当前位置:文档之家› 超分子化学文献综述

超分子化学文献综述

超分子化学文献综述
超分子化学文献综述

卟啉及金属卟啉化合物的研究进展简介

卟啉(Porphyrins)是卟吩(Porphine)外环带有取代基的同系物和衍生总称。卟啉及金属卟啉化合物广泛存在于动植物中,具有特殊生理活性如血红素、叶绿素、维生素B12、细胞色素P-450等。由于其分子刚柔性、电子缓冲性、光电磁性和高度的化学稳定性,早在20世纪3人从事卟啉化学的研究,它们现已广泛用作光导体、半导体、超导体催化剂、抗癌药物、显色剂等[1,2]。近年来,这一有重大科学意义和广泛应用前景的研究领域愈来愈引起无机化学、有机化学、分析化学、物理化学、材料化学、医学及生物学家的兴趣,有关的交叉学科分支正在形成[3]。本文对卟啉及金属卟啉化合物的结构、合成应用等方面作一介绍。

1 结构与性质

111 结构

卟吩环是含四个吡咯环的十六元大环,四个吡咯环之间的碳(5, 10, 15,20) (在Fisher编号法中称为A、B、C、D位置)被称作中位(mess碳,其余8个可被取代的碳称作外环碳。在A、B、C、D位置上分别接列卟啉, R1~R4可以相同,也可以不同。卟吩环上R1、R2、R3、R4取代基形成一系没有取代基时近似于平面结构[4],但易受四个位置取代基的影响而变形,如四苯基卟啉(Te-traphenylporphyrins,简称TPP),取代基苯基和分子平面形成一定角度。若卟啉分子中心四个氮原子质子化,由于质子的空间位阻和静电斥力使吡咯环与分子平面产生偏离,如质子化的四苯基卟啉(H4TPP2+),吡咯环与分子平面偏离33b[5]。所

以金属离子与卟啉发生反应时,有的金属离子可以完全进入卟啉分子平面内,如CuTPP和PdTPP[4]。而有的金属离子则不能进入卟啉分子中,如在H2OMgTPP配合物中, Mg2+高出分子平面约01027 nm。112 性质

卟啉及金属卟啉都是高熔点、深色的固体,多数不溶于水,但能溶于矿酸而无树酯化作用,溶液有萤光。不溶于碱,对热非常稳定。

3 应用

311 在分析化学上的应用

卟啉类试剂早在20世纪50年代就作为贵金属银的光度分析显色剂而得到应用。到了20世纪70年代由于卟啉化合物与金属离子络合物soret谱带的选用及表面活性剂引入,试剂可溶性及其测定金属离子的灵敏度大大改善,卟啉试剂被广泛应用于光度法测定许多过渡金属离子。我国于1979年由童沈阳首次介绍了卟啉这种超高灵敏度试剂在分析化学中的应用,此后卟啉试剂在国内得到了较大的发展,发表了许多测定贵金属的研究论文,涉及到除锇外所有贵金属,如Pd, Ag, Au, Rh, Ru,Pt, It等。此分析方法也可应用于实际生活中,陈

永熙等人[25]提出用四- (4 -三甲铵苯基)卟啉作显色剂,分光光度法测定陶瓷餐具中溶出的痕量的铜,该方法灵敏度高,选择性好,操作简便快速。金属卟啉化合物可制备ISE膜,并可被电聚到聚硅氧烷,石墨,银电极或铂电极上。Sun等[26]阐述了应用TPPS4电位法测定食用海草中的碘,测定结果与光度法结果十分一致。

312 在医学上的应用

卟啉化合物具有集中并储存于癌组织的特性,并且受到光激发后能破坏体内外癌细胞,于是可将血卟啉同激光配合起来治疗癌症。20世纪60年代末, Lipson首次将血卟啉衍生物HPD用于妇女乳腺癌光疗。HPD经超滤方法纯化, 1994年以商品名光敏素(photofrin)被批准临床应用,它主要含二聚体的卟啉多聚物,其中二聚体在临床上起主要作用[27]。现在美国、加拿大、日本、法国和荷兰已批准使用Photofrin疗食道癌,在日本、法国、荷兰和德国治疗肺癌,在加拿大治疗膀胱癌,在日本治疗胃癌和子宫癌。我国的解放军总医院的顾瑛教授等[28]发明了光动力方法治疗鲜红斑痣,并对新光敏剂血卟啉单甲醚首先进行了临床研究。

313 在仿生化学上的应用

由于金属卟啉所发生某些特殊生物化学反应,可作为生物体某些反应机理问题(如氧的传递、光合作用、酶催化等)的模拟。如利用抗体-金属卟啉模拟细胞色素P -450的氧化功能[29~31]。尾式卟啉衍生物更为接近细胞色素P-450和血红素的活性分子结构,具有催化或载功能,故国内张宝田[32]合成了一种新型尾式卟啉化合物及铁(ó)的配合物。

314 在催化化学上的应用

金属卟啉由于其特殊的18P电子共轭结构而具有良好的光敏性已广泛应用于光电能转换、光解水及有机物底物的光催化氧化研究。如在实验室实现了人工模拟光合作用[33], C -P-Q大分子作为人工模拟体系的一部分,收集、传递太阳能,并将之转化为电化学能合成A TP。慧

等人[34]合成了四-对(肉桂酰氧基)苯基卟啉及其钴配合(CoTCCOPP),并以CoTCCOPP为催化剂对芳香醛的光催化氧化行为进行了研究。此外,它们还在许多其它领域表现出优良的催化性能。金属卟啉类化合物被认为是解决燃料电池阴极最有希望的催化剂材料。唐倩等人[35]用一种可靠的方法合成了新的铂钌双金属卟啉,它被用在燃料电池中作为阴极(氧电极)的催化剂。OliverNestler等人[36]制备了固定于高度交联有机聚合物上的Ru卟啉催化剂,它可有效氧化烯烃、季醇甚至是烷烃,转化率一般为90%以上。金属类卟啉化合物对无机化合物有催化氧化的作用,在环境保护中可利用这类化合物作为NO还原分解的催化剂,更好地消除NO污染[37]。总之,随着人们对卟啉及金属卟啉类化合物的深入细致研究,这一类化合物将被人类更好地了解和利用。

