当前位置:文档之家› 高中数学立体几何解题方法技巧

高中数学立体几何解题方法技巧

高中数学立体几何解题方法技巧
高中数学立体几何解题方法技巧

立体几何

高考对本节知识的考查主要有以下两个考向:1.三视图几乎是每年的必考内容,一般以选择题、填空题的形式出现,一是考查相关的识图,由直观图判断三视图或由三视图想象直观图,二是以三视图为载体,考查面积、体积的计算等,均属低中档题.2.对于空间几何体的表面积与体积,由原来的简单公式套用渐渐变为三视图及柱、锥与球的接切问题相结合,特别是已知空间几何体的三视图求表面积、体积是近两年高考考查的热点,题型一般为选择题或填空题.

1. 四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关

系.

2. 空间几何体的三视图

(1)三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影形成的平面图形.

(2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.

(3)画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.看不到的线画虚线. 3. 直观图的斜二测画法

空间几何体的直观图常用斜二测画法来画,其规则是:

(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),

z ′轴与x ′轴和y ′轴所在平面垂直.

(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.

4. 空间几何体的两组常用公式

(1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=1

2

ch ′(c 为底面周长,h ′为斜高);

③S 台侧=1

2(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高);

④S 球表=4πR 2

(R 为球的半径).

(2)柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=1

3Sh (S 为底面面积,h 为高);

③V 台=1

3(S +SS ′+S ′)h (不要求记忆);

④V 球=43πR 3

.

考点一 三视图与直观图的转化

例1 (1)已知三棱柱的正视图与俯视图如图,那么该三棱锥的侧视图可能为

( )

(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )

答案 (1)B (2)D

解析 (1)底面为正三角形,一侧棱垂直于底面.由虚线知可 能有一侧棱看不见.由题知这个空间几何体的侧视图的底面边长是3,故其侧视图只

可能是选项B 中的图形.

(2)如图所示,点D 1的投影为C 1,点D 的投影为C ,点A 的投影为B ,故选D.

空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.

(1)(2013·课标全国Ⅱ)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为

( )

(2)(2012·湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是

( )

答案 (1)A (2)D

解析 (1)根据已知条件作出图形:四面体C 1-A 1DB ,标出各个点的坐标如图(1)所示,可以看出正视图为正方形,如图(2)所示.故选A.

(2)根据几何体的三视图知识求解.

由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是D. 考点二 几何体的表面积及体积

例2 (1)某四面体的三视图如图所示,该四面体四个面的面积中最大的是

( )

A .8

B .6 2

C .10

D .8 2

(2)(2013·浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________ cm 3

.

答案 (1)C (2)24

解析 (1)由三视图可想象出如图所示的三棱锥,SA ⊥平面ABC ,△ABC 中∠ABC =90°,SA =AB =4,BC =3,因此图中四个面的三角形均为 直角三角形,SB =42,AC =5,S △SAC =10,S △SAB =8,S △SBC =62,

S △ABC =6,所以最大面积是10.

(2)由三视图可知,其直观图为:

AB =4,AC =3,∠BAC =90°,

∴BC =5. 作AH ⊥BC 于H ,

AH =AB ·AC BC =125

.

作A 1M ⊥BB 1于M ,A 1N ⊥CC 1于N .连接MN .

V =13×(5×3)×125+(3×4)×12

×2=24.

(1)求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是

关键所在.求三棱锥的体积,等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.

(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.

(1)(2013·江西)一几何体的三视图如图所示,则该几何体的体积为

( )

A .200+9π

B .200+18π

C .140+9π

D .140+18π

(2)(2012·辽宁)一个几何体的三视图如图所示,则该几何体的表面积为________.

答案 (1)A (2)38

解析 (1)该几何体是由一个长方体与一个半圆柱构成.

V =10×4×5+12

×π×32×2=200+9π.

(2)将三视图还原为直观图后求解.

