当前位置:文档之家› 合作博弈及其应用案例

合作博弈及其应用案例

合作博弈及其应用案例
合作博弈及其应用案例

合作博弈及其应用案例

1多人合作博弈概念

在日常生活及社会经济活动中,一个人(或集团)为了克服自身弱点(如力量或财力有限),寻求与他人(集团)进行合作,结成一个联盟,以完成单个人或集团所不能完成的事,这就是多人合作博弈.该联盟一旦形成,就作为一个整体共同采取行动,其目标是使联盟获得最大利益.一旦博弈完毕,可以根据某种事先商定的契约以及各个局中人本身的贡献大小,分配共同所得的利益.

联盟的数学定义是:设有n 个局中人{}n N ,,2,1 =进行博弈,所谓一个联盟就是N 的一个非空子集S .为方便起见,有时称空集?也是一个联盟.n 个局中人共能形成n

2个联盟.

一旦联盟S 形成,组成联盟S 的局中人不再关心自己的特殊利益,而为整个联盟的最大利益去努力.因此,他们主要关心联盟S 所能获得的最大值.所有联盟S 所获得的最大值都确定以后,整个博弈就完全清楚.这样的博弈可以用特征函数加以描述:

定义1[]

1:给定{}n N ,,2,1 =,合作n 人博弈记为[]v N ,=Γ,N 上的特征函数v 是

定义在N

2上的实值函数,满足:

()0=?v ,

()()()N T S T S T v S v T S v ??=+≥,,, . (1)

对于一个联盟S ,()S v 的值可以通过下列方式获得:S 中局中人形成联盟为使S 获得最大利益而努力,这时最糟的情况是剩下的所有局中人S N -形成一个联盟和S 抗衡,这样可看成是两个局中人S 与S N -在进行非合作博弈,()S v 就是在上述两人非合作博弈中,

S 所获得的最大收入.

对于合作博弈,局中人之间可以相互协商,共同采取使全体都有利的策略,如果某些局中人对采取某些特定策略不满意,可以事先订立契约,等博弈完了以后再进行补偿,以便大家共同采取的策略使联盟总体的利益达到最大.因此,博弈完毕后,如何分配共同形成的总体联盟N 所得的收入()N v 就是合用博弈研究的主要任务.

()S v 的一种分配方案由n 维向量{}n x x x X ,,,21 =表示,i x 表示局中人i 的所得.显

然,对每一个局中人i 来说,它至少期望得到的i x 满足:

()N i i v x i ∈≥,. (2) (2)称为个体合理性条件;还有一个必须满足的条件是:

()N v x

n

i i

=∑=1

. (3)

(3)称为群体合理性条件.(2)、(3)合到一起就得到一种分配方案.

当所有n 个局中人均参与合作时,{}n N ,,2,1 =为最大的一个联盟,记()N v 为最大的联盟成果,如何将()N v 分配给各局中人?一个很自然的方法就是依据各局中人给联盟带来的贡献来分配.

设i x 为第i 个局中人从()N v 中获得的分配,n i ,,2,1 =则有:

{}()11v x =,

{}(){}()12,12v v x -=,

{}(){}()2,13,2,13v v x -=,

……,

(){}()n N v N v x n --=.

然而上述的分配通常与局中人编号的次序有关,如把局中人1,2,,1, -n n 的编号改为

n ''',,2,1 ,则有新的分配方案:

{}()n v x ='

1,

{}(){}()n v n n v x --='

1,2,

{}(){}()1,2,1,3----='

n n v n n n v x ,

……,

(){}()1--='

N v N v x n .

对于局中人其它编号的次序均有对应的分配方案,由于n 个局中人编号的次序共有!

n 种,所以对应的分配方案也有!n 种.为此取各局中人分配的平均值作为局中人的平均贡献.

记()v i ?为第i 个局中人的平均贡献,则有:

(){}()()[]

n i S v i S v n v i

i i ,,2,1,!1 =-=

∑π

ππ?. (4) 其中π为由n ,,2,1 组成的所有n 级排列,∑为针对所有的!n 个不同n 级排列求和,

{}i j j S i <=ππ|,显然i S π为排列π中排在i 之前的那些局中人组成的联盟,将满足S

S i

排列归为一类,(4)式可以表示为:

()()()(){}()[]n i i S v S v n S S n v S

i i ,,2,1,!

!

1! =----=∑

∈?, (5)

其中S 为N 中包含{}i 的所有子集,S 为子集S 中局中人的人数.可以证明:

()()N v v n

i i =∑=1

?. (6)

(6)式表明各局中人在联盟中的平均贡献()v i ?之和等于联盟的总“成果”. 定义2

[]

3 称()()()()()v v v v n ????,,,21 =为合作n 人博弈的Shapley 值.

在多人合作博弈中,利用Shapley 值法解决分配问题是一种比较公正、合理且行之有效

的方法.本文的目的是探讨Shapley 值法在利益分配问题,费用分摊问题,及如何确定组合预测权系数中的应用.下面就通过实例来说明Shapley 值法在这些方面的具体应用.