文献综述(化学化工文献检索与利用课程)

文献综述写作 从以下提供的75种物质中选择(或自己另找)一种作为研究对象,写一篇字数3000字以上的有关无机纳米材料的性能、制备与应用等方面的文献综述: Sb2O4; SnO2; MnO2; Cu2O; CuO; TiO2; SiO2; MoO3; WO3; Co3O4; Fe3O4; Nb2O5; Al2O3; CeO2; 氟化石墨; 石墨烯; 功能化石墨烯; 碳纳米管(CNT); 碳纤维; 钛酸钾晶须(potassium titanate whiskers); Fe; Co; Ni; Cu; Se; Bi; WS2; TaS2; MoS2; CuS; MnS; PbS; Bi2S3;

MoSe2; CdSe; TaSe2; NbSe2; GaSe; Bi2Te3; Si3N4; WC; BaCO3; ZnWO4; LiFePO4; Diamond; Si; Ge; Sn; SiC; BN; BP; BAs; AlN; AlP; GaN; GaAs; GaSb; InN; InP; InAs; InSb; MgO; MgS; MbSe; MgTe; ZnO; ZnS; ZnSe;

CdS; CdTe; HgS; HgSe; HgTe 要求: ●资料收集,能够根据课题任务,拟定检索标识、选择检索系统、确定检索途径、运用检索方法收集相关信息; ●研究论证,思路清晰,论证方法得当,结论科学; ●论文整体质量,论点明确、论据充分、文理通顺、总体结构完整; ●论文书写规范,格式正确、参考文献著录规范。 3. 综述内容包括:题目、摘要、关键词、正文、参考文献五部分组成,具体格式要求附后。 4. 使用word文档制作,提交电子版和打印稿,如果出现雷同作业均按零分计。 附:文献综述格式要求 使用word文档制作,内容包括由题目、摘要、关键词、正文、参考文献五部分组成,使用A4纸打印,页边距使用word默认值(上、下:2.54cm;左、右:3.17cm),行间距固定1.25倍行距,汉字使用中文宋体字,其它字符使用Times New Roman字体。具体要求如下: 1. 论文题目:三号、加粗、居中 2. 作者、专业年级:五号、居中 3. 摘要、关键词:五号;这两个词本身左顶格、加粗,内容不加粗,其中关键词的个数不超过6个;不翻译成英文 4. 正文、参考文献:五号,“参考文献”词本身加粗、左顶格;所有内容均不加粗 (1)正文的内容与基本格式: 正文内容主要从性能特点、制备方法、应用情况、(制备、应用)前景展望等方面展开论述。 标题的层次:一级标题用“1. 2.……”来标识、二级标题用“1.1 2.1……”,三级标题用“1.1.1 2.1.1……”来标识,依次类推。 插图和表格:插图的图续、图题应放在插图的下方,居中排印。图用图1×××,图2×××表示;表格的表头、表题应放在表格的上部,居中排印;表格用表1×××,表2×××表示公式:公式应单占一行并居中排印,末了不必加标点符号;一行如有两个以上式子的,可用标点符号隔开,解释公式中的变量应以“式中:”作为标识,左顶格排印。其基本格式为: X+Y=C

化学类开题报告范文

化学类开题报告范文 篇一:开题报告化工类 山东科技大学 本科毕业设计(论文)开题报告 题目:年产10万吨煤气化制二甲醚工艺设计 学院名称化学与环境工程学院 专业班级化学工程与工艺10定单 学生姓名郭龙年 学号 201001111311 指导教师李敏 填表时间:2014年 2 月 27 日 填表说明 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。 3.学生应按照学校统一设计的电子文档标准格式,用A4纸打印。 4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。 5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一 同存档。 篇二:化学毕业论文开题报告 07级化学专业开题报告小组成员组成及安排 本学期07级化学专业开题报告小组成员组成及安排见下表:

注意: 1.作(包括实验方案及可行性、参考资料、仪器及药品)后,确认具备开题资格方可以开题; 2.各小组开题时间或地点如有变动,请及时通知所负责学生; 3.开题报告在教务处网站下载,开题记录部分由开题报告小组秘书负责,开题结束后由学生整理手写誊好; 4.每位学生开题时间控制在8 min以内,可准备ppt,ppt报告记入总成绩; 5.开题结束后,开题报告及毕业论文任务书(见附件)材料(含电子文档)请由秘书收齐后及时交与系部周曾老师处统一保管存档。 湖南科技学院化生系2011.2.21 附件: 湖南科技学院本科毕业论文(设计)开题报告书 注:此表由学生本人填写,一式三份,一份留系里存档,指导老师和本人各保 存一份 篇三:应用化学专业毕业论文开题报告 兰州 本科毕业生论文开题报告 题目:CTAB/正丙醇/环己烷/水微乳液体系参数的测定以及相行为的研究 学院名称: 专业:应用化学 班级: 姓名: 学号: 指导老师:

超分子化学综述

超分子化学期末论文(设计)题目:超分子化学简介及应用 学院:化学与化工学院 专业:材料化学 班级:材化101 班 学号: 1 0 0 8 1 1 0 0 2 4 学生姓名:朱清元 指导教师:倪新龙 2013年12月10日

贵州大学本科毕业论文(设计) 诚信责任书 本人郑重声明:本人所呈交的毕业论文(设计),是在导师的指导下独立进行研究所完成。毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。 特此声明。 论文(设计)作者签名: 日期:

目录 摘要: (1) 关键字: (1) Abstract: (1) Keywords: (1) 第一章.前言 (1) 第二章.超分子化学的理论基础 (2) 第三章.超分子化合物的分类 (2) 3.1杂多酸类超分子化合物 (2) 3.2 多胺类超分子化合物 (3) 3.3 卟啉类超分子化合物 (3) 3.4 树状超分子化合物 (3) 3.5 液晶类超分子化合物 (3) 3.6 酞菁类超分子化合物 (4) 第四章.超分子化合物的特性 (4) 4.1 超分子的自组装 (4) 4.2 超分子的自组织 (5) 4.3 超分子的自复制 (5) 第五章.超分子化学的应用 (6) 5.1、在高科技涂料中的应用 (6) 5.2、在手性药物识别中的应用 (6) 5.3、在油田化学中的应用[1] (7) 5. 4、超分子化合物作为分子器件方面的研究 (7) 5. 5 超分子化合物在色谱和光谱上的应用 (7) 5. 6 超分子催化及模拟酶的分析应用 (8) 5. 7 在分析化学上的应用 (8) 第六章.结语 (8) 第七章.文献资料 (9)