根据三视图可知几何体是一个长方体挖去一个圆柱, 所以S =2×(4+3+12)+2π-2π=38. 考点三 多面体与球

例3 如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线

BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,

则该球的体积为

( )

A.3

2

π

B .3π

C.2

3

π

D .2π

要求出球的体积就要求出球的半径,需要根据已知数据和空间位置关系确定

球心的位置,由于△BCD 是直角三角形,根据直角三角形的性质:斜边的中点到三角形各个顶点的距离相等,只要再证明这个点到点A 的距离等于这个点到B ,C ,D 的距离即可确定球心,进而求出球的半径,根据体积公式求解即可. 答案 A

解析 如图,取BD 的中点E ,BC 的中点O , 连接AE ,OD ,EO ,AO .

由题意,知AB =AD ,所以AE ⊥BD . 由于平面ABD ⊥平面BCD ,AE ⊥BD , 所以AE ⊥平面BCD .

因为AB =AD =CD =1,BD =2, 所以AE =

22,EO =12.所以OA =32

. 在Rt△BDC 中,OB =OC =OD =12BC =3

2,

所以四面体ABCD 的外接球的球心为O ,半径为3

2

. 所以该球的体积V =43π(32)3=3

2

π.故选A.

多面体与球接、切问题求解策略

(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.

(2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,

PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2

求解.

(1)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是

( )

A .12π

B .24π

C .32π

D .48π

(2)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是________.

答案 (1)D (2)16π

解析 (1)由已知条件知该几何体的直观图如图所示,PA ⊥面ABCD , △PAC 、△PBC 、△PCD 均为直角三角形,且斜边相同,所以球心 为PC 中点O ,OA =12PC =OB =OD =2 3.球的表面积为S =4π(OA )

2 =48π.

(2)该几何体是一个正三棱柱,底面边长为3,高为2.设其外接球的球心为

O ,上、下底面中心分别为B 、C ,则O 为BC 的中点,如图所示.

则AB =2

3×3sin 60°=3,BO =1,

∴该棱柱的外接球半径为R =AB 2

+BO 2

=2, ∴球的表面积是S =4πR 2

=16π.

1. 空间几何体的面积有侧面积和表面积之分,表面积就是全面积,是一个空间几何体中“暴露”在外的所有面的面积,在计算时要注意区分是“侧面积还是表面积”.多面体的表面积就是其所有面的面积之和,旋转体的表面积除了球之外,都是其侧面积和底面面积之和. 2. 在体积计算中都离不开空间几何体的“高”这个几何量(球除外),因此体积计算中的关

键一环就是求出这个量.在计算这个几何量时要注意多面体中的“特征图”和旋转体中的轴截面.

3. 一些不规则的几何体,求其体积多采用分割或补形的方法,从而转化为规则的几何体,

而补形又分为对称补形(即某些不规则的几何体,若存在对称性,则可考虑用对称的方法进行补形)、还原补形(即还台为锥)和联系补形(某些空间几何体虽然也是规则几何体,不过几何量不易求解,可根据其所具有的特征,联系其他常见几何体,作为这个规则几何体的一部分来求解). 4. 长方体的外接球

(1)长、宽、高分别为a 、b 、c 的长方体的体对角线长等于外接球的直径,即a 2

+b 2

+c 2

=2R ;

(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .

1. 从一个正方体中截去部分几何体,得到一个以原正方体的部分顶点为顶点的凸多面体,

其三视图如图,则该几何体体积的值为

( )

A .5 2

B .6 2

C .9

D .10

答案 C

解析 由三视图知,其直观图为 棱锥A -BCDE .

V =27-272-13×3×92

=9.故选C.

2. 在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ABD 的面积分别为

2 2,

3

2

6

2

,则三棱锥A-BCD的外接球体积为( )

A.6π B.26π C.36π D.46π

答案 A

解析如图,以AB,AC,AD为棱把该三棱锥扩充成长方体,则该

长方体的外接球恰为三棱锥的外接球,

∴三棱锥的外接球的直径是长方体的对角线长.

据题意

?

?

?AB·AC=2,

AC·AD=3,

AB·AD=6,

解得

?