1 利益分配问题

随着科学技术进步和信息技术的迅速发展,世界市场已由过去的相对稳定变成动态多变的特征,由过去的局部竞争演变成全球范围的竞争.在此情景下,以最快的速度推出产品、以最好的质量、最低的成本和最优的服务满足不同用户的需求成为每个企业认真解决的问题.于是越来越多的企业纷纷寻找合作伙伴,结成联盟,利用各方优势以更好地适应快速变化的市场要求.各企业结成联盟后获得了更大的收益,如何利用Shapley 值把联盟的整体收益合理地分配给各个企业,下面给出一实例.

设现有三家企业A 、B 、C 为了抓住某一市场机遇,决定实施联盟生产某种新产品投入市场,联盟成功后将获得一批可观的收益,现如何用Shapley 值分配这一联盟收益.让我们先看在特定场合单家企业生产或两家联盟生产以及三家联盟生产的收益情况(见表1).

值法计算:

()()()20031200

48032402808024013120=?-+?-+-+?=

A ?, ()()()14031280

48032402001202401380=?-+?-+-+?=B ?,

()()()1403

1240

48032802001202801340=?-+?-+-+?=C ?.

博弈论经典案例分析

博弈论经典案例分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A 来说,囚徒B 有坦白和不坦白两种可能的选择,假设囚徒B 的选择是不坦白,则对囚徒A 来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B 选择的是坦白,则囚徒A 不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B 采取何种策略囚徒A 的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 1,1 8, 0 不坦白 0,8 5,5 坦白 嫌疑犯乙 不坦白 坦白 嫌疑犯甲 1,2 -1, -1 时装 0,0 2,1 足球 男 时装 足球 女

第二章 完全信息静态博弈的基本理论

第二章完全信息静态博弈的基本理论 0.完全信息(complete information)博弈与不完全信息(incomplete information)博弈 完全信息博弈是指每个参与人的支付函数都是该博弈的公共知识;只要有一个参与人的支付函数不是该博弈的公共知识,就意味着该博弈是不完全信息博弈。 特别提示:如果该博弈是完全信息博弈,这意味着参与人不仅知道自己是什么类型的人,也知道对手们是什么类型的人。 一.求解方法之一:剔除严格劣策略 1.占优策略与劣策略。 严格占优策略与严格劣策略:不管对手采取什么策略,如果参与人采取a策略所获得的支付严格大于b策略,则称a策略是相对于b策略的严格占优策略(strictly dominating strategy),b策略是相对于a策略的严格劣策略(strictly dominated strategy)。 弱占优策略与弱劣策略:不管对手采取什么策略,如果参与人采取a策略所获得的支付不低于b策略,且至少有一种情况下的支付会严格大于b策略,则称b策略是相对于a策略的弱劣策略(weakly dominated strategy );a策略则是相对于b策略的弱占优策略(weakly dominating strategy)。 占优策略就是我们平时所说的上策,劣策略就是我们平时所说的下策。 特别提示:本文对占优策略的理解与其他教材不同,本文可以将以上述方式定义出来的占优策略称为局部占优策略;如果不管对手采取什么策略,如果参与人采取a策略所获得的支付严格大于其他所有策略,则称a策略是全局严格占优策略。类似地,可以定义局部劣策略与全局劣策略。 理性的人在博弈时绝对不会选择严格劣策略。通过剔除严格劣策略所获得的博弈解就称之为占优策略均衡。 2.案例 案例1 乙 甲坦白 不坦白

合作博弈

合作博弈 博弈论又称为对策论,是一门应用极其广泛的学科,它既是一个数学分支,又属于经济学和管理科学范畴,其应用涉及经济学、管理学、社会科学以及计算机科学等众多学科领域。在过去的几十年中,博弈论在国内外发展迅速,既有对传统非合作博弈的突破,更有新的理论分支,比如合作博弈、模糊合作博弈等的飞速发展。如今,博弈论在经济学中的地位日益凸显,已经成为一种标准用于衡量生产活动的经济性。 博弈论发展至今的种类繁多,可以根据不同标准进行不同分类。按博弈中的参与者采用的对策能否在博弈开始前确定,可以将博弈分为策略型博弈和展开型博弈。根据博弈的周期是否与时间长短有关,分为动态博弈和静态博弈。如果一场博弈活动中,参与者之间互不关联,参与者在进行博弈时禁止任何形式的信息往来,同时禁止参与者互相签订任何形式的强制性约定,则称这种博弈为非合作博弈(non-cooperative game);合作博弈(cooperative game)则是指参与者在进行博弈前可以互相沟通,交换信息,共同完成博弈过程,合作博弈中相互合作的参与者通常称之为一个联盟。本文主要针对合作博弈进行讨论。 合作博弈理论主要关系的是联盟(即参与者集合),协调他们的行动并且经营他们的收益。因此,合作博弈研究的重点问题是如何在组成联盟的成员之间分配他们的额外收益(或节省的费用)。分配该额外收益的结果或方法称为合作博弈的解。由于合作博弈的解能够适用于复杂或者运算量较大的系统,因此合作博弈解法在电力工业中的应用已经得到国内外学者的广泛研究,其模型涵盖输配电竞价、电网建设招投标、输电定价、系统费用分摊等领域。与采用传统的非合作博弈模型求解相比,合作博弈解可以为市场中的参与者提供良好的经济信号,刺激参与者互相竞争获得更大的利益。 通常情况下,生产活动中的参与者(或局中人)通过某种协定形成联盟,各联盟之间的参与者通过协商并联合行动,来实现联盟整体利益的最大化,进一步实现个体利益的最优分配。参与者在追求整体和个体利益最大化的同时,也受到相互之间协定的约束,从而避免自身获取利益的行为造成其他参与者利益的损失。由于参与者采用合作博弈方法进行生产活动时,各自分配的利益能够被全体参与者所接受,因此对合作博弈方法的研究很有必要。 令N为参与者(这些参与者考虑不同的合作可能性)的非空有限集合,即{} =,每个子集S看作是参与者不同的合作组成的一个联盟,则联盟N n 1,2,3,..., ∈。对于每一个联盟S,其中的参与者均通过协商采取一致的策略行动,为S N 实现该联盟的总利益最大而互相合作。集合N称为大联盟,集合φ称为空联盟。