2016年诺贝尔化学奖综述

2016年诺贝尔化学奖综述 2016年诺贝尔化学奖授予三位科学家——让-皮埃尔-绍瓦热、弗雷泽-斯托达特爵士和伯纳德-L-费林加获奖,领域是“分子机器的设计与合成”。分子作为保持物质性质的最小微粒,他们造出了世界上最小的机器,其大小只有人类头发的千分之一。 一个分子水平的器件可以被定义为有许多不连续的分子元件(比如一个超分子结构)组装起来,用以体现一特定功能的组装体。要构造分子机器首要的是合成相关的分子元件,首先在这一领域做出突破的是科学家让-皮埃尔-绍瓦热。他于1983年将两个环状分子连成链状,并命名为索烷。随后的1991斯托达特成功合成了轮烷,一环一链,环分子可绕链转动。(摘自百度百科) 众多分子器件的合成与当时化学的一个分支科学—超分子化学分不开,超分子化学的一个重要思想是积少成多,即从原子或分子开始建造纳米结构。这个观点最早由查理费曼(R.P.Feynman)于“基础研究还有很大空间”的演讲中提出。20世纪70年代后期,超分子化学迅速发展。众多的研究者开始认为,对于构建纳米级别的机器,分子相对于原子时更为方便的构建单元。主要观点基于以下几点:1.分子比较稳定,而原子难以操控,2.自然界中用以构建大量各种各样又来维持生命的纳米器件或机器都是来源于分子而非原子3.绝

大多数实验室中化学实验的处理对象是分子而非原子4.分子式已经有明显形状的实物,有着与器件相关的性能(如被背光化学和电化学输入操纵的性能)5.分子可以自组装或者可以连接成更大的结构。(摘自分子器件与分子结构-通向纳米世界的捷径).基于以上几点,大量科学家们于分子水平造出大量的分子器件,例如分子起重机分子肌肉,分子芯片等等。为分子机器的合成奠定了基础。 分子机器的另一个问题便是能量。,可想而知,由热能产生的布朗运动可能不足来提供及其所需的能量,那么可能的能量可以来自以下几个方面,化学能,光能,电能。但由于化学能的产生来源于化学键的断裂和发生的化学反应,其过程中添加原料的繁琐与废料的麻烦,使得分子机器的能量大多来源于电与光。代表性的诺奖得主费加林于1999年找出了第一个分子发动机,并用它转动了比他大一万倍的玻璃杯。 如果由分子马达提供能量,那么由斯托达特设计的分子穿梭机则控制了分子的运动,它使得精确控制分子机器的运动成为可能,斯托达特设计的轮烷就是一个略为粗糙的分子开关他利用分子两端的化学基团的相互反应来实现分子在化学位点的来回运动,不仅如此,利用分子穿梭机对条件的反应,斯托达特更设计出利用轮烷的记录储存装置,与最先进的储存装置相比毫不逊色。此后五花八门的分子开关层出

高中化学教学文献综述

高中化学教学文献综述 摘要:新课程理念的"有效"更强调高中化学的学习是一个主动建构知识,发展能力,形成正确的情感态度与价值观的过程,可以采用兴趣化教学, 生活化教学, 信息化教学, 探究性教学等教学策略实施有效教学. 本文阐述教育的人文性,人文教育的涵义,当前中学人文教育的现状,化学与人文两学科之间的区别与联系,通过教师要有正确的教育观念、注重培养学生的科学道德情感、利用学科交叉影响提高学生整体素质、加强指导使化学与人文自然渗透四方面讲述化学与人文的渗透。 中学化学作为基础教育的重要学科,但现如今化学教育面临着相当大的挑战。比如,知识信息量增长,知识技术的更新加快,学科相互交叉、渗透、综合等。而我国化学教育现状却有些不尽人意:教育质量不如意、效益不高;学生创新意识、实践能力差;学生学习负担重、教师教学压力大……对于这些难题,我国有很多的化学教育工作者进行了探讨与研究,他们发表了很多关余化学教育有关的论文、期刊、专著等,在这方面做出了很大的贡献。下面我们就具体探讨一下这些教育专家们是如何看待中学化学教学改革这个问题的。 许多专家学者们的著作都提出了很多的观点和看法。 像《浅谈化学教学中的创新教育》、《化学教学中学生创新能力的培养》等学说就重视培养学生的创新精神。江泽民同志曾指出:“创新是一个民族进步的灵魂,是一个国家不断发展的动力。”所以,创新教育是时代的要求,也是新课程的一项基本理念[5]。该文献指出,要培养学生的创新精神和创新能力有四点是必须要做到的:一要改变传统的教学模式即以教材和讲授为中心的教学模式:二要积极鼓励、培养学生敢于创新的意识;三要将实验教学与理论教学相结合,培养学生创新意识;四要开展科技活动、展现创新能力。创新能力是素质教育的核心,要培养创新能力必须从各项入手,充分调动教师和学生的积极性。利用现有条件,想方设法地去进行各式各样的、丰富多彩的各项活动,才能收到好的效果。新课程必须面对的一个问题就是如何使课堂教学效益最大化,有效教学是一重要途径。有效教学是指教师在遵循教学活动的客观规律下,以尽可能少的时间,精力和物力投入,取得尽可能多的教学效果,以满足社会和个人的教育价值需求而组织实施的活动。它要求教师拥有有效的教学理念,掌握有效的教学策略,引导学生的有效学习.教师的教学活动要有效果,有效率,有效益.高中化学教学的"有效",更强调高中化学的学习是一个主动建构知识,发展能力,形成正确的情感态度与价值观的过程。 一、有效教学的理念 有效教学就是在这一背景下提出来的,它的核心问题就是教学的效益,即什么样的教学是有效的?是高效、低效还是无效?所谓有效,主要是指通过教师在一段时间的教学之后,学生所获得的具体的进步或发展。在新课程理念下,我们对教学有效性的理解是: 1、教学有效性要以学生的进步和发展为宗旨。教学有效与否,要通过学生来

