当前位置:文档之家› 水热与溶剂热合成技术研究进展综述

水热与溶剂热合成技术研究进展综述

水热与溶剂热合成技术研究进展综述
水热与溶剂热合成技术研究进展综述

水热与溶剂热合成技术研究进展综述

摘要:水热与溶剂热合成是无机合成中的重要技术,在大多技术领域得到广泛的研究和应用,是近年来十分活跃的研究领域。本文概述了水热与溶剂热合成的基本特点和反应类型,综述近年来水热与溶剂热合成技术的应用以及研究进展。关键词:水热合成;溶剂热合成;无机合成技术;应用;研究进展;现状。

1 前言

水热和溶剂热合成研究工作经久不衰并逐步演化出新的研究课题如水热条件下的生命起源问题以及与环境友好的超临界水氧化过程。由于水热与溶剂热合成化学在材料领域的广泛应用,世界各国越来越重视这一领域的研究。

水热与溶剂热合成是指在一定温度(100~1000℃)和压强(1~100MPa)条件

下利用溶液中物质化学反应所进行的合成,是研究物质在高温和密闭高压溶液条件下的化学行为与规律的化学分支。水热法是模拟自然界中某些矿石的形成过程而发展起来的一种软化学合成法,已被广泛地应用于材料制备、化学反应和处理,不仅在实验室里得到了应用和持续的研究,而且实现了产业规模的人工水晶水热生长,成为十分活跃的研究领域。溶剂热反应是近年来材料领域的一大研究热点,它是水热反应的发展,与水热反应的不同之处在于所使用的溶剂为有机溶剂而不是水。与其它制备路线相比,溶剂热反应的显著特点在于反应条件非常温和,可以稳定亚稳物相、制备新物质、发展新的制备路线等。

2水热与溶剂热合成基础

2.1 水热与溶剂热合成的基本特点

水热法是指在密闭的不锈钢反应釜中,以水为溶剂,在一定温度下,在水自身产生的压强(即水的自生压强)下,反应混合物进行反应生成产物的合成方法。溶剂热反应是水热反应的发展,该法以非水溶剂代替水,不仅扩大了水热技术的应用范围,而且由于溶剂处在近临界的状态下,能够实现通常条件下无法实现的许多反应,合成通常条件下无法制得的物相或物种,并且能生成介稳态结构的材料,很大程度上扩展了纳米功能材料合成的领域[1]。

水热与溶剂热合成研究特点之一是,在高温高压条件下,水或其它溶剂处于临界或超临界状态,反应活性提高。物质在高温高压溶剂中的物理性能与化学反

应性能起较大改变,水热与溶剂热的化学反应性异于常态。水热与溶剂热合成研究的另一个特点是由于水热与溶剂热化学的可操作性与可调变性,将成为衔接合成化学与合成材料的物理性质之间的桥梁[2]。

2.2水热与溶剂热合成的反应类型

化学上对某种反应进行分类是研究过程中人为的一种方法,由于研究目的有所不同导致分类方法不同,反应类型也有所差异。水热与溶剂热合成反应的分类也不例外。

刘小华等[3]对近年来水热与溶剂热合成技术在无机合成中的应用进行了评述。其中水热和溶剂热合成的反应类型主要有水热氧化反应、水热沉淀、水热合成、水热分解、水热单晶生长等。通过其它的水热反应途径,如水热条件下的离子交换、水热脱水、水热水解、水热烧结(如陶瓷)等也可以制备无机化合物。

冯守华[2][4]表示在水热合成体系中,已开发出多种新的合成路线与新的合成方法,如直接法、籽晶法、导向剂法、模板剂法、络合剂法、有机溶剂法、微波法以及高温高压合成技术等。随着水热与溶剂热合成化学研究的深入,开发出的水热与溶剂热合成反应已有20多种类型。按反应温度进行分类,可分为亚临界与超临界合成反应。亚临界反应温度范围在100~240℃之间,适于工业或实验室操作。多数沸石分子筛晶体的水热(溶剂热)合成是典型的亚临界合成反应。高温高压水热与溶剂热合成实验温度高达1000℃,压强高达0.3 Gpa。它利用作为反应介质的水或溶剂在超临界状态下的性质和反应物质在高温高压水热或溶剂热条件下的特殊性质进行合成反应。

