当前位置:文档之家› 智能农业大棚环境监视系统的设计与实现

智能农业大棚环境监视系统的设计与实现

智能农业大棚环境监视系统的设计与实现
智能农业大棚环境监视系统的设计与实现

无线传感网络技术课程设计报告

学生姓名学号

学院计算机科学与技术学院

专业物联网工程

题目智能农业大棚环境监视系统的设计与实现指导教师

2016 年7 月 1 日

目录

1引言 ............................................................................................................. 错误!未定义书签。

1.1智能农业大棚应用的背景............................................................... 错误!未定义书签。

1.2智能农业大棚设计的目的与意义................................................... 错误!未定义书签。2监视系统ZigBee网络设计方案 (1)

2.1 ZigBee网络技术简介(这个抄一下老师给我们的那个参考) (1)

2.2两种典型网络配置结构................................................................... 错误!未定义书签。

2.2.1两层网络,系统由两类点构成:........................................ 错误!未定义书签。

2.2.2三层网络,系统由三类点构成: (3)

3智能农业大棚控制系统的总体方案 (3)

3.1智能农业大棚的特点 (3)

3.2设计的总体思路 (4)

3.3系统分为三个模块(说一说各部分的功能与工作的流程) (5)

3.3.1 ZigBee无线传感节点 (5)

3.3.2 ZigBee数据汇聚节点 (5)

3.3.3 控制系统 (6)

3.4无线传感器网络拓扑连接图 (6)

4 结论 (6)

4.1 系统应该完成的功能 (6)

4.2心得体会和感悟 (7)

参考文献 (7)

1 引言

1.1智能农业大棚应用的背景

在我国智能农业大棚控制系统还处于发展阶段,特别是传统农业与现代自动化控制技术相结合的研究成果还不够成熟。在传统的农业大棚中,浇水、通风,灯光等控制全凭经验、靠感觉。对农业大棚内的温度、湿度、光照、二氧化碳的浓度、土壤的酸碱度等环境参数都需要靠人工进行采集,这样的传统农业大棚不仅大大耗费人工成本,而且还会因为监测不到位而使农业大棚的环境得不到保障。因此智能的农业大棚应运而生。

1.2智能农业大棚设计的目的与意义

目的:

1)通过智能化的设计使得大棚的环境得到自动监视,便于管理员通过手机进行实时监查与管理。

2)将大棚内农作物的生长环境与温室环境有机结合,分析数据并确定适合温室大棚的控制系统。

意义:大大的缩减了人工巡查的成本,同时更加高效的实现了人工智能自动监管,使得农业大棚向信息化,网络化,智能化的方向发展。

2监视系统ZigBee网络设计方案

2.1 ZigBee网络技术简介

ZigBee是一组面向低速无线个人区域(LR-WPAN)的双向无线通信技术标准。它是基于IEEE 802.15.4无线标准研制开发的,有关组网、安全和应用软件方面的技术标准。其MAC层和物理层协议使用了IEEE 802.15.4标准,ZigBee联盟

对网路层协议和API(应用层)进行了标准化,同时还开发了安全层,以保证这种便携设备不会意外泄漏其标识,这种利用网络的远距离传输不会被其他节点获得。与Wi-Fi,Bluetooth等其他无线接入技术相比,ZigBee具有的优势如下:

1、功耗低:工作非常省电,支持休眠状态。由于周期很短,收发信息功耗较低,以及采用了休眠模式,ZigBee可确报两节5号电池支持6个月至两年左

右的使用时间;

2、工作频段灵活:使用的频段分别为2.4GHz(250Kb/s)、915MHz(40Kb/s)、和868MHz(20Kb/s)均为无须申请的ISM频段;

3、低成本:由于传输速率低,并且协议简单,降低了成本,另外使用ZigBee 协议可以免专利费;

4、组网灵活、网络容量大:ZigBee可采用星型、树型和网状网络结构,由一个主节点管理若干子节点,最多一个主节点可管理254个子节点;同时主节点还可由上一场网络节点管理,最多可支持达65000个节点。