?

?AB=2,

AC=1,

AD=3,

∴长方体的对角线长为AB2+AC2+AD2=6,

∴三棱锥外接球的半径为

6

2

.

∴三棱锥外接球的体积为V=

4

3

π·(

6

2

)3=6π.

一、选择题

1.一梯形的直观图是一个如右图所示的等腰梯形,且该梯形的面积为2,则原梯形的面积为( )

A.2 B. 2

C.2 2 D.4

答案 D

解析 直观图为等腰梯形,则上底设为x ,高设为y ,则S 直观图=1

2y (x +2y +x )=2,

由直观图可知原梯形为直角梯形,其面积S =1

2·22y ·(x +2y +x )=22×2=4.

2. (2013·湖南)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一

个面积为2的矩形,则该正方体的正视图的面积等于

( )

A.3

2

B .1

C.

2+1

2

D. 2

答案 D

解析 ∵俯视图是面积为1的正方形, ∴此正方体水平放置, 又侧视图是面积为2的矩形, ∴正方体的对角面平行于投影面, 此时正视图和侧视图相同,面积为 2.

3. (2013·课标全国Ⅰ)某几何体的三视图如图所示,则该几何体的体积为

( )

A .16+8π

B .8+8π

C .16+16π

D .8+16π

答案 A

解析 将三视图还原成直观图为: 上面是一个正四棱柱,下面是半个圆柱体. 所以V =2×2×4+12×22

×π×4

=16+8π. 故选A.

4. 一个几何体的三视图如图所示,则这个几何体的体积为

( )

A.

38+π

6

B.

3

8+2π

6

C.

3

6+π

6

D.

3

9+2π

6

答案 A

解析 该几何体由底面半径为1的半圆锥与底面为边长等于2的正方形的四棱锥组成,

且高都为3,因此该几何体的体积V =13×(12×π×12

)×3+13×(2×2)×3=

3π6+

433=38+π

6

,故选A. 5. (2012·北京)某三棱锥的三视图如图所示,该三棱锥的表面积是

( )

A .28+6 5

B .30+6 5

C .56+12 5

D .60+12 5

答案 B

解析 根据几何体的三视图画出其直观图,利用直观图的图形特征求其表面积. 由几何体的三视图可知,该三棱锥的直观图如图所示,

其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,

AE =4.

∵AE =4,ED =3,∴AD =5. 又CD ⊥BD ,CD ⊥AE , 则CD ⊥平面ABD , 故CD ⊥AD ,

所以AC =41且S △ACD =10.

在Rt△ABE 中,AE =4,BE =2,故AB =2 5. 在Rt△BCD 中,BD =5,CD =4, 故S △BCD =10,且BC =41.

在△ABD 中,AE =4,BD =5,故S △ABD =10. 在△ABC 中,AB =25,BC =AC =41,

则AB 边上的高h =6,故S △ABC =1

2×25×6=6 5.

因此,该三棱锥的表面积为S =30+6 5.

6. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1

的半圆,该几何体的体积为

( )

A.3

3

π

B.3

6

π

C.3

2

π

D.3π

答案 A

解析 三视图复原的几何体是圆锥沿轴截面截成两部分,然后把截面放在平面上,底面

相对接的图形,圆锥的底面半径为1,母线长为2,故圆锥的高为h =22-12

= 3.易知该几何体的体积就是整个圆锥的体积,即V 圆锥

=13πr 2h =13π×12

×3=33

π.故选A.

7. 已知正方形ABCD 的边长为22,将△ABC 沿对角线AC 折起,使

平面ABC ⊥平面ACD ,得到如右图所示的三棱锥B -ACD .若O 为

AC 边的中点,M ,N 分别为线段DC ,BO 上的动点(不包括端点),

且BN =CM .设BN =x ,则三棱锥N -AMC 的体积y =f (x )的函数图象大致是 ( )

答案 B

解析 由平面ABC ⊥平面ACD ,且O 为AC 的中点,可知BO ⊥平面ACD ,易知BO =2,故三棱锥N -AMC 的高为ON =2-x ,△AMC 的面积为1

2·MC ·AC ·sin 45°=2x ,故三棱

锥N -AMC 的体积为y =f (x )=13·(2-x )·2x =23(-x 2

+2x )(0

图象为开口向下的抛物线的一部分. 二、填空题

8. (2012·山东)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分

别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为______. 答案 1

6

解析 利用三棱锥的体积公式直接求解.