博弈论与纳什平衡

博弈论与纳什平衡 博弈论(game theory)对人的基本假定是:人是理性的(rational,或者说自私的),理性的人是指他在具体策略选择时的目的是使自己的利益最大化,博弈论研究的是理性的人之间如何进行策略选择的。 纳什(John Nash)编制的博弈论经典故事"囚徒的困境",说明了非合作博弈及其均衡解的成立,故称"纳什平衡"。 所有的博弈问题都会遇到三个要素。在囚徒的故事中,两个囚徒是当事人(players)又称参与者;当事人所做的选择策略(strategies)是承认了杀人事实,最后两个人均赢得(payoffs)了中间的宣判结果。如果两个囚徒之中有一个承认杀人,另外一个抵赖,不承认杀人,那么承认者将会得到减刑处理,而抵赖者将会得到最严厉的死刑判决,在纳什故事中两个人都承认了犯罪事实,所以两个囚徒得到的是中间的结果。 类似的:我们也能从“自私的基因”等理论中看到“纳什平衡”的体现。 在互联网这个原始丛林中:最优策略是如何产生的呢? 一、博弈中最优策略的产生 艾克斯罗德(Robert Axelrod)在开始研究合作之前,设定了两个前提:一、每个人都是自私的;二、没有权威干预个人决策。也就是说,个人可以完全按照自己利益最大化的企图进行决策。在此前提下,合作要研究的问题是:第一、人为什么要合作;第二、人什么时候是合作的,什么时候又是不合作的;第三、如何使别人与你合作。 社会实践中有很多合作的问题。比如国家之间的关税报复,对他国产品提高关税有利于保护本国的经济,但是国家之间互提关税,产品价格就提高了,丧失了竞争力,损害了国际贸易的互补优势。在对策中,由于双方各自追求自己利益的最大化,导致了群体利益的损害。对策论以著名的囚犯困境来描述这个问题。 A和B各表示一个人,他们的选择是完全无差异的。选择C代表合作,选择D代表不合作。如果AB都选择C合作,则两人各得3分;如果一方选C,一方选D,则选C的得零分,选D的得5分;如果AB都选D,双方各得1分。 显然,对群体来说最好的结果是双方都选C,各得3分,共得6分。如果一方选C,一方选D,总体得5分。如果两人都选D,总体得2分。 对策学界用这个矩阵来描述个体理性与群体理性的冲突:每个人在追求个体利益最大化时,就使群体利益受损,这就是囚徒困境。在矩阵中,对于A来说,当对方选C,他选D得5

博弈论经典模型全解析

博弈论经典模型全解析(入门级) 1. 囚徒困境这是博弈论中最最经典的案例了——囚徒困境,非常耐人寻味。“囚徒困境”说的是两个囚犯的故事。这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。但他们不得不仔细考虑对方可能采取什么选择。A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不

会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。这种想法的诱惑力实在太大了。但他也意识到,他的同伙也不是傻子,也会这样来设想他。所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。企业在信息化过程中需要与咨询企业、软件供应商打交道的。在与这些企业打交道的过程中,我们不可避免地也会遇到类似的两难境地,这个时候需要相互之间有足够的了解与信任,没有起码的信任做基础,切不可贸然合作。在对对方有了足够的信任之后,诚意也是必不可少的,如果没有诚意或者太过贪婪,就可能闹到双方都没有好处的糟糕情况,造成企业之间的双输。 2. 智猪博弈在博弈论(Game Theory)经济学中,“智猪博弈”是一个着名的纳什均衡的例子。假设猪圈里有一头大猪、一头小猪。猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是谁按按钮就会首先付出2个单位的成本,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;同时到槽边,收益比是

博弈论经典案例与分析

博弈论的经典案例与分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A来说,囚徒B有坦白和不坦白两种可能的选择,假设囚徒B的选择是不坦白,则对囚徒A来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B选择的是坦白,则囚徒A不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B采取何种策略囚徒A的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 嫌疑犯乙