5、安全:ZigBee提供了数据完整性检查和鉴权功能,加密算法采用通用的AES-128,应用层安全属性可根据需求来配置。

6、高保密性:64位出厂编号和支持AES-128加密。

ZigBee网络具有三种拓扑结构,如图2-3所示。

图2-3 ZigBee网络拓扑结构图

1、星形拓扑结构:节点之间只有唯一的一条路径

2、树状拓扑结构:当从一个节点向另一个节点发送数据时,信息将沿着树的路径向上传递到最近的协调器节点,然后再向下传递到目标节点。

3、网状拓扑结构:网状拓扑结构是一种特殊的、按多跳方式传输的点对点的网络结构,其路由可自动建立和维护,并且具有多种强大的自组织、自愈功能。网络可以通过“多跳”方式通信,可以组成极为复杂的网络,具有很大的路由深度和网络节点规模。

2.2两种典型网络配置结构

2.2.1两层网络,系统由两类点构成:

无线传感器节点,包括无线空气温湿度传感器、无线土壤温度传感器、无线

土壤含水量传感器、无线光照度传感器、无线CO2传感器等;

无线网关节点,包括Wi-Fi无线网关或GPRS无线网关。

该结构适用于园区已经有Wi-Fi局域网覆盖,或是可以采用GPRS直接上传数据的场景。在此结构中,只需要在合适的区域部署无线网关,即可实现传感器数据的采集和上传。(本次我所使用)

2.2.2三层网络,系统由三类点构成:

无线传感器节点,包括无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等;

无线网关节点;

数据路由器。

该结构适用于园区没有Wi-Fi局域网覆盖,也不准备采用GPRS直接上传数据的场景。在此结构中,需要部署数据路由节点和无线网关,无线网关与数据路由节点之间以长距离无线通信方式进行数据的交换,在区域较大,节点间通信距离不足时,无线网关还可以相互之间进行自动数据中继,扩大监控网络的覆盖范围。

3智能农业大棚控制系统的总体方案

3.1智能农业大棚的特点

通过使用智能无线节点CC2530模块形成的小型局域网(如下图所示)。

红色为协调器模块(小型无线网络的网关),黄色为功能模块(子节点包括:温湿度采集模块、数字量输入/输出模块等)。

控制系统通过协调器模块(网关)将功能模块(子节点)所连接的传感器所采集的数据信息进行分析,最终通过程序将用户所需要的数据进行显示;并将其与已经设置好的最适合农作物生长环境的数据范围进行比较,从而控制农业大棚的环境得以让农作物更好的生长。智能控制包括:环境温度,环境适度,光照,通风等。

3.2设计的总体思路

通过使用智能无线节点ZigBee通讯协议进行小型局域网络的组建,无线节点的控制,数据的接收与发送都要通过这个局域网络。

首先,控制系统通过农业大棚中的温湿度传感器,光照强度传感器,测定二氧化碳浓度传感器等一系列传感器对农业大棚的空气、环境参数进行采集,以达到远程监控的目的。

然后,智能农业大棚控制系统将采集的数据进行分析,处理,实现自动控制灌溉设备、通风设备、降温设备、遮阳设备等等。

同时,智能农业大棚控制系统还可以通过计算机等通信终端,向管理者推送实时监测信息、报警信息,实现温室大棚的信息化,网络化,智能化远程管理。

智能农业大棚事实的流程图

3.3系统分为三个模块

3.3.1 ZigBee无线传感器节点

根据总体设计的要求,ZigBee无线传感节点作为数据的采集节点,负责将温室大棚里的温湿度传感器,光照强度传感器,二氧化碳传感器等采集到的数据发送到ZigBee数据汇聚节点,即CC2530智能无线节点。

3.3.2 ZigBee数据汇聚节点

ZigBee数据汇聚节点,即CC2530智能无线节点。USB串口输出,协调器获取底层的ZigBee无线传感节点采集的数据,并将其向上位机转发,所以ZigBee 汇聚节点(协调器)为一个小型局域网的网关。

3.3.3 控制系统

ZigBee数据汇聚节点将数据整合,然后传送给控制中心系统,控制中心系统首先将用户所需要的数据进行显示;并将获取的数据与已经设置好的最适合农作物生长环境的数据范围进行比较,从而控制农业大棚的环境让农作物更好的生长。智能控制包括:环境温度,环境适度,光照,通风等。

