层主要采用NB-IoT通信网络,具备覆盖广、连接多、速率快、成本低、功耗低、架构优等特点。 3、通信服务层 通信服务层由物联网设备管理平台组成,实现数据的汇集与管理,为管网监测平台及其他应用平台提供专业、便捷的数据接口服务。

4、应用层 应用层为运维部门、管线权属单位、大数据局、运维管理、决策分析等信息服务。 系统功能 1、实时监测告警 实时监测排水管网气象状况,根据预先设定报警规则,实现气象异常情况告警。 2、GIS地图展示 在电子地图上显示监测点位、基本信息、实时状态等。 3、调度运行 对排水管网分区气象异常分析、处理,高效协调相关部门的协同工作。 4、视频监控 获取有效数据、图像或声音信息,对突发性异常事件的过程进行及时的监视和记忆。 5、数据分析 对大量的排口监测数据进行重组、汇总及对比分析,挖掘出有利于提升排水管网排口管理水平和效率的有价值数据。 系统特点 1、易于集成 系统提供设备底层通讯协议及多种语言的数据接入解析demo程序、协议解析库,30分钟即可完成设备数据调用接口集成。 2、扩展性强 系统对传感器监测项做了对应的扩展预留设计;系统的管理业务流程具备可扩展性;软件平台应用子系统预留了接口具备扩展性。 3、实时性高 基于4G无线传输,传输距离远、信号强度高、数据传输稳定。在现式实时上传监测数据,

空气质量监测系统技术方案

空气质量自动监测系统技术方案

目录 一.前言 二.系统概述 三.系统组成 四.空气质量监测仪性能特点 五.仪器工作原理 六.监测参数及性能指标 七.采样系统 八.多点校准设备(高精度配气仪) 九.零气发生器 十.气象系统 十一.中心站软件系统介绍 十二.项目详细的自动监测系统框图、安装方案十三.常见故障维修

大气环境自动监测系统技术文件 一.前言 环境保护监测先行,自动化、信息化是做好环境监测的前提和保障。在地方经济 迅速发展的同时、各地区不断出现不同程度的水、气、噪声等环境污染事件,严重影响了人们的生活质量,阻碍了当地经济的持续发展。随着国家制定的各种环境保护政策及法规的颁布实施,各级地方政府在对辖区内的环境治理日益重视的同时,加大了对环境监测的投资力度,各地区陆续规划安装了大气环境质量监测地面站,实施城市空气质量预报。 THY-AQM60系列城市级大气环境监测系统完全可以实现区域环境保护监测部门对环境监测的实际需要,满足城市空气质量预报的要求。 二、系统概述 THY-AQM60系列城市级大气环境监测系统通过在城市均布点设置子站(子站数量根据当地情况而定),安装在线式环境监测设备。监测数据实时传送到当地环保监控中心;中心可通过系统实时监测终端监测辖区内分布的各点在线监测设备的实时动态数据,并及时记录;建立监测系统数据库,根据历史记录数据和分析结果预测、预报辖区环境污染状况及发展趋势,为有效控制辖区内环境状况提供科学依据。 系统将在环保局监控中心安装一个视频显示屏及建立一个显示控制系统,该系统可满足环保局政务公示及辖区环境监测数据、信息实时发布的需要。 THY-AQM60系列环境空气质量自动监测系统是以自动监测仪器为核心的自动“测-控”系统。系列环境空气自动监测系统是基于干法仪器的生产技术,利用定电位电解传感器原理,结合国际上成熟的电子技术和网络通讯技术研制、开发出来的最新科技产品。该系统符合国家对城市环境空气自动监测系统的各项技术指标要求,国产化程度高,具有较强的实用性和理想的性能价格比,可替代同类进口产品,是开展城市环境空气自动监测的理想仪系列环境空气自动监测系统由一个中心站和若干个子站构成(子站数量根据当地情况而定),安装在线式环境监测设备。因此系统软件将由中心站软件和子站软件两大部分组成,两者有机结合,协调整个监测系统的运行,完成对各种监测仪器的数据采集和远程通讯控制 及数据处理,并形成报告。 三、系统组成 大气污染物: NO2(NO、NOx)监测仪、臭氧监测仪、二氧化碳监测仪、一氧化碳监测仪、PM10监测仪 气象系统:可测量风速、风向、温度、湿度、大气压力。