案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 价格战 案例:假设市场中仅有A 、B 两家企业,每家企业可采取的定价策略都是10元或15元,我们可以得出得益矩阵如下: 分析:无论对企业A 还是企业B 来说,低价都是他们的占优战略。从表可见,企业A 的占优战略是10元,因为无论B 采取什么战略,企业A 都能获取比定价15元更多的利润。 如果企业B 定价10元,企业A 定价10元能够获利80万元,而定价15元只能获得30万元;如果企业B 定价15元,企业A 定价10元可获利170万元,而定价15元却只能获利120万元。同样地,企业B 的占优战略也是定价10元的策略。 企业B 男

博弈论案例分析

(1)失火了,你往哪个门跑 失火了,你往哪个门跑——这就是博弈论 一天晚上,你参加一个派对,屋里有很多人,你玩得很开心。这时候,屋里突然失火,火势很大,无法扑灭。此时你想逃生。你的面前有两个门,左门和右门,你必须在它们之间选择。但问题是,其他人也要争抢这两个门出逃。如果你选择的门是很多人选择的,那么你将因人多拥挤、冲不出去而烧死;相反,如果你选择的是较少人选择的,那么你将逃生。这里我们不考虑道德因素,你将如何选择?这就是博弈论! 你的选择必须考虑其他人的选择,而其他人的选择也考虑你的选择。你的结果——博弈论称之为支付,不仅取决于你的行动选择——博弈论称之为策略选择,同时取决于他人的策略选择。你和这群人构成一个博弈(game)。 上述博弈是一个叫张翼成的中国人在1997年提出的一个博弈论模型,被称之为少数者博弈或少数派博弈(Minority Game)。当然,原来的博弈形式不是这么简单,这里我把它简化了,我们在第三部分论述归纳推理时还要谈这个博弈模型。现在很多学者在研究这个问题。 生活中博弈的案例很多,你会见到很多例子。只要涉及到人群的互动,就有博弈。 什么叫博弈?博弈的英文为game,我们一般将它翻译成“游戏”。而在西方,game的意义不同于汉语中的游戏。在英语中,game即是

人们遵循一定规则下的活动,进行活动的人的目的是使自己“赢”。奥林匹克运动会叫Olympic Games。在英文中,game有竞赛的意思,进行game的人是很认真的,不同于汉语中游戏的概念。在汉语中,游戏有儿戏的味道。因此将关于game的理论,即game theory翻译成博弈论或者对策论,是恰当的。本书下面统称game theory为博弈论。 博弈论的出现只有50多年的历史。博弈论的开创者为诺意曼与摩根斯坦,他们1944年出版了《博弈论与经济行为》。诺意曼是着名的数学家,他同时对计算机的发明作出了巨大贡献,他去世时博弈论还未对经济学产生广泛影响,否则经济学的诺贝尔奖肯定有他的名字,因为诺贝尔奖有规定,只颁发给在世的学者。谈到博弈论,不能忽略博弈论天才纳什(John Nash)。纳什的开创性论文《n人博弈的均衡点》(1950)、《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。今天博弈论已发展成一个较完善的学科。 博弈论对于社会科学有着重要的意义,它正成为社会科学研究范式中的一种核心工具,以至于我们可称博弈论是“社会科学的数学”,或者说是关于社会的数学。从理论上讲,博弈论是研究理性的行动者(agents)相互作用的形式理论,而实际上它正深入到经济学、政治学、社会学等等,被各门社会科学所应用。甚至有学者声称要用博弈论重新改写经济学。1994年经济学诺贝尔奖颁发给三位博弈论专家:纳什、塞尔屯、哈桑尼(),而像1985年获得诺贝尔奖的公共选择学派的领导者布坎南,1995年获得诺贝尔奖的理性主义学派的领袖卢

博弈论 案例

基本概念 (1)决策人:在博弈中率先作出决策的一方,这一方往往依据自身的感受、经验和表面状态优先采取一种有方向性的行动。(2)对抗者:在博弈二人对局中行动滞后的那个人,与决策人要作出基本反面的决定,并且他的动作是滞后的、默认的、被动的,但最终占优。他的策略可能依赖于决策人劣势的策略选择,占去空间特性,因此对抗是唯一占优的方式,实为领导人的阶段性终结行为。(3)局中人(players):在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为“多人博弈”。(4)策略(strategies):一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。(5)得失(payoffs):一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。(6)次序(orders):各博弈方的决策有先后之分,且一个博弈方要作不止一次的决策选择,就出现了次序问题;其他要素相同次序不同,博弈就不同。(7)博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。所谓纳什均衡,它是一稳定的博弈结果。纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人B仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:偶对(a,b*)≤偶对(a*,b*)≥偶对(a*,b)。对于非零和博弈也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:对局中人A的偶对(a,b*)≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对(a*,b*)。有了上述定义,就立即得到纳什定理:任何具有有限纯策略的二人博弈至少有一个均衡偶。这一均衡偶就称为纳什均衡点。纳什定理的严格证明要用到不动点理论,不动点理论是经济均衡研究的主要工具。通俗地说,寻找均衡点的存在性等价于找到博弈的不动点。纳什均衡点概念提供了一种非常重要的分析手段,使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。但纳什均衡点定义只局限于任何局中人不想单方面变换策略,而忽视了其他局中人改变策略的可能性,因此,在很多情况下,纳什均衡点的结论缺乏说服力,研究者们形象地称之为“天真可爱的纳什均衡点”。塞尔顿(R·Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点,从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡。 博弈类型