施尔畏等[5] 简要阐述了水热法的应用与发展。按研究对象和目的的不同,水热法可分为水热晶体生长、水热合成、水热反应、水热处理、水热烧结等。按设备的差异,可分为普通水热法和特殊水热法。所谓特殊水热法是指在水热条件反应体系上再添加其他作用力场,如直流电场、磁场、微波场等。水热技术具体有水热晶体生长,水热法粉体制备以及水热法薄膜制备。水热晶体生长技术包括有温差技术、降温技术、亚温相技术、分置营养料技术、前驱物和溶剂分置技术;水热法粉体(微晶粒或纳米晶粒)制备技术包括水热氧化、水热沉淀、水热晶华、水热合成、水热分解;水热法薄膜制备则有水热法单晶外延膜制备技术以及水热法多晶薄膜制备技术。

席国喜等[6]对水热法制备无机粉体材料进行了研究,在水热法应用中提到,水热法有水热晶化法、水热沉淀法、溶胶/凝胶-水热法、微波水热法以及水热球磨法。

王敦青[7]研究了采用溶剂热方法合成纳米功能材料,提到目前已报道的溶剂热反应方法可分为溶剂热结晶、溶剂热还原、溶剂热液-固反应、溶剂热元素反应以及溶剂热分解。

3 水热与溶剂热合成的应用与研究进展

冯守华[2][4]指出水热合成是介稳微孔晶体材料沸石分子筛适宜的方法之一,目前已获得平衡缺陷晶体例如人工水晶(石英)。而水热或溶剂热合成复合氧化物与复合氟化物陶瓷粉末、无机-有机杂化的硒酸盐和亚磷酸盐以及无机-有机纳米复合材料、固体杂化材料、金属配位聚合物等已经引起化学家和材料学家的广泛关注。水热条件下合成的无机-有机杂化材料结构可以是一维,二维或三维的,其中螺旋结构特别引人注目。在水热与溶剂热条件下,中间价态、介稳态以及特殊物相易于生成,因此能合成与开发特种介稳结构、特种凝聚态和聚集态的新物相,如特殊价态化合物、金刚石和纳米晶等。

郭琳琳[8]和陈荣[15]表示用水热合成以及溶剂热合成方法可以开发出更多无机功能材料和新型无机化合物,这一合成技术的研究已经扩展到光电磁材料、快离子导体、钛酸盐铁电压电材料、无机微孔晶体材料、无机发光材料以及各种氧化物粉体的合成,在制备高纯、均一、超细的多组分纳米粉体方面也显示了很好的应用前景。除了以水为溶剂外,介质溶剂也得到大大的扩展,众多的非水溶剂在水热合成中使用。用非水溶剂代替水的合成方法称为溶剂热。非水溶剂热技术对于具有优异性能的金属-非金属纳米材料如氮化物、碳化物、硼化物、硫化物等的合成更为有效。

刘小华等[3]探究了水热与溶剂热合成在无机合成中的应用,包括有微孔材料的水热溶剂热合成;纳米材料的水热溶剂热合成,还可制备多种功能陶瓷纳米材料;特殊结构、凝聚态材料的水热溶剂热合成,如超硬材料GaN和金刚石、螺旋和手性结构和特殊配位状态化合物的合成。目前唯一人工合成的含五配位钛化合物Na4Ti2Si8O22 ·4H2O就是利用水热合成方法得到的。利用水热和溶剂热合成方法还可以进行无机化合物的合成。很多工业上重要的晶体以及具有光、电、磁功