误差理论与数据处理试题范文

误差分析与数据处理 一.填空题 1. ______(3S或莱以特)准则是最常用也是最简单的判别粗大误差的准则。 2. 随机误差的合成可按标准差和______(极限误差)两种方式进行。 3. 在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性称为 ______(重复)性。 4. 在改变了的测量条件下,同一被测量的测量结果之间的一致性称为______(重现)性。 5. 测量准确度是指测量结果与被测量______(真值)之间的一致程度。 6. 根据测量条件是否发生变化分类,可分为等权测量和______(不等权)测量。 7. 根据被测量对象在测量过程中所处的状态分分类,可分为静态测量和_____(动态) 测量。 8. 根据对测量结果的要求分类,可分为工程测量和_____(精密)测量。 9. 真值可分为理论真值和____(约定)真值。 10. 反正弦分布的特点是该随机误差与某一角度成_____(正弦)关系。 11. 在相同条件下,对同一物理量进行多次测量时,误差的大小和正负总保持不变,或按一定的规律变化,或是有规律地重复。这种误差称为______(系统误差)。 12. 在相同条件下,对某一物理量进行多次测量时,每次测量的结果有差异,其差异的大小和符号以不可预定的方式变化着。这种误差称为______(偶然误差或随机误差)。 13. 系统误差主要来自仪器误差、________(方法误差)、人员误差三方面。 14. 仪器误差主要包括_________(示值误差)、零值误差、仪器机构和附件误差。 15. 方法误差是由于实验理论、实验方法或_________(实验条件)不合要求而引起的误差。 16. 精密度高是指在多次测量中,数据的离散性小,_________(随机)误差小。 17. 准确度高是指多次测量中,数据的平均值偏离真值的程度小,_________(系统)误差小。 18. 精确度高是指在多次测量中,数据比较集中,且逼近真值,即测量结果中的 _________(系统)误差和_________(随机)误差都比较小。 19. 用代数方法与未修正测量结果相加,以补偿其系统误差的值称为_____(修正值)。 20. 标准偏差的大小表征了随机误差的_____(分散)程度。 21. 偏态系数描述了测量总体及其误差分布的_____(非对称)程度。 22. 协方差表示了两变量间的_____(相关)程度。 23. 超出在规定条件下预期的误差称为_____(粗大)误差。 24. +=_____() 25. ++=_____() 26. () 28. pH=的有效数字是____(2)位。 29. 保留三位有效数字,结果为____。 30. 为补偿系统误差而与未修正测量结果相乘的数字因子称为______(修正因子)。 一、检定一只5mA、级电流表的误差。按规定,要求所使用的标准仪器产生的误差不大于受检仪器允许误差的1/3。现有下列3 只标准电流表,问选用哪一只最为合适,为什么? (本题10 分) (1)15mA级(2)10mA级(3)15mA级

智慧环保在线监测系统解决方案

( 环保在线监测系统设计1总体设计 系统由污染排放在线监测系统、污染净化设施运行监测系统、预警预告系统、初级控制执行系统、紧急控制执行系统五大系统组成。 对排污数据和环境治理设备运行状况同时进行监测,综合分析两方面的数据,确保排污单位排污状况真实可靠,污染净化设施有效运行。 对企业污染物超标排放或者环保设备偷停不运转的情况,系统会启动生产控制执行程序,远程下达命令,分层断电,及时制止排污行为,改变了传统设备“只监不控”的方式。 对突发性污染事故隐患和污染物泄露事故,系统会立即执行重大事故应急预案,启动排污单位的紧急ESD系统,紧急规避危险,预防灾难性污染事故的发生。 如果企业排污超标,系统会在排污单位和环保部门同时报警,并将报警信息通过短信息在第一时间发送到相关单位负责人和管理者的手机上,督促管理者及时处理问题。 系统监控设备监控一体化功能,使排污单位必须自觉维护好系统,因为一旦运行不好,上传数据不正确,没有数据上传视同违法,系统仍然会报警,有效遏止人为破坏,保证系统运行正常。