博弈分析及其应用

博弈分析及其应用 1引言 在社会生活和经济、军事活动中,经常碰到各种各样具有竞争或利益相对抗的现象,如下棋、打扑克、为争夺市场展开的广告战、军事斗争中双方兵力的对垒等,竞争的各方总是希望击败对手,取得尽可能好的结果,都想用自己最好的战术去取胜,这就是博弈现象.博弈现象实际上是一类特殊的决策,在关于不确定型的决策分析中,决策者的对手是“大自然”,它对决策者的各种策略不产生反应,更没有报复行为.但在博弈现象中,代替“大自然”的是有理性的人,因而任何一方做出决定时都必须充分考虑其他对手可能作出的反应.博弈论的英文名为Game Theory,又称对策论,用比较简短的话来概括,所谓博弈是指局中人按一定规则,在充分考虑其他局中人可能采取的策略的基础上,从自己的策略集中选取相应策略,并从中得到回报的过程.尽管博弈论中研究的问题形形色色,但任何一个博弈问题都包含下列三个要素: 1.局中人(players)是指参与竞争的各方,它可以是一个人,也可以是一个集团,但局中人必须是有决策权的主体,而不是参谋或从属人员.局中人可以有两方,也可以有多方.当存在多方的情况下,局中人之间可以有结盟和不结盟之分. 2.策略(strategies)是指局中人所拥有的对付其他局中人的手段、方案的集合.在静态博弈中,策略必须是一个独立的完整的行动,而不能是若干相关行动中的某一步.例如一次乒乓球男子团体比赛中,包括两名单打和一对双打选手出场,比赛前提交的名单除规定出场球员姓名之外,两名单打还必须明确谁是第一单打,谁是第二单打,这样不同单打和双打队员的出场搭配以及两名单打队员的不同排序构成了不同的策略.相应每个局中人的策略选择形成的策略组称为一个局势. 3.收益函数(payoff function)指一局博弈后各局中人的输赢得失,通常用正的数字表示局中人的赢得,负的数字表示局中人的损失. 博弈论研究决策主体的行为在发生直接相互作用时,人们如何进行决策以及这种决策的均衡问题.博弈论是研究理性的决策之间冲突与合作的理论.在博弈论分析中,一定场合中的每个对弈者在决定采取何种行动时都策略地、有目的地行事,他考虑到他的决策行为对其他人的可能影响,以及其他人的行为对他的可能影响,通过选择最佳行动计划,来寻求收益或效用的最大化.由于在现实生活中人们的利益冲突与一致具有普遍性,因此,几乎所有的决策问题都可以认为是博弈.博弈论在政治学、军事学、生物进化学、心理学、社会学、伦理学、经济学等许多领域都有着广泛的应用.在经济学中博弈论作为一种重要的分析方法已渗透到几乎所有的领域,每一领域的最新进展都应用了博弈论,博弈论已经成为主流经济学的一部分,对经济学理论与方法正产生越来越重要的影响.正因为如此,1994年瑞典皇家科学院决定将诺贝尔经济学奖授予了纳什(John Nash)、哈萨尼(John Sanyi)和泽尔腾(Reinhard Selten)三位博弈理论家和经济学家,表彰他们在博弈论理论和应用研究方面作出的杰出贡献.目前博弈论在定价、招投标、谈判、拍卖、委托–代理以及很多重要的经营决策中得到应用,它已成为现代经济学的重要基础. 博弈中有关局中人的策略集、收益函数等构成了博弈的信息.按局中人对信息掌握情况,可区分为完全信息博弈和不完全信息博弈.按局中人采取行动的次序,当同时采取行动或在