VD 1-EDF =VF -DD 1E =13

S △D 1DE ·AB

=13×12×1×1×1=16

. 9. (2013·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设

三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.

答案 1∶24

解析 设三棱锥F -ADE 的高为h , 则V 1

V 2=13h ? ???

?12AD ·AE ·sin∠DAE 2h 1

2

2AD 2AE sin∠DAE

=124

. 10.已知矩形ABCD 的面积为8,当矩形周长最小时,沿对角线AC 把△ACD 折起,则三棱锥

D -ABC 的外接球的表面积等于________.

答案 16π

解析 设矩形的两邻边长度分别为a ,b ,则ab =8,此时2a +2b ≥4ab =82,当且仅当a =b =22时等号成立,此时四边形ABCD 为正方形,其中心到四个顶点的距离相等,均为2,无论怎样折叠,其四个顶点都在一个半径为2的球面上,这个球的表面积是4π×22

=16π.

11.已知某几何体的三视图如图所示,其中,正视图、侧视图均是由三角形与半圆构成的,

俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为________.

答案

2π6+16

解析 据三视图可知,该几何体是一个半球(下部)与一个四面体(上部)的

组合体,其直观图如图所示,其中BA ,BC ,BP 两两垂直,且BA =BC =BP =1,∴(半)球的直径长为AC =2,∴该几何体的体积为 V =V 半球+V P -ABC =12×43

π(AC 2

)3+13×12

×BA ·BC ·PB =2π6

+1

6

.

三、解答题

12.(2013·福建)如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,

AB ⊥AD ,BC =5,DC =3,AD =4,∠PAD =60°.

(1)当正视方向与向量AD →

的方向相同时,画出四棱锥P —AB CD 的正视 图(要求标出尺寸,并写出演算过程); (2)若M 为PA 的中点,求证:DM ∥平面PBC ; (3)求三棱锥D —PBC 的体积.

(1)解 在梯形ABCD 中,过点C 作CE ⊥AB ,垂足为E . 由已知得,四边形ADCE 为矩形,AE =CD =3, 在Rt△BEC 中,由BC =5,CE =4,依据勾股定理得

BE =3,从而AB =6.

又由PD ⊥平面ABCD 得,PD ⊥AD ,

从而在Rt△PDA 中,由AD =4,∠PAD =60°,

得PD =4 3. 正视图如图所示:

(2)证明 取PB 中点N ,连接MN ,CN . 在△PAB 中,∵M 是 PA 的中点, ∴MN ∥AB ,MN =1

2AB =3,

又CD ∥AB ,CD =3, ∴MN ∥CD ,MN =CD ,

∴四边形MNCD 为平行四边形, ∴DM ∥CN .

又DM ?平面PBC ,CN ?平面PBC , ∴DM ∥平面PBC .

(3)解 V D —PBC =V P —DBC =1

3S △DBC ·PD ,

又S △DBC =6,PD =43, 所以V D —PBC =8 3.

13.如图,在Rt△ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,

将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =30°. (1)求证:EF ⊥PB ;

(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱

锥P —EFCB 的体积.

(1)证明 ∵EF ∥BC 且BC ⊥AB ,

∴EF ⊥AB ,即EF ⊥BE ,EF ⊥PE .又BE ∩PE =E , ∴EF ⊥平面PBE ,∴EF ⊥PB .

(2)解 设BE =x ,PE =y ,则x +y =4. ∴S △PEB =1

2BE ·PE ·sin∠PEB

=14xy ≤14? ??