能的复合氧化物和氟化物也可以通过水热法生长。目前,水热法已合成了包括磷酸铝、磷酸镓、方解石、多种宝石(如红宝石、蓝宝石、祖母绿等) 和磷酸钛钾(KTP) 等近百种晶体。利用水热法合成的具有良好超导性和铁磁性的复合氧化物包括有高温超导体La(Y)-Ba-Cu-O系列,La2Ti (Mn或Sn)CuO6系列等。水热反应大多在中温进行,广泛应用于无机-有机复合材料的合成。这类化合物在对映异构体的分离、手性合成、配体交换以及选择催化有重要的用途。

张保花等[9]分析了制备CdS纳米材料的各种工艺,其中水热-溶剂热法是一种重要的方法,倍受研究者的关注。同时,水热法制备纳米晶的过程中,也受到一定的限制。在水为溶剂的反应下,有些反应物分解或有些反应不能发生。因此,用非水溶剂如乙醇、甲醇、苯等代替水作为溶剂,通过溶剂热反应代替水热反应,可以很好地制备前驱体对水敏感的纳米晶化合物。

冯守华等[10]的研究显示,应用水热合成方法可以制备大多数技术领域的材料和晶体,而且制备的材料和晶体的物理与化学性质也具有其本身的特异性和优良性。如美国学者在超临界水热体系中合成出金刚石。我国学者在非水体系中合成出氮化镓、金刚石以及系列硫化物纳米晶,在水热体系中合成特种五配位钛催化剂。一系列中高温高压水热反应的开拓及在此基础上开发出来的水热合成、溶剂热合成反应,已成为目前多数无机功能材料、特种组成与结构的无机化合物以及特种凝聚态材料,如纳米粒子、复杂价态固体、溶胶与凝胶、平衡缺陷晶体、非晶态、无机膜、单晶等合成的重要途径。利用水热合成得到的产物包括有双掺杂二氧化铈固体电解质、巨磁阻材料、超导材料以及非线性光学材料。

何赐全等[1]阐述了无机纳米材料的水热合成及其衍生方法,指出用水热法制备的粉体已经达到数纳米的水平。水热合成已成功制备出许多材料,其中最具代表性的就是一系列的硅酸钙水合物。碱土金属钛酸盐以其优良的介电常数和热参变数,被广泛的应用于电子陶瓷材料、半导体陶瓷、压电陶瓷、压电式拾音器和电子计算机的记忆元件等各种压电材料。该材料的水热合成研究近年来得到了广泛的关注。以有机溶剂代替水的溶剂热反应和用微波进行加热的微波-水热反应也是近年来材料领域的研究热点。

施尔畏等[5]指出水热法可用来生长各种单晶,制备超细、无团聚或少团聚、结晶完好的陶瓷粉体,应用有水热晶体生长,水热法制备粉体(微晶粒或纳米晶

粒)以及水热法制备薄膜。

石海信等[11]对软化学及软化学合成法研究发现,水热法由于具有合成温度低、反应时间短、产物纯度高、粒度小等优点而成为有效的新材料合成方法之一。水热法通常在较低温度下进行,可以有效避免高温相变的发生,因而众多介稳相可通过水热反应加以合成。如CrO2用其他方法无法得到,只有用水热法才能合成。

陈若愚等[12]研究表明水热法在功能无机化合物的合成被广泛应用,这些无机物包括固体快离子导体、化学传感材料、复合氧化物电子材料、铁氧体磁性材料、非线性光学材料等。此外,水热合成又是特种凝聚态材料如微孔材料的重要合成途径。研究者对制备PZT粉体的方法进行研究分析,指出在温和的水热条件下合成PZT压电陶瓷纳米粉体,较其它PZT粉体合成方法-高温固相合成法、化学共沉淀法以及溶胶-凝胶法, 晶化温度大大降低,可以得到较好晶形的PZT粉体。