博弈模型

有趣味的博弈论模型 按语: 本文已经发表在“百科知识”2009年6月下半月总第413期第14-15页;在今年2月下半月总第405期第11-13页上发表了“网络科学三大里程碑”;2005年11月上半月总第326期第21-22页发表了“网络科学的三大发现”。令我意外的是去年在网上偶然发现“共检索到 10 条读者推荐文章”(请看最后附录),这篇科普文章名列首位,我们还有一篇文章名列第七。如果读者有兴趣可以去看看,或等我有时间找出来。我觉得,把新兴科学应用通俗易懂的语言写出来,有利于科学知识普及。这也应该是一个科学工作者的责任。 在自然界和人类社会经济等领域中广泛存在合作与竞争,而能够反映这种既激烈竞争又需要合作的一门学科就是博弈论(Game Theory),也称对策论,它是模拟和分析理性的个体在利益冲突环境下相互作用的形式、决策及其均衡理论,研究个体之间行为的相互影响和相互作用规律,它可以描述现实生活中参与者面对有限资源的合作与竞争行为。令人惊奇的是,有三次诺贝尔获奖者是博弈论的杰出科学家,他们是1985年获得诺贝尔奖的公共选择学派的领导者布坎南,1994年经济学诺贝尔奖颁发给美国普林斯顿大学的纳什博士、塞尔屯、哈桑尼3位博弈论专家,1995年获奖的理性主义学派的领袖卢卡斯。博弈论在经济学、政治学、管理学、社会学、军事学、生物学等诸多学科领域具有广泛的实际背景和应用价值。进入20世纪末,随着复杂网络科学的一些新的发现,博弈论也成为网络时代人们的一种思维方式、竞争与合作的模式。 博弈论对人有一个最基本假定:人是理性的,人在具体策略选择的目的全是使自己的利益最大化。博弈论就是研究理性的人之间如何进行策略选择的,因此博弈论也称为对策论。博弈论就凭这么一条最简单的假定可以展开广泛的研究,并获得了丰富多彩的结果,利用博弈论可以解读人类的社会行动或集体行动,更易理解人类社会的复杂性和特殊性。为了刻画个体间利益的冲突对整个系统的影响,人们已经提出和研究了许多博弈模型,比较著名的有三个模型:囚徒困境、“雪堆”博弈和“少数者”博弈,下面笔者通过对这三个模型进行简单而通俗的介绍,让大家了解博弈论及其应用概况。 “囚徒困境”模型 囚徒困境作为一个经典的博弈模型受到广泛关注。这个博弈模型假设两个小偷合伙作案时被捕,分别关在不同的屋子里,如果双方都拒绝承认同伴的罪行,则由于证据不足两人都会被轻判(收益为);为此,警方设计了一个机制:如果一方出卖同伴,而另一方保持忠 诚,则背叛者将无罪释放(收益为T ) ;坚持忠诚的一方将被重判(收益为);如果双方都背叛了对方,则双方都会被判刑(收益为R S P ) 。这里假设上述收益参数满足下面的条件:。对每个参与者来说,如果对手坚持忠诚,则他也选择忠诚得到的收益T R P S >>>R 小于他选择背叛得到的收益T ;如果对手选择背叛,则他选择忠诚得到的收益仍小于他选择背叛得到的收益。 S P 可见,无论对手采取哪种策略,自己的最佳策略就是背叛,双方都选择背叛称为囚徒困境的唯一“纳什均衡”(纳什因其提出的“非合作完全信息博弈的纳什均衡”概念而荣获了1994年的诺贝尔获得经济学奖);同时选择背叛所取得的平均收益要低于两个人同时选择合作取得的平均收益。在这种情况下,理性参与者面临着两难的困境。 自然界中广泛存在的合作现象——从单细胞生物的协同工作到人类的无私奉献的行为

博弈论(生存智慧大全集)_善处共赢:合作博弈的终极意义

共赢博弈要求在处理双边和多边关系、系统与外部环境之间的关系时,通过“1+1>2”的机制,共同把“蛋糕”做大,而且在不损害第三方利益,不以牺牲环境为代价的前提下,各方均取得较自由竞争更大的利益。共赢博弈理念已经一枝独秀,成为知识经济时代的主导思维方式,这是时代发展的必然。共赢博弈体现在多个方面: 与自然的共赢博弈。在传统“人定胜天”、“征服自然”的理念指引下,人类对自然界的许多征服活动,往往破坏了生态失衡,招来大自然越来越严重的报复。实践使人们认识到,保护环境也就是保护人类自己,人类只有与自然环境和谐相处,才能维护整个人类社会的可持续发展。 国际世界的共赢博弈。科学技术及社会生产力的发展已经达到这样的高度:世界上军事相互对立双方的力量,都足以毁灭对方,甚至毁灭整个人类。再坚持零和博弈的思维方式只能同归于尽,唯有共赢博弈才能避免人类自身毁灭自己的悲剧。 各国经济竞争的共赢博弈。经济全球化是世界经济发展的大趋势,既给参与者带来了空前的繁荣,也使得各国经济的发展越来越相互依存。这种情况决定了不同国家既要竞争,也必须合作,而且不能损害第三方的利益,只能求取共赢。 企业竞争的共赢博弈。在现代开放社会中,企业之间结成共生关联的统一体。任何一方,本来就不可能脱离对方而单独地“活”,或者说任何一方的“活”,本来就必须以对方也“活”为必要前提,任何一方一旦置对方于“死”地,那么它实际上也就是置自己于“死”地。任何一方,也不可能脱离对方而单独地“赢”,只有企业双方的共赢,才能更好发展。 人际关系的共赢博弈。个人之间也会存在利益冲突,有为获得己利而不择手段者;有见利忘义,为谋取一时私利而违背道德良心者。不可否认,在人际关系的博弈中,以损人利己达到自己“零和博弈”的目的,顶多获得短期利益,不可能获得长远利益。 美国心理学家荣格曾经提出一个公式说:“我+我们=完整的我。”下面的例子,就能表明荣格公式的意义。 农田旁的三丛灌木中各住着一群蜜蜂,农夫想砍掉灌木当柴烧。第一丛灌木里的蜜蜂哀求说:“看在我们每天为您农田传播花粉的情分上,放过我们吧。”农夫摇摇头说:“没有你们,别的蜜蜂也会传播花粉”,遂毁之。几日后,农夫去砍第二丛灌木,这时冲出一大群蜜蜂嗡嗡大叫:“你要敢毁我们的家园,我们决不善罢甘休”,农夫的脸被蜇了好几下,一怒之下,一把火将灌木烧掉。当农夫要砍第三丛灌木时,蜂王飞来说道:“请看看这灌木的好处吧:这丛黄杨树木质细腻,成材以后准能卖个好价钱,我们的蜂窝每年都能生产出很多蜂蜜和王浆能给您带来很多经济效益呢!”农夫放下斧头,心甘情愿地与蜂王合作。 在一个受灾的村落中,有一个不能走路的瘫子和一个盲人,他俩都躲在一个角落里。眼看村中已经没人了,瘫子就招呼盲人说:“我当你的眼睛,你当我的腿。你背着我,我给你指路,咱们就可以逃离这个地方。”盲人一听很高兴,就背起瘫子,两个人离开了村子,到了一个安全的地方。瘫子给盲人双眼,盲人给了瘫子双腿。他们相互救了各自的性命。 一头豹子和一条巨蟒同时发现一只羚羊,豹子和蟒都认为得到猎物的唯一方法是先干掉对方,