??x +y 22=1. 当且仅当x =y =2时,S △PEB 的面积最大. 此时,BE =PE =2. 由(1)知EF ⊥平面PBE ,

∴平面PBE ⊥平面EFCB ,

在平面PBE 中,作PO ⊥BE 于O ,则PO ⊥平面EFCB . 即PO 为四棱锥P —EFCB 的高. 又PO =PE ·sin 30°=2×1

2

=1.

S EFCB =12

(2+4)×2=6.

∴V P —BCFE =1

3×6×1=2.

高中数学解题技巧归纳

高中数学破题技巧 主讲人:徐德桦(绍兴一中) 一、列举法 【方法阐释】列举法就是通过枚举集合中所有的元素,然后根据集合的基本运算进行求解的方法。这种方法适用于数集的有关运算以及集合类型的新定义运算问题,也适用于一些集合元素比较少而且类型比较单一类型的题目,如排列组合等等。 【典型实例】 设P,Q为两个非空实数集合,定义集合P*Q={z|z=a/b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P*Q中元素的个数是() A.2 B.3 C.4 D.5 二、定义法 【方法阐释】利用定义判断充分条件和必要条件的方法就是最基本的、最常规的方法(回忆一下这些条件的判断方法),一般拿到陌生的题目或者一些新定义类型的题目都需要从定义和性质出发寻找突破口。 【典型实例】 “(m-1)(a-1)>0”是“logam>0”的()(logam 意思就是以a为底m的对数) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 三、特殊函数法

【方法阐释】对于一些小题目(譬如,选择题和填空题)一般不需要详细的过程和步骤,只要有一种预感和能说服自己的理由可以尝试地使用一些特定的函数或者说特殊值。给定函数f(x)具备的一些性质来研究它另外的一些性质。对于能看出来是定值的题目一般也宜用特殊值法。 【典型实例】 定义在R上的函数f(x)关于(2,0)对称,且在[2,+无穷)上单调递增,如果x1+x2>4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是() A.f(x1)+f(x2)>0 B.f(x1)+f(x2)=0 C.f(x1)+f(x2)<0 D.无法判断 四、换元法 【方法阐释】这是一种高中阶段最常用的数学解题方法,贯穿于高中所有的阶段。解题过程就是将复杂的抽象的难以分辨和讨论的问题转化为简单具体直接而且熟悉的问题。例如,求函数y = x^4+2x^2-8的最值,就可以t=x^2(t>=0),这里t的范围需要特别注意。 【典型实例】 若2=

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

高中数学九大解题技巧

高中数学九大解题技巧 1、配法 通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的 恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常 用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、 几何、三角等的解题中起着重要的作用。因式分解的方法有许多, 除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相 乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数 学式子中,用新的变元去代替原式的一个部分或改造原来的式子, 使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别, △=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代 数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算 中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个 数的和与积,求这两个数等简单应用外,还可以求根的对称函数,

计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线 的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学 中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从 而使问题得以解决,这种解题的数学方法,我们称为构造法。运用 构造法解题,可以使代数、三角、几何等各种数学知识互相渗透, 有利于问题的解决。 7、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有 时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题 的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到 求证的结果。所以用面积法来解几何题,几何元素之间关系变成数 量之间的关系,只需要计算,有时可以不添置补助线,即使需要添 置辅助线,也很容易考虑到。 8、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集 合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

高中数学必修2立体几何专题资料

专题一浅析中心投影与平行投影 中心投影与平行投影是画空间几何体的三视图和直观图的基础,弄清楚中心投影与平行投影能使我们更好地掌握三视图和直观图,平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.下表简单归纳了中心投影与平行投影,结合实例让我们进一步了解平行投影和中心投影. 例1如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等? 解析:方法一:可在同一方向上画出与原长相等的影长,分别连结它们影子顶点与树的顶点,此时为平行投影. 方法二:可在两树外侧不同方向上画出与原长相等的影子,连结影子顶点与树的顶点相交于P,此时为中心投影,P为光源位置. 点评:这是一道平行投影和中心投影相结合的题目,答案不唯一.连结物体顶点与其影子顶点,如果得到的是平行线,即为平行投影;如果得到的是相交线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本作法,还应注意,若中心投影光源在两树同侧时,图中的两棵树的影子不可能与原长相等. 例2 如图所示,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的序号).