生活中的超分子化学

《超分子化学的应用及前景》 学号:1630140051学院:初等教育学院 姓名:付金环

到20世纪末21世纪初,30%~40%的化学家将要运用包括分子识别在内的超分子化学的某些知识去解决所面临的问题。--------题记上世纪八十年代末诺贝尔化学奖获得者J.M.Lehn创造性的提出了超分子化学的概念,它的提出使化学从分子层次拓展到超分子层次,这种分子间相互作用形成的超分子组装体,是人类认识上的飞跃,更是化学领域的一大成就。从此以后,人们的认知水平提升了,认识到了分子已不再是保持物性的最小单位,化学界的功能的最小单位新秀超分子逐步登上历史舞台,分子作为最小单位的时代已随滚滚东流一同逝去,不复回环。功能产生于超分子组装体之中,此种认识带来的飞跃是人类历史上的一大步。据悉,如今已有百分之四十的化学家要用超分子化学的知识来解决自己所面临的化学问题。超分子化学已经成为当今时代新思想新概念和高技术的主要源头。“问渠那得清如许,为有源头活水来”,没错,当代社会的飞速发展离不开科技,科技是第一生产力,从国家事业到百姓生活,都与化学世界息息相关。接下来,让我们一起来了解一下超分子化学在生活中的应用及其前景。 首先来说说医药方面,人食五谷谁能不得病,所以医药类是最与人们息息相关的。超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药品是关系到广大人民群众生命安危与健康的特殊商品,考虑到储存、服用与携带的方便及制造成本等诸多因素,大部分药物都设计成固体剂型,而在药物的各种固体形态中,晶型药物由于稳定性、重现性及操作性等方面的优势而被优先选用.晶型药物包括了药物的多晶型、水合物、溶剂化物和盐类。药物活性分子通常因含有各种官能团而具有不同的生物活性.最新研究发现,这些官能团能够利用氢键或者其它非共价键作用而与其它有机分子通过分子间的识别作用生成超分子化合物,即药物共晶,从而有效改善药物本身的结晶性能、物化性质及药效,成为药物固体制剂的一个新选择被引入的有机分子,也称为共晶试剂,可以是辅料、维生素、矿物质、氨基酸及食品添加剂等。因此,对于一个给定的药物,可能生成数以百计的药物共晶,为剂型设计提供了更多的选择.此外,新的药物共晶可获得知识产权保护,延长原有药物的市场周期,具有广阔的应用前景。 不仅是医药方面,在其他方面超分子化学也是翘楚,由于能够模仿自然界已存在物质的许多特殊功能,形成器件,因此它的潜在应用价值已倍受人们青睐。超薄膜、纳米材料、高分子有机金属材料、非线性光学材料及高分子导电材料等已成为国内许多研究机构热点。此外,超分子化学在生物传感器、润滑材料、防腐蚀材料、膜材料、黏合剂及表面活性剂等方面也有很广泛的应用前景,目前,除了冠醚外,环糊精、环芳烃、索烃、旋环烃、级联大分子等作为新的超分子实体,也引起广泛关注。 于当下国际上超分子科学的研究开展得如火如荼之际,如发达国家和地区,如欧盟、美国和日本等都投入了大量的人力和物力进行超分子科学方面的研究与开发。在国家自然科学基金委、科技部、教育部、中国科学院等相关部门的大力支持下,我国的科学工作者较早地开展了超分-T-科学研究,并做出了一大批有特色的工作。在当下以经济和科技实际为基础的综合国力之间的较量的大环境下,我国必须重视科技,重视超分子化学的开发与运用,中国这只东方雄狮才能更好地屹立于世界之林。 接下来谈一谈超分子化学在油田开发中的应用。在油田化学中主要利用的是超分子的疏水作用、配位作用、氢键作用和静电作用。疏水缔合水溶性聚合物通过疏水缔合作用形成暂时的三维立体网络结构。疏水缔合聚合物溶液的表观粘度由本体粘度和结构粘度两部分组成,当聚合物浓度高于某一临界缔合浓度后,大分子链通过疏水缔合作用以及静电、氢链或范德华力作用聚焦,形成以分子间缔合为主的超分子结构——动态物理交联网络,流体力学体积增大,溶液结构粘度增加使其表观粘度大幅度升高。这种结构的形成受外界条件的影响,如温度、矿化度和剪切速率等。因优良的增粘、抗温、抗盐和剪切稀释性能而用于聚合物驱油剂的研究。除用做驱油剂之外,还可用于流体输送的减阻剂、钻井液与完井液添加剂、阻垢分

化学论文文献综述

本科毕业设计(论文)文献综述 学院化学与生命科学学院专业化学学生姓名学号 指导教师职称 合作导师职称 论文题目5-氯水杨醛缩-2-氨甲基苯并咪唑希夫碱与铜配合物的晶体结构及与 DNA和BSA作用 1. 引言 癌症成为二十世纪以来人类健康的主要杀手,是仅次于心血管病的第二大死因,化疗是目前治疗癌症的重要手段。据世界卫生组织报告,2008年的癌症死亡人数达760万(约占所有死亡人数的13%)。全世界癌症死亡人数预计将继续上升,到2030年将超过1310万。迄今为止,治疗癌症的药物已达几十种,但是由于癌症发病机理复杂,能治愈癌症的药物还很罕见。因此,继续研究抗癌药物及其作用机制具有重大的现实意义和理论价值[1]。自1965年,美国化学家Bosenberg[2]等首次发现顺铂trans-[Pt(NH3)2Cl2]具有强抗肿瘤活性后,无机金属配合物作为抗癌药物的研究引起化学工作者的极大重视。Bensichem和Farrel[2]发现用芳香氮杂环碱取代简单的氨(NH3)后,所得配合物trans-[Pt(py)2Cl2]的抗癌活性与顺铂相比进一步增强,含氮杂环的金属配合物更加受到化学家的青睐。虽然目前此类抗癌药物为数众多,但真正应用于临床而且效果很好的广谱抗癌药物十分有限,并存在不同程度的毒副作用。 核酸是生物体中重要的遗传物质,许多预防和治疗癌症的药物都是以核酸中的DNA为靶分子而设计的。其基本原理就是配合物中的金属离子与DNA螯合,或配体嵌入DNA碱基对,引起癌细胞DNA损伤,复制和转录受到障碍,从而阻止癌细胞的生长和分裂,并导致其死亡。血清白蛋白是血浆中含量最丰富的一种蛋白质,能与人体中许多内源性、外源性化合物结合而起到贮备和运输作用,药物药效的发挥在一定程度上还取决于其与血清白蛋白的结合强弱。因此,从分子水平研究金属配合物与DNA或蛋白质之间的相互作用对于设计、合成新型的抗菌抗癌药物具有重要的指导意义。