博弈论的经典案例与分析

博弈论的经典案例与分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A 来说,囚徒B 有坦白和不坦白两种可能的选择,假设囚徒B 的选择是不坦白,则对囚徒A 来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B 选择的是坦白,则囚徒A 不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B 采取何种策略囚徒A 的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 1,1 8, 0 不坦白 0,8 5,5 坦白 嫌疑犯乙 不坦白 坦白 嫌疑犯甲 1,2 -1, -1 时装 0,0 2,1 足球 男 时装 足球 女

博弈论案例分析

博弈论案例分析 一、经济学中的“智猪博弈” (Pigs’payoffs) 故事背景:猪圈里有一头大猪和一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。 那么,两只猪各会采取什么策略,答案是:小猪将选择“搭便车”策略,也就 是舒舒服服地等在食槽边; 而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。原因何在,因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗,试试看。改变方案一:减量方案。投食仅原来的一半分量。结果是小猪大猪都不去踩踏板了。小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。改变方案二:增量方案。投食为原来的一倍分量。结果是小猪、大猪都会去踩踏板。谁想吃,谁就会去踩踏板。反正对方不会一次把食物吃完。小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。对于游戏规则的设计者来说,这个规则的成相当高(每次提供双份的食物) ;而且因为竞争不强烈,想让猪们去多踩踏板的

博弈论理论经典讲解

博弈论经典案例 冰晶淩(杂物区)2010-04-09 22:31:28 阅读258 评论0 字号:大中小订阅 引用 光光的博弈论经典案例 1994年诺贝尔经济学奖授给了三位博弈论专家:纳什,泽尔腾和海萨尼.而博弈论可以划分为合作博弈和非合作博弈.那三位博弈论专家的贡献主要是在非合作博弈方面,而且现在经济学家谈到博弈论,一般指的是非合作博弈,很少指合作博弈.合作博弈与非合作博弈之间的区别主要在于人们的行为相互作用时,当事人能否达成一个具有约束力的协议,如果有,就是合作博弈;反之,就是非合作博弈.非合作博弈强调的是个人理性,个人最优决策,其结果可能是有效率的,也可能是无效率的.而合作博弈强调的是团体理性.下面是我收集的张维迎教授的几个有关博弈论的经典 案例. <案例一:囚徒困境> 囚徒困境讲的是两个嫌疑犯作案后被警察抓住,分别关在不同的屋子里审讯.警察告诉他们:如果两人都坦白,各判刑8年;如果两个都抵赖,各判1年(或许因证据不足);如果其中一人坦白一人抵赖,坦白的放出去,不坦白的判刑10年(这有点'坦白从宽,抗拒从严'的味道).这里,每个囚徒都有两种战略:坦白或抵赖.表中每一格的两个数字代表对应战略组合下两个囚徒的支付(效用),其中第一个数字是第一个囚徒的支付,第二个数字为第二个囚徒的支付.战略形式又称标准形式,是博弈的两种表述形式之一,它特别方便于静态博弈分析. 在这个例子里,纳什均衡就是(坦白,坦白):给定B坦白的情况下,A的最优战略是坦白;同样,给定A坦白的情况下,B的最优战略也是坦白.事实上,这里,(坦白,坦白)不仅是纳什均衡,而且是一个占优战略均衡.就是说,不论对方如何选择,个人的最优选择是坦白.比如说,如果B不坦白,A坦白的话被放出来,不坦白的话判1年,所以坦白比不坦白好;如果B坦白,A坦白的话判8年,不坦白的话判10年,所以,坦白还是比不坦白好。 这样,坦白就是A占优战略;同样,坦白也是B的占优战略.结果是,每个人都选择坦白,各判刑8年. <案例二:智猪博弈> 这个例子讲的是,猪圈里有两头猪,一大一小.猪圈的一头有一个猪食槽,另一头安装一个按钮,控制着猪食的供应。按一下按钮会有10个单位的猪食进槽,但谁按按钮需要付2个单位的成本.若大猪先到,大猪吃到9个单位,小猪只能吃1个单位;若同时到,大猪吃7个单位,小猪吃3个单位;若小猪先到,大猪吃6个单位,小猪吃4个单位。表中第一格表示两猪同时按按钮,因而同时走到猪食槽,大猪吃7个,小猪吃3个,扣除2个单位的 成本,支付水平分别为5和1.其他情形可以类推. 在这个例子中,什么是纳什均衡?首先我们注意到,无论大猪选择"按"还是"等待",小猪的最优选择均是"等待".比如说给定大猪按,小猪也按时得到1个单位,等待则得到4个单位;给定大猪等待,小猪按得到-1单位,等待则得0单位,所以,"等待"是小猪的占优战略.给定小猪总是选择"等待",大猪的最优选择只能是"按".所以,纳什均衡就是:大猪按,小猪等待,各得4个单位.多劳者不多得! <案例三:性别战>