} 2功能设计 方便的污染源管理 本模块利用GIS技术把环境污染源应用软件构筑于污染源数据库管理系统和图形库管理系统之上,提供具备空间信息管理、信息处理和直观表达能力的应用。能综合分析环境情况,实现污染源信息的综合查询,为计划决策提供信息支持,为有关的评价、预测、规划、决策等服务。其检索查询功能,可对行政区划、年份等进行条件统计汇总,统计结果可用表格、统计图、文字等多种方式表示。 动态数据成图 系统可根据测量得到的数据,自动对区域环境状况进行直观表现,提供描绘全场平面、立体等值线图,各种数据可生成饼图、柱状图、线状图等多种表现形式,能动态外挂图、文、声、像等多媒体数据。 环境质量监测 系统分为对大气、水、噪声、固体废弃物、土壤及农作物等方面的监测,其主要功能:专题的监测点位图的显示、点位查询、区域查询、信息查询、全区环境分布、全区或个别点环境平均状况随时间的变化情况等。并实现了数据地图化功能,可自动生成交通线上的噪声

自动化测试平台解决方案

Smart Robot自动化测试解决方案

目录 1.迫切需要解决的问题 (3) 1.1.智能移动设备的软件系统和硬件方案的复杂组合,导致APP实现多机型兼容难 度大,投入大。 (3) 1.2.敏捷开发、迭代开发,产品追求快速上线,导致回归测试可靠性测试等任务重, 形成测试工作量波峰。 (3) 1.3.开发框架多、开发人员能力不足导致安全漏洞突出 (3) 1.4.市场竞争,产品同质化严重,追求客户体验差异化重要性凸现。 (3) 2.自动化测试平台整体解决方案 (3) 3.自动化测试平台实现功能 (4) 3.1.兼容性测试系统 (4) 3.1.1.SMART 平台 (4) 3.1.2.智能源码扫描 (6) 3.2.安全监控系统 (9) 3.2.1.高精度电流监控 (9) 3.2.2.监控应用及整机文件系统 (10) 3.2.3.监控应用及整机数据流量监控,记录非法数据传输等情况 (11) 3.2.4.用户行为跟踪,监控电话、短信、拍照、摄像、录音等典型动作 (12) 3.3.性能测试系统 (13) 3.3.1.响应时间测试系统 (13) 3.3.2.流畅度测试系统 (16)

1.面临的问题 1.1.智能移动设备的软件系统和硬件方案的复杂组合,导致APP 实现多机型兼容难度大,投入大。 1.2.敏捷开发、迭代开发,产品追求快速上线,导致回归测试、 可靠性测试等任务重,无法有效应对测试工作量波峰。1.3.A PP开发框架多、开发人员能力不足导致安全漏洞突出1.4.软件硬件设计交叉影响,性能优化难度加大。 2.自动化测试平台整体解决方案 为解决移动应用开发商面临的以问题,结局方案设计如下。可全面解决移动应用开发面临的兼容性问题、安全性问题、测试工作量波峰、用户体验问题,并全程为移动应用的开发保驾护航。 整体解决方案 兼容性测试系统:智能源码扫描,即通过解析APK文件,将源码与问题特征库自动比对,查找兼容性问题,并自动生成测试报告。 SMART平台,实现被测设备管理+测试用例制作、管理、自动化执行、并

空气质量监测系统技术指标

空气质量监测系统技术指标 1.货物名称 2.技术指标 2.1可吸入颗粒物PM10监测仪(含校准膜) (1) ★测量原理:连续实时尘采集和?射线衰减测量 (2)放射源:碳14(C14),<3.7MBq(<100居里) (3)量程:0-5,000μg/m3或0-10,000μg/m3 (4)最低检出限:<1μg/m3(24小时平均);<4μg/m3(1小时平均) (5)仪器精度(24小时):±2μg/m3 (6)★分辨率:±1μg/m3(瞬时) (7)相关系数:R>0.98 (8)★测量周期:每个斑点在采集位置24小时(默认值);用户可设置30分钟到24小时 (9)数据平均:每隔1/2小时和24小时数据自动存储;每1/2,1,3和24小时数据显示 (10)★采样流速:1m3/h(16.67升/分),内部音速小孔两端测量;用户可选择0-20升/分。 (11)电源:仪器:100-240 VAC, 50/60Hz,330W最大;15W不带泵或加热器