解析:在下底面ABCD上的投影为③,在右侧面B′BCC′上的投影为②,在后侧面D′DCC′上的投影为①. 答案:①②③ 点评:画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影. 专题二不规则几何体体积的求法 当所给几何体形状不规则时,无法直接利用体积公式求解,可尝试用以下几种常用的方法求出原几何体的体积,下面逐一介绍,供同学们参考. 一、等积转换法 当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时, 可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积. 例1在边长为a的正方体ABCD—A1B1C1D1中,M,N,P 分别是棱A1B1,A1D1,A1A上的点,且满足A1M = 1 2A1B1, A1N=2ND1,A1P= 3 4A1A(如图1),试求三棱锥A1—MNP的体 积. 分析:若用公式V= 1 3Sh直接计算三棱锥A1—MNP的体积, 则需要求出△MNP的面积和该三棱锥的高,这两者显然都不易求出, 但若将三棱锥A1—MNP的顶点和底面转换一下,变为求三棱锥P—A1MN的体积,便能很容易的求出其高和底面△A1MN的面积,从而代入公式求解. 解:V A 1-MNP =V A1—MNP = 1 3·S△A1MN ·h = 1 3× 1 2·A1M1·A1N·A1P= 1 3× 1 2× 1 2a· 2 3a· 3 4a= 1 24a 3.

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

高中数学立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA⊥矩形ABCD 所在平面,M、N 分别为AB、PC 的中点; (1)求证:MN// 平面PAD (2)若∠ PDA=45 °,求证:MN ⊥平面PCD 2(本小题满分12 分) 如图,在三棱锥P ABC中,E,F 分别为AC,BC 的中点. 1)求证:EF // 平面PAB ; 2)若平面PAC 平面ABC,且PA PC ,求 证:平面PEF 平面PBC . ABC 90 , A P C F B

(1)证明:连结EF , Q E、F 分别为AC 、BC的中点, EF // AB. ???????? 2 分又EF 平面PAB ,AB 平面PAB ,EF∥平面PAB. ????????5 分 (2)Q PA PC,E为AC的中点, PE AC ???????? 6 分 又Q 平面PAC 平面ABC PE 面ABC ????????8 分 PE BC ????????9 分 又因为F 为BC 的中点, EF // AB Q ABC 900, BC EF ????????10 分 Q EF I PE E BC 面PEF ????????11 分 又Q BC 面PBC 面PBC 面PEF ????????12 分 3. 如图,在直三棱柱ABC—A1B1C1中,AC=BC,点D是AB的中点。 1)求证:BC1// 平面CA1D; 2)求证:平面CA1D⊥平面AA1B1B。 4.已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F 分 别是AB、PC的中点. (1) 求证:EF∥平面PAD; (2) 求证:EF⊥ CD; (3) 若∠ PDA=45°,求EF与平面ABCD 所成的角的大小.

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 % 棱柱的分类 棱柱的性质 , ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成 ` 的角分别是α、β、γ,那么: cos2α + cos2β + co s2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 图1-1 棱柱 图1-2 长方体 图1-1 棱柱

棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S 直棱柱侧面 = c ·h (c 为底面周长,h 为棱柱的高) S 直棱柱全 = c ·h+ 2S 底 【 V 棱柱 = S 底 ·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。 2-2 圆柱的性质 ⑴ 上、下底及平行于底面的截面都是等圆; ⑵ 过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 - 2-4 圆柱的面积和体积公式 S 圆柱侧面 = 2π·r ·h (r 为底面半径,h 为圆柱的高) S 圆柱全 = 2π r h + 2π r 2 V 圆柱 = S 底h = πr 2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴ 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ⑵ 正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心, 这样的棱锥叫做正棱锥。 3-2 正棱锥的结构特征 ⑴ 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比; ⑵ 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; ⑶ 正棱锥中的六个元素,即侧棱(SB)、高(SO)、斜高(SH)、侧棱在底面上的射影(OB)、斜高在底面上的射影(OH)、底面边长的一半(BH),构成四个直角三角形(三角形SOB 、SOH 、SBH 、OBH 均为直角三角形)。 3-3 正棱锥的侧面展开图:正n 棱锥的侧面展开图是由n 个全等的等腰三角形组成。 3-4 正棱锥的面积和体积公式 图1-3 圆柱 )