博弈论分析

中美军备竞赛的博弈分析 1.理论介绍 1.1博弈论的概念 博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。 1.2博弈论的主要特点 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。表面上不同的相互作用可能表现出相似的激励结构(incentive structure),所以他们是同一个游戏的特例。其中一个有名有趣的应用例子是囚徒困境悖论(Prisoner's dilemma)。 具有竞争或对抗性质的行为成为博弈行为。在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。比如日常生活中的下棋,打牌等。博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。 1.3博弈的分类 博弈的分类根据不同的基准也有不同的分类。一般认为,博弈主要可以分为合作博弈和非合作博弈。合作博弈和非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。 从行为的时间序列性,博弈论进一步分为静态博弈、动态博弈两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。通俗的理解:"囚徒困境"就是同时决策的,属于静态博弈;而棋牌类游戏等决策或行动有先后次序的,属于动态博弈。 按照参与人对其他参与人的了解程度分为完全信息博弈和不完全信息博弈。完全博弈是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间及收益函数有准确的信息。不完全信息博弈是指如果参与人对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的信息,在这种情况下进行的博弈就是不完全信息博弈。 目前经济学家们现在所谈的博弈论一般是指非合作博弈,由于合作博弈论比非合作博弈论复杂,在理论上的成熟度远远不如非合作博弈论。非合作博弈又分为:完全信息静态博弈,完全信息动态博弈,不完全信息静态博弈,不完全信息动态博弈。与上述四种博弈相对应的均衡概念为:纳什均衡(Nash equilibrium),子博弈精炼纳什均衡(sub game perfect Nash equilibrium),贝叶斯纳什均衡(Bayesian Nash equilibrium),精炼贝叶斯纳什均衡(perfect Bayesian Nash equilibrium)。 博弈论还有很多分类,比如:以博弈进行的次数或者持续长短可以分为有限博弈和无限博弈;以表现形式也可以分为一般型(战略型)或者展开型等等。 1.4纳什均衡 纳什均衡的定义:在博弈G=﹛S1,…,Sn:u1,…,un﹜中,如果由各个博弈方的各一个策略组成的某个策论组合(s1*,…,sn*)中,任一博弈方i的策论si*,都是对其余博

博弈论经典案例《智猪博弈》

在经济学中,在经济学中,智猪博弈”(PigS ' PayoffS(BoXed PigS) 是一个著名博弈论例子。 这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。 那么,两只猪各会采取什么策略?答案是:小猪将选择搭 便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。 原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。 小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。规则的核心指标是:每次落下的事物数量和踏板与投食口之 间的距离。 如果改变一下核心指标,猪圈里还会出现同样的小猪躺着 大猪跑”的景象吗?试试看。 改变方案一:减量方案。投食仅原来的一半分量。结果是小 猪大猪都不去踩踏板了。小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。谁去踩踏板,就意味着为对方贡

献食物,所以谁也不会有踩踏板的动力了。 如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然 是失败的。 改变方案二:增量方案。投食为原来的一倍分量。结果是小 猪、大猪都会去踩踏板。谁想吃,谁就会去踩踏板。反正对方不会一次把食物吃完。小猪和大猪相当于生活在物质相对丰富的 共产主义”社会,所以竞争意识却不会很强。 对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效 果并不好。 改变方案三:减量加移位方案。投食仅原来的一半分量,但同时将投食口移到踏板附近。结果呢,小猪和大猪都在拼命地抢着踩踏板。等待者不得食,而多劳者多得。每次的收获刚好消费 宀 完。 对于游戏设计者,这是一个最好的方案。成本不高,但收获最 大。 原版的智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。为使资源最有效配置,规 则的设计者是不愿看见有人搭便车的,政府如此,公 司的老板也是如此。而能否完全杜绝搭便车”现象,就要看游戏 规则的核心指标设置是否合适了。

相关主题
文本预览
相关文档 最新文档