超分子化学的应用及前景展望

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其

广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐药性小、生物相容性好、高疗效以及开发成本低、周期短、成功可能性大等诸多优点而备受关注,在抗肿瘤、抗炎镇痛、抗疟、抗菌、抗真菌、抗结核、抗病毒、抗癫痫、作为心血管和磁共振

化学文献综述

手型金属络合物的合成及应用 姓名:杨小玲1学号:2009296094专业:化学 (山西大学化学化工学院) 摘要:随着化学化工的发展,人们已将重点转向如何更有效地模拟自然,高选择性地合成自然界中存在的那些具有特殊活性 的物质,设计并合成具有新的特殊活性的物质。其中一个极为重要的和富有活力的领域就是手性物质的合成,简称手性合成。随着 手性合成研究的深入,新型的高效手性催化剂层出不穷。本文旨在就其中一种催化剂即手性金属络合物催化剂的制备和应用做一介绍。所谓手性即立体异构形式,具有手性的两个分子的结构彼此间的关系如同镜像和实物或左手和右手间的关系,相似但不叠合。 关键词:手性金属络合物催化剂 Synthesis and application of chiral metal complexes Name: Xiaoling yang Number: 2009296094 Professional : Chemical (Chemistry and Chemical Engineering , Shanxi University) Abstract Along with the development of chemical industry, people already will focus on how to more effectively simulate natural, high selectivity synthesis exist in nature that have special active substances, design and synthesis of new special activity of the material. One of them is very important and dynamic area is the synthesis of chiral material, hereinafter referred to as chiral synthesis. With the deepening of the research chiral synthesis, new high-efficiency chiral catalysts are endless. This paper aimed at one of the catalyst that chiral metal complex catalyst preparation and application of this paper. The so-called hand nature is stereo heterogeneous form, with two of the chiral molecule structure relation to each other as a mirror and material or left and right hand, the relation between similar but not composite. Keywords: chiral Metal complex catalyst 前言 手性金属络合物的发现和认识对早期配位化学理论的建立起了积极的作用它在生物无机化学,不对称催化剂,超分子化学等化学分支学科中都具有重要的应用已知在一些重要体系中精确的分子识别和严格的结构匹配都与手性密切相关。近年来, 随着在国际范围内对有机化学新反应、新试剂需求量的急剧增长, 使金属有机化合物的合成成为世界各国有机合成和催化学家关注的焦点, 其中对含不饱和键的金属有机化合物的研究尤为引人注意. 特别是自20 世纪90 年代以来, 合成了许多高活性、高选择性金属络合物催化剂,并被广泛地用于催化有机化学反应. 有的立体选择性反应甚至达到几乎定量的结果, 展现了它们在医药、生物及化工等领域的广阔的应用前景, 从而成为金属有机化学的前沿研究课题. 随着对手性金属络合物的深入研究除了配体和中心金属离子的合理选择外其它如溶剂效应,氢键效应配体间非共价键作用等因素对立体选择性也有重要的影响。

化学课题文献综述范文

宁德师学院 文献检索与科技论文写作年级 2012 专业化学 学生元世 学号 B2012061118 题目生鲜食品保鲜技术研究 2014年6月20日

【文献综述】 生鲜食品保鲜技术研究 元世 (师学院化学系 2012级化学1班 352100) 【摘要】生鲜食品主要指“生鲜五品”。与超市中经营的其他商品相比,生鲜食品具有与其他商品不同的特殊属性:保鲜和加工。保鲜即保鲜处理,新鲜的食品送到商业企业中来,必须运用保鲜设备对它进行保鲜处理。很显然,生鲜食品如果失去了生鲜的特性,就会变得没有价值。所以,保鲜就是保商品的价值,即通过管理来实现保值。保鲜加工处理是利用各种加工设备,使加工食品通过加工达到增值的目的。 【关键词】生鲜食品果蔬水产品保鲜技术 生鲜食品是指由种植、采摘、养殖、捕捞形成的,未经加工或经初级加工,可供人类食用的生鲜农产品。根据原料来源可分为果蔬、水产品、肉类。随着社会生活节奏的加快,人们的生活习惯也发生改变,同时冷藏链、冰箱、微波炉的普及,人们越来越重视食品的方便性、营养性、安全性。生鲜食品不仅满足消费者的饮食需求,而且大大缩短消费者的备餐时间,因而深受消费者亲睐。然而生鲜食品具有易腐性、季节性和地域性的特点,使其在贮藏、市场供应及产品开发方面受到很大限制。由于产后贮藏保鲜及加工技术的相对滞后,我国生鲜食品腐烂损失十分严重。据统计,目前我国水果的腐烂损失率在25%~30%,蔬菜的腐烂损失率在20%~25%,水产品的损失率在15%左右,而欧、美、日等发达国家农产品平均损失率仅为1.7%~5%。保鲜技术落后、产后损失严重已成为制约我国农产品加工业和食品工业发展,影响农民收入和市场竞争力的重要因素之一。生鲜食品保鲜是保证其贮藏期品质稳定,实施远距离或反季节贸易的关键,已成为农业和食品产业的一个重大难题,受到食品企业、物流业和消费者的广泛关注。 1 生鲜食品主要保鲜技术 生鲜食品保鲜是根据其品质特点和腐败变质机理,在其生产和流通过程中采用物理、化学或生物方法处理,抑制或延缓生鲜食品的腐败变质,保持其良好鲜度和品质的技术。目前生鲜食品保鲜方法主要有物理、化学和生物法三大类,每类方法又衍生出很多新技术,各自依托不同的保鲜原理。虽然各种保鲜手段的侧重点不同,但都是对保鲜品质起关键作用的因素进行调控。首先是控制生鲜食品生理、生化变化进程,从而延缓品质劣变进程;其次控制微生物,主要通过控制腐败菌来实现。主要保鲜技术有低温保鲜、化学保鲜、生物保鲜、气调保鲜、超高压保鲜、辐照保鲜、臭氧保鲜等。此外,近几年一些新的保鲜技术,包括复合保鲜技术不断涌现,如临界点低温高湿贮藏、高压静电场处理保鲜、细胞间水结构化气调保鲜、热激处理保鲜等。 1.1低温保鲜 1.1.1水产品低温保鲜 低温保鲜是水产品最主要的保鲜技术。水产品低温保鲜技术主要有冷藏冷冻、冷海水/冷盐水保鲜、微冻保鲜、冻结保鲜和冰温保鲜技术,用于保持鱼体原有的鲜度和鱼肉的品质,抑制鱼体死后的生物化学变化。微冻保鲜技术是将新鲜渔获物放入低于鱼肉冰点(2℃)以下的冷冻海水中快速冷却,然后将鱼体保存在-2~0℃的微冻温度区域保鲜,该方法可有效保持鱼肉的鲜度。此后,又发展了超冷保鲜和无冰保鲜技术[1]。超冷保鲜技术是一种使鱼体窒息和快速冷却同时实现的保鲜技术。无冰保鲜技术是采用-5~3℃的冷媒(深冷海水),通过喷淋、浸泡等剧烈冷却及清洗方式,使水产品在最短时间快速冷却至-2—-1℃的微冷状态,然而通过舱保温保湿系统对水产品进行保温,从而达到最佳保鲜效果以及理想保鲜成本的技术。 1.1.2果蔬低温保鲜