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

【高二数学的解题的方法介绍】高二数学题库

高二网权威发布高二数学的解题的方法介绍,更多高二数学的解题的方法介绍相关信息请访问高二网。 【导语】掌握正确有效的解题方法会让学生在解题的时候可以节省很多的时间,下面大范文网将为大家带来高中数学的解题的方法介绍,希望能够帮助到大家。 高中数学的解题的方法 确保运算准确,立足一次成功 数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。 面对难题,讲究方法,争取得分 会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。 缺步解答。 对一个疑难问题,确实啃不动时,一个明智的解题方法是将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。 跳步解答。 解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方

高中数学解题方法与技巧.doc

高中数学解题方法与技巧 高中数学解题方法与技巧 一、答题和时间的关系 整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很亏。 高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。 二、快与准的关系 在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。 三、审题与解题的关系 有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如至少,a 0,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。 四、会做与得分的关系

要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现会而不对对而不全的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的跳步,使很多人丢失1/3以上得分,代数论证中以图代证,尽管解题思路正确甚至很巧妙,但是由于不善于把图形语言准确地转译为文字语言,得分少得可怜;再如去年理17题三角函数图像变换,许多考生心中有数却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,会做的题才能得分。 五、难题与容易题的关系 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打持久战,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从一题把关转为多题把关,因此解答题都设置了层次分明的台阶,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有咬手的关卡,看似难做的题也有可得分之处。所以考试中看到容易题不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。 有关高中数学学习的注意事项的推荐 1、注意化归转化思想学习。 人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。 2、学会数学教材的数学思想方法。 数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。

高中数学立体几何知识点及练习题

点、直线、平面之间的关系 ㈠平面的基本性质 公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理二:不共线的三点确定一个平面。 推论一:直线与直线外一点确定一个平面。 推论二:两条相交直线确定一个平面。 推论三:两条平行直线确定一个平面。 公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。 ㈡空间图形的位置关系 1 直线与直线的位置关系(相交、平行、异面) 1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。 即:a∥b,b∥c a∥c 1.2 异面直线 定义:不在任何一个平面内的两条直线称为异面直线。 1.3 异面直线所成的角 ⑴异面直线成角的范围:(0°,90°]. ⑵作异面直线成角的方法:平移法。 注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。 2 直线与平面的位置关系(直线在平面内、相交、平行) 3 平面与平面的位置关系(平行、斜交、垂直) ㈢平行关系(包括线面平行和面面平行) 1 线面平行 1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。 1.2 判定定理: 1.3 性质定理:

2 线面角: 2.1 直线与平面所成的角(简称线面角):若直线与平面斜 交,则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 3 面面平行 3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。 3.2 面面平行的判定定理: ⑴ 判定定理1:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面相互平行。 即: 推论:一个平面内的两条相交直线分别平行于另一个 平面的两条线段,那么这两个平面平行。即: ⑵ 判定定理2:垂直于同一条直线的两平面互相平 行。即: 3.3 面面平行的性质定理 ⑴ (面面平行 线面平行) ⑵ ⑶ 夹在两个平行平面间的平行线段相等。 ㈣ 垂直关系(包括线面垂直和面面垂直) 1 线面垂直 1.1 线面垂直的定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 1.2 线面垂直的判定定理: 图2-3 线面角 图2-5 判定1推论 图2-6 判定2

高中数学解题方法及解析大全

最全面的高考复习资料 目录 前言 (2) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第一章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

相关主题
文本预览
相关文档 最新文档