泵:220/240V,50/60Hz,100W (12)尺寸:仪器:483mm (宽)X 311mm(高)X 330mm(深) 泵:210mm (宽)X 222mm(高)X 108mm(深) (13)输出:模拟输出:电压0-10V或电流4-20mA浓度值(μg/m3) 串口输出:RS-232/485 (14)工作温度:-30到60℃ (15)仪器可测沙尘暴项目 (16) ★和现有设备任何备件可互通互换 (17) ★为保证设备原装正品,需提供原厂针对本项目的授权和售后服务承诺书。 2.2可吸入颗粒物PM2.5监测仪(含校准膜) (1)★用途:测量环境空气中的PM2.5质量浓度 (2)★测量方法:实时地在环境温度下同时进行颗粒物的采集和质量测量,采用β射线吸收和光散射双检测技术 (3)★通过美国EPA PM2.5联邦等效方法认证 (4)★采样头:美国EPA认可的PM10采样头和PM-2.5切割器 (5)★动态加热系统:获得美国EPA认可,能使样气相对湿度控制在低于35%,能消除湿气干扰和保留挥发性颗粒物,保证测量的准确性 (6)测量量程:在0-1mg/m3和0-10mg/m3两个量程 (7)最低检测限:小于0.5μg/m3 (2 σ)(1小时数据) (8)★测量小时精度:±2.0ug/m3小于80ug/m3,其他±5.0ug/m3 (9)准确度:±5%(与美国联邦参考方法FRM比较) (10)跨漂:0.02%/天 (11)检测器源:β射线源采用小于100μCi的碳-14;光源采用IRLED,6mW,880nm (12)采样流量:16.67升/分钟。 (13)★仪器的时间分辨率:1分钟 (14)压力/温度测量:实时监测环境压力与温度,自动修正数据 (15)信号输出:0-1V,0-5V,0-10V或4-20mA,2个RS232输出 (16) ★和现有设备任何备件可互通互换 (17) ★为保证设备原装正品,需提供原厂针对本项目的授权和售后服务承诺书。 2.3 二氧化硫分析仪

工程质量检测机构管理系统

` 工程质量检测机构管理系统 建设工程质量检测管理软件系统(TCMS)是我公司依据GB/T15481《检测和校准实验室能力的通用要求》开发的系列软件,产品适用于建筑、公路交通、铁路、水利水电、军队等行业的各级建设工程质量检测站、检测中心,适用于各建材厂商、大专院校、科研机构的质量检测实验室。TCMS系统的全面应用将从技术上确保检测过程的公平、公正、公开。 1、工程质量检测机构业务系统 建设工程质量检测管理系统----业务系统 >> 包括指纹登记、收样登记、合伙收费、检验、校核、审批、报告打印等模块,构成本系统的前台功能。 办理委托时,见证人、取样人进行指纹验证 文档Word

` 所见即所得的检测报告审批 严格的检测过程管理,对任何操作做到“落笔有痕”文档Word `

按“最小二乘法”自动计算的土工击实报告基于二维条码的文档安全认证>> 来源:工地现场的特殊性,为各种假文档的产生提供了便利 文档Word ` 液压试验机数据自动采集系统2、 本系统的目的就是通过各材料试验机是检测机构力学性能检测的主要设备,将检测过种信息技术的应用,实现计算机自动从材料试验机采集相关检测数据,程中人为因素的干扰降到最低。本产品共有以下四种实现方式: ——计算机方式1)材料试验机数据自动采集系统材料试验机上加装压力、位移等传感器,计算机自动从检测仪器设备上动态采集检测数据;计算机采集检测数据信号,实时绘制相关的检测曲线;计算机后台软件自动计算相关原始数据,并生成检测报告。

文档Word ` ----数显方式材料试验机数据自动采集系统控制箱自动从检测仪器设备上动态采位移等传感器,材料试验机上加装压力、集检测数据;控制箱显示检测数值级精度;,示值精度达到国家I 广泛适用于交通、水电工程的工地临时试验室的试验机精度改造。 材料试验机恒速加荷系统----全自动控制 料试验机上加装压力、位移等传感器,计算机自动从检测仪器设备上动态采集检测数据; 计算机采集检测数据信号,实时绘制相关的检测曲线; 计算机根据检测样品的试验方法,自动调整材料试验机的加荷速度,完全淘汰人

相关主题
文本预览
相关文档 最新文档