超分子化学综述

超分子化学综述 摘要:超分子化学是化学领域一个崭新的学科分支,本文综述了分子识别和自组装的有关内容以及和超分子化学的分类,并指出了超分子化学对科学理论研究的重要意义和广阔的应用前景。 关键字:超分子化学分子识别自组装 “超分子”一词早在20世纪30年代已经出现,但在科学界受到重视却是50年之后了。超分子化学可定义为“超出分子的化学”,是关于若干化学物种通过分子间相互作用结合在一起所构成的,具有较高复杂性和一定组织性的整体的化学。在这个整体中各组分还保持某些固有的物理和化学性质,同时又因彼此间的相互影响或扰动而表现出某些整体功能[1]。超分子体系的微观单元是由若干乃至许许多多个不同化合物的分子或离子或其他可单独存在的具有一定化学性质的微粒聚集而成。聚集数可以确定或不确定,这与一分子中原子个数严格确定具有本质区别,把多个组分的基本微观单元聚集成“超分子”的凝聚力是一些(相对于共价键)较弱的作用力。如范氏力(含氢键)、亲水或憎水作用等[2]。 1967年,Charles Pedersen偶然发现了冠醚这种新型的大分子化合物,十几年后,一个崭新的化学领域——超分子化学终于诞生了。进入90年代后,Surpramolecular Chemistry 杂志的创立说明超分子化学作为化学学科的一个独立的分支,像高分子化学一样,已经得到世界各国化学家的普遍认同。在国内,一些高校和科研机构已做了相当多的工作,说明超分子化学正在迅猛发展[3]。本文对超分子化学作了简单的综述。 1.超分子稳定形成的因素[4] 超分子稳定形成的因素,可从能量降低因素、熵增加因素及锁和钥匙原理来分析,通过这些分析,可加深对超分子和超分子化学的理解和认识,这比将超分子中分子间的结合力简单归结为非共价键更为具体、明确。 2.分子识别和自组装 在超分子化学研究中,两个最重要的科学问题是分子识别和分子自组装、分子间多种弱相互作用的加合效应和协同作用。分子识别是由于不同分子间的一种特殊的、专一的相互作用,它既满足相互结合的分子间的空间要求,也满足分子间各种次级键力的匹配,体现出锁和钥匙原理。在超分子中,一种接受体分子的特殊部位具有某些基团,正适合与另一种底物分子的基团相结合。当接受体分子和底物分子相遇时,相互选择对方,一起形成次级键;或者接受体分子按底物分子的大小尺寸,通过次级键构筑起适合底物分子居留的孔穴的结构。所以分子识别的本质就是使接受体和底物分子间有着形成次级键的最佳条件,互相选择对方结合在一起,使体系趋于稳定。 自组装是自然界生物系统的一类基本属性,如DNA和RNA 的双螺旋结构、多肽和蛋白质的二级及高级结构、生物膜的形成与稳定、酶的高级结构与功能发挥等,都是多种不同弱相互作用加合协同的结果。超分子自组装是指在平衡条件下相同或不同分子间通过非共价键弱相互作用自发构成具有特种性能的长程有序的超分子聚集体的过程[5]。超分子自组装是指一种或多种分子依靠分子间的相互作用自发地结合起来,形成分立的或伸展的超分子。由分子组成的晶体,也可看作识分子通过分子间作用力组装成的一种超分子。分子识别和超分子自组装的结构化学内涵体现在电子因素和几何因素两个方面,前者使分子间的各种作用力得到充分发挥,后者适应于分子的几何形状和大小,能互相匹配,使在自组装时不发生大的阻碍。分子识别和超分子自组装是超分子化学的核心内容。 3.超分子化合物的分类[6] 3.1杂多酸类超分子化合物

化学实验文献综述

化学实验文献综述 摘要:本文将通过实验改进及实验的再探究,来弥补初高中实验教学的不足之处,以此来深化化学的学习及提高实验的创造设计能力。关键字:实验探究、实验改进 正文:化学实验是中学化学教学的一个重要组成部分,它对于化学现象、化学概念的理解起着重要的作用,并且实验教学可以激发学生学习的兴趣,获得知识和技能,培养观察能力和实验能力,还有助于培养学生实事求是,严肃认真的科学态度和科学的学习方法。因此,我们不仅仅要做实验,更应改进实验教学、探索实验方法、完善实验理论。本文将选取化学教学2011年第11期,第12期来进行汇总。一、化学实验改进与探究的必要性 (1)初高中化学实验存在的主要问题 ①实验比较复杂,影响教学效果 ②化学实验产生的废水、废气、废渣等都会对周围环境造成不同程度的污染。有些产生的有毒有害废物由于实验设计的不严谨对实验者尤其是化学教师的身体健康造成损害(如浓硫酸的脱水性实验产生有毒气体)。不利于保护环境和对绿色化学以及可持续性发展的观念的宣传。 ③有些化学实验的严谨性、安全性以及实验效果都不能很好的服务于教学,影响学生对知识的直观理解。 ④对于化学药品的具体用量没有很明确地说明或表述模糊,浪费了很多药品