王敦青[7]指出用非水溶剂如乙醇、苯等代替水作为溶剂衍生出的溶剂热反应是近年来材料领域的研究热点。溶剂热合成纳米功能材料是一种高效经济的材料制备新途径。通过溶剂热反应已经制备了大量前驱体对水敏感的纳米晶化合物。溶剂热法广泛应用于许多无机材料的晶体生长,如沸石、石英、金属碳酸盐、磷酸盐、氧化物和卤化物以及Ⅲ-Ⅴ族和Ⅱ-Ⅵ族半导体的研制。另外,应用溶剂热方法已成功地合成出许多配合物及硫属元素化合物和磷属元素化合物。

吴会军等[13]概略总结了有机溶剂热法合成纳米材料的研究与发展,指出有机溶剂热法逐渐成为纳米材料的重要合成技术。目前已报道的溶剂热合成纳米材料的途径主要包括:溶剂热元素反应、溶剂热结晶、溶剂热沉淀、溶剂热分解等。随着纳米材料合成研究的需要,溶剂热合成已扩展到醇类、胺类、烷烃等众多溶剂。用溶剂热合成的纳米材料的种类很多,如新型沸石分子筛、Ⅲ-Ⅴ族化合物及一维半导体等。

谈国强等[14]介绍了水热合成在建筑陶瓷工业中的应用,表示水热法一直主要用于地球科学研究,二战以后才逐渐用于单晶生长等材料的制备领域。实现建筑陶瓷产品的智能化和洁净化可以通过水热技术和湿化学技术来进行。水热合成法是对于具有特种结构、功能性质的固体化合物和新型材料的重要合成途径和有效方法。

4 结论与展望

水热与溶剂热合成是无机合成化学的重要内容,因其操作简单、降低能耗、节约能源及制备出的材料具有优良性能而日益受到重视,广泛地应用于技术领域和材料领域。但是水热法有一定的缺点和局限性,反应周期长以及高温高压步骤对生产设备的挑战性等影响和阻碍了水热法在工业化生产中的应用。目前水热法一般还只限于制备无机氧化物粉体,制备非氧化物还很少。这些也是科研面临的主要问题,在进一步深入研究水热法的基本理论的同时,还要努力开发出一种对温度和压力依赖性小的工艺技术。此外,水热合成的反应机理尚不十分明确。这些问题有待学者们作更深入的研究。虽然此类方法现在还存在诸多悬而未决的问题而没有大规模的应用于工业生产,但相信在不久的将来,它将在相关领域起着越来越重要的作用。开发溶剂热反应可大大扩展水热法的应用范围。溶剂能影响反应路线,因此,选用合适的溶剂和添加剂,一直是溶剂热反应的一个研究方向。只要寻找到合适的溶剂,溶剂热反应的开发和应用将有广阔的前景。

参考文献

【1】何赐全,杜海燕,孙家跃.无机纳米材料的水热合成及其衍生方法.化工新型材料,2011,35(10):19-21

【2】冯守华.水热与溶剂热合成化学.吉林师范大学学报(自然科学版),2008(8):7-11

【3】刘小华,孙荣林.水热与溶剂热合成技术在无机合成中的应用.盐湖研究,2008,16(2);60-65 【4】冯守华.无机固体功能材料的水热合成化学.化学通报,2007(1):2-7

【5】施尔畏,夏长泰,王步国,仲维卓.水热法的应用与发展.无机材料学报,1911,11(2):193-206 【6】席国喜,姚路,路迈西.水热法在无机粉体材料制备中的研究进展.材料导报,2007,21:134-136 【7】王敦青.溶剂热合成纳米功能材料研究进展.德州学院学报,2002,18(2):61-64

【8】郭琳琳.无机合成化学中的硬化学和软化学.沧州师范专科学校学报,2010,26(3):91-94

相关主题
文本预览
相关文档 最新文档