(2)化学实验改进的方向 ①实验简单,现象明显,安全可靠,明确药品用量。 ②尽可能的不产生有毒有害气体或能有效吸收有毒有害气体,树立绿色化学的观念。 ③不产生科学性的错误。 ④让学生动手参与实验方案的改进,利用有限的资源人人动手,激发学习兴趣,培养创新思维,提高科学素养。 (3)化学实验改进的基本方法 ①通过学生对教材中的实验的具体实践,总结实验的成败经验,查找资料,改进实验方案。 ②将学生分成几个创新实验小组,每个组分别对教材中的实验进行探究,提出方案、实践、改进、总结、评价。 ③教师选择一些演示实验进行改进,让学生在此基础上再做改进,提出方案并实践总结。 二、化学实验改进与探究的具体实例 郭超,支维洲,杨嵘,赵越在“白磷在水下燃烧实验”的再改进中,针对教材中的不足之处,介绍了五则该实验的改进方案,改进的共同特点是,巧妙利用空气,实现白磷在密闭装置内燃烧,取得良好的环保效果。蔡惠君老师在“原电池教学中疑难问题探讨”中,结合原电池教学中的实践和感悟,对原电池电极的极化、去极化和双液原电池电解质溶液的选择等疑难问题谈几点认识,供参考与交流。沈明祥老师在“乙烯实验室制法的改进”中,通

应用化学专业毕业论文开题报告.doc

兰州理工大学 本科毕业生论文开题报告 题目:CTAB/正丙醇/环己烷/水微乳液体系参数的测定以及相行为的研究 学院名称: 专业:应用化学 班级: 姓名: 学号: 指导老师: 填表时间:年月号 摘要:采用稀释法计算了CTAB/正丙醇/环己烷/水的微乳体

系的结构参数和醇由连续相转移到界面层的自由能变化.结果表明:随着随ω的增大,水内核半径Rw、界面层厚L度,以及表面活性剂和醇在微乳粒子表面的平均聚集数n增加,而醇转移自由能错误!未找到引用源。错误!未找到引用源。△GθC→i、分散相所占总界面面积Ad和颗粒总数Nd减小,测定CTAB/正丙醇/环己烷/水三相微乳液体系的“鱼状”相图和单相微乳液体系拟三元相图从“鱼状”相图的位置考察CTAB形成单相微乳液的效能。用电导法确定单相微乳液体系的结构(W/O、B.C.、和o/w)。考察微乳液结构和温度对微乳液电导率的影响。 关键词:微乳液;结构参数;稀释法;CTAB;相行为的研究 文献概述 一,本课题研究的目的和意义 1.掌握国内外文献查阅的一般方法 2.学习有关文献综述及实验工作报告的写作方法 3.初步了解微乳液的结构与性质及研究方法 4.了解并掌握微乳液的结构参数的测定 二,文献综述(国内外研究情况及其发展) 1.1微乳液的类型、结构和性质 微乳液是由水(或盐水),油,表面活性剂和主表面活性剂等组成,在适当比例下,自发形成透明或半透明的稳定体 系[1],由于它有很强的增容能力和超低界面张力的特性,由舒 尔曼(Schulman)在1943年首先制得,并在1959年正式命名为

“微乳液”。微乳液可分为单项微乳液和多相微乳液。前者是一个均匀的相体系,它们有三种结构之分,O/W型微乳液型,双连续型微乳液和W/O型微乳液。后者指微乳液存在二相平衡或者三相平衡中。在某些条件下,将发生winsorI型 ,winsor Ⅲ型,winsorrⅡ型,及下相微乳液(O/W型),中相微乳液(双连续性),上相微乳液(W/O型)的变化。单相微乳液,微乳液体系经常用三元相图或三元相图表表示。影响单相微乳液的因素:Bansol碳原子数目相关性,电介质对单相微乳液影响,温度对单相微乳液的影响。单相微乳液组成,除油和水以外,对于单烃链尾巴的离子表面活性剂,还需要加上中碳链长的助表面活性剂(醇,胺,有机酸等),对于非离子表面活性剂和双烃尾巴的表面活性剂,往往不需要助表面活性剂。多相微乳液,winsor分类:在水(或盐水)—油—表面活性剂—助表面活性剂体系中可能存在许多平衡。winsor将下相微乳液和剩余水,上相微乳液和剩余油,中相微乳液和剩余水,剩余油等三类平衡体系,分别称做winsorⅠ型,winsorⅢ型和winsorⅡ型。 Lindman等人用NMR方法测定了WinsorⅠ,Ⅲ和Ⅱ型中各个组成(油,水,表面活性剂,醇等)的自扩散系数,证明中间微乳液具有双连续结构[2]。 微乳液相对于普通乳状液有两个特点:一是其形成完全是自发的,不需外界提供能量;二是微乳液是热力学稳定体系,存放过不会发生聚结,且离心不分层[3],典型的被称为

超分子化学讲稿

第一章从分子化学到超分子化学(2学时) 第一节超分子化学的发展历程 超分子化学(Supramolecular Chemistry)根源于配位化学,有人称之为广义配位化学(generalized coordination chemistry),是三十多年来迅猛发展起来的一门交叉学科,它与材料科学、信息科学、生命科学等学科紧密相关,是当代化学领域的前沿课题之一。这个领域起源于碱金属阳离子被天然和人工合成的大环和多环配体,即冠醚和穴醚的选择性结合。1967年C. J. Pederson报道了冠醚配位性能的发现,揭开了超分子化学发展的序幕;随后,J.-M. Lehn报道了穴醚的合成和配位性能,这种由双环或三环构成的立体结构比平面冠醚具有更好的对金属离子配位能力;1973年,D. J. Cram报道了一系列具有光学活性的冠醚,可以识别伯胺盐形成的配合物;分子识别的出现为这一新的化学领域注入了强大的生命力,之后它进一步延伸到分子间相互识别和作用,并广泛扩展到其它领域,从此诞生了超分子化学。超分子化学的概念和术语是在1978年引入的,作为对前人工作的总结和发展。1987年,Nobel化学奖授予了C. J. Pederson、D. J. Cram和J.-M. Lehn,标志着超分子化学的发展进入了一个新的时代,超分子化学的重要意义也因此被人们更多的理解。 B C 自组装 自组织从分子化学到超分子化学:分子、超分子、分子和超分子器件

第二节超分子化学的定义和分类方法 分子化学是基于原子间的共价键,而超分子化学则基于分子间的非共价键相互作用,即两个或两个以上的物质依靠分子间键缔合。图1.1中简介了从分子化学到超分子化学的基本特征。1987年,当年的诺贝尔化学奖获得者之一,法国的J. M. Lehn教授在获奖演说中曾为超分子化学作出了如下解释:超分子化学是研究两种以上的化学物种,通过分子间相互作用缔结而成的、具有特定结构和功能的超分子体系的科学。简而言之,超分子化学是研究多个分子通过非共价键作用而形成的功能体系的科学。 超分子化学研究包括分子识别(molecular recognition)、分子自主装(self assembly)、分子自组织(self organization)和超分子器件(supermolecular device)等。 分子识别是超分子化学的一个核心研究内容之一。所谓分子识别即是指主体(受体)对客体(底物)选择结合并产生某种特定功能的过程。有人把这一过程形容为锁和钥匙的关系。在生物体系中存在着广泛的分子识别。酶和底物之间、基因密码的转录和翻译、细胞膜的选择性吸收等等都涉及到分子识别。分子识别中的主体主要有冠醚、穴醚、环糊精、杯芳烃、卟啉等大环主体化合物。对以非共价键弱相互作用力键合起来的复杂有序且具有特定功能的分子集合体,即超分子化学的研究,可以说是共价键分子化学的一次升华,一次质的超越,被称为是“超出分子范围的化学”。分子识别不是依赖于传统的共价键力,而是靠非共价键力,即分子间的作用力,如范德华力(Van der Waals)(包括离子-偶极,偶极-偶极和偶极-诱导偶极相互作用)、疏水作用和氢键等。 通过多个超分子的亚单元自组织或自主装能够得到稳定的、具有特异空间结构和功能的大分子聚集体,可以潜在地作为分子器件或超分子器件。 第三节超分子化学发展现状 欧洲、日本领先,中国等随后跟踪。 美国未有此提法。

超分子化学既是一个新兴的跨学科的交叉前沿领域

超分子化学在电分析化学中领域的研究进展 许婷婷 【摘要】本文主要以超分子中具有代表性的冠醚、环糊精、杯芳烃为切入点,分别介绍了它们在电分析化学中的应用。以及环糊精在电极表面的自组装,超分子在压电化学传感器中的应用,及最后的纳米材料修饰电极的类型及在药物分析中的应用。 【关键词】超分子冠醚环糊精杯芳烃电化学分析电化学传感器纳米材料 一、超分子化学的基本概念 超分子化学简言之是研究各个分子间通过非共价键作用形成具有特定功能体系的科学。从而使化学从分子层次扩展到超分子层次。这种分子间相互作用形成的超分子组装体,带给人们许多认识上的飞跃,认识到分子已不再是保持物性的最小单位。【1】在超分子体系中, 分子与分子之间力的关系就如同在分子中原子和共价键的关系一样。换言之, 超分子化学是研究分子通过非共价键作用形成的聚集体的功能体系科学。超分子体系的微观单元是由若干乃至许许多多个不同化合物的分子或离子或其他可单独存在的具有一定化学性质的微粒聚集而成, 聚集数可以确定或不确定, 这与一分子中原子个数严格确定具有本质的区别。在这个整体中, 各组分还保持某些固有的物理和化学性质, 同时又因彼此间的相互影响或扰动而表现出某些整体的功能。【2】 超分子化学既是一个新兴的跨学科的交叉前沿领域,又是一门发展前景广阔的边缘学科。为21世纪化学发展提供了一个重要的热点研究方向。随着超分子化学的发展先后出现了三代超分子体系,它们分别以冠醚、环糊精、杯芳烃为主体。 二、冠醚类化合物 冠醚为大环多元醚,其最早的产物是Pedersen 于1967年合成的二苯并-18-冠-6.如果把这些大环多元醚的主体结构绘在纸上,其醚氧原子就像镶嵌在王冠上的钻石一样,形成了宛如王冠的形状,故取名为冠醚。冠醚化合物是具有—〔—Y—CH2CH2—〕—重复结构单元的大环化合物,其中Y原子是电子给体,即:杂原子,环上所含杂原子来看,冠醚化学已从最初的全氧冠醚发展到硫杂、硒杂、氮杂、磷杂、砷杂、硅杂冠醚。【3】 (一)在电分析化学中的应用 设计合成具有一定空腔尺寸、极性的冠醚,选择性地与离子或中性分子形成主客体络合物,可制得高选择性的离子选择电极或电化学传感器。如:以1,1—联萘并—20—冠—6为钾离子载体的聚氯乙烯(PVC)膜电极对钾离子有良好的能斯特响应性能和高选择性,线性响应范围为10-4—10-1mo l/L,斜率为58.1mV/pCK+; 电极具有优良的重现性和较宽的PH使用范围。【4】 三、环糊精超分子 分子识别是类似“锁和钥匙”的分子间或分子内不同部分之间的专一性结合,分子识别包含两方面的内容;一是受体与作用物之间有几何尺寸、形状上的相互识别;二是分子对范德华力、静电引力、氢键、疏水作用、∏一∏作用以及cation一∏作用等非共价作用的识别。分子识别作用对于某些化学反应过程如催化等具有重要意义,特别是在生物体系中,相当多的生物化学过程离不开这种作用。【5】 环糊精作为第二代分子识别的主体,是由环糊精葡萄糖基转移酶作用于淀粉所产生的一组环状低聚糖,整个环糊精分子围城一个空腔,空腔内部除了醚键之外就是碳氢键,所以是疏水性的;环糊精上的轻基向分子外伸展使其自身具有亲水性。正由于CD“内疏水外

相关主题
文本预览
相关文档 最新文档