3.4无线传感器网络拓扑连接图

4 结论

4.1 系统应该完成的功能

1.数据采集与监视功能:可在线实时24小时连续的采集和记录监测点位的温度、湿度、风速、二氧化碳、光照、空气洁净度等各项参数情况,以数字、图形和图像等多种方式进行实时显示和记录存储监测信息,监测点位可扩充多达上百个点。

2.报警功能:可设定各监控点位的温湿度报警限值,当出现被监控点位数据异常时可自动发出报警信号,报警方式包括:现场多媒体声光报警、电话语音报警、手机短信息报警等。上传报警信息并进行本地及远程监测,系统可在不同的

时刻通知不同的值班人员;

3.控制系统自动控制执行设备的功能:如当室内的温度低于室内农作物的最适生长温度范围,则控制系统自动启动升温设备。

4.无线传输功能:数据集中器端提供具有信号输出协议的端口,可接通信设备(GPRS IP MODEM等)进行无线传输。

5.控制软件显示功能:温湿度监控软件采用标准windows 98/2000/XP全中文图形界面,实时显示、记录各监测点的温湿度值和曲线变化,统计温湿度数据的历史数据、最大值、最小值及平均值,累积数据,报警画面。

4.2心得体会和感悟

本次课程设计,时间紧迫,一边实训,一边完成本次的无线传感网的课程设计。本次课程设计我的主要收获是:

第一:通过各项资料的搜索,我理解了智能农业大棚工作的流程并大致了解了完成智能农业大棚的设计所需要的工具,如一系列的传感器(用来采集大棚内的环境数据)等第二:对ZigBee的组网技术有了立体的了解。理解了我们在实验室做的组网实验。

参考文献

[1] 无线传感网络简明教程/崔逊学等编著北京:清华大学出版社,2015.8(物联网工程专业规划教材)

[2] 神秾温室大棚环境无线物联网智能监控系统方案-技术专题-深圳神秾智能科技司

智能办公室环境监测自动化系统

https://www.doczj.com/doc/dc13000512.html,/video/play/id/2810 表于 2013-02-04 14:01:25 我想评分回到列表收藏此帖 作者:宜宾职业技术学院邹必文钟虎郑欣桐 指导教师:彭永杰 作品简介 开发背景: 随着科学技术、生产条件、生活水平的改善和提高,建筑结构的封闭化室内办公人员的增加,Indoor Air Quality(IAQ)室内空气品质的研究吸引了越来越多人的关注。 在这种情况下,设计开发一套智能办公室环境监测自动化系统是有现实意义的。目前,对于室内环境监测具仪表已经有很多种,但是绝大数产品只是用来监测不能起到改善作用,不具备自动控制调节室内空气质量、温湿度、排出二氧化碳以及对空气加湿和防范火灾的能力。实际上,单纯的监测不能提供经济可行的设备措施,因此只有以控制作为监测的后备支持,监测工作才可以更深入持久地开展下去,才能达到监测和控制的有机结合,尽快为人们创造良好的室内环境。 因此,本设计基于改善办公环境的自动化监测,提出“智能办公环境监测”系统,此系统旨在实现对室内空气温度、湿度、有害气体的预警监测、调节温度防范灭火措施及自我适应智能调节,利用MCU进行数据采集保证了前台数据的及时、准确,有利于进行全方位的监测,为人类办公环境打造一个健康的室内生存空间 功能说明: 本系统有两部分组成,一说基于Freescale PK10DN512ZVLL10控制的硬件系统,二说办公环境模拟以及其他驱动设备。

本系统结构简单,能够实现5种功能,分别是温湿度调节,热释电LED光控、空气质量监测、二氧化碳浓度含量监测以及车位监测显示。由于本系统是属于模拟系统,故系统中的各个功能模块皆由其他小型电子产品代替。 1、温湿度调节主要由加湿器、风扇、发光二极管、电磁水阀模拟,调节室内的温度升高、下降,湿度的加湿、减湿并显示温湿度数据和灭火。 2、热释电LED光控电路监测到有人时,控制LED的亮灭和光暗变化。 3、空气质量有TPM-300E采集有多种害气体以及异味时输出TTL信号,通过PWM控制风扇对室内空气进行调节并显示等级。 4、二氧化碳监测到气体浓度高于预设值时,控制风扇调节二氧化碳浓度并在显示屏上显示数据。 5、车位监测显示采用红外对管发射电路获取车位信息,将信号送入单片机,并在显示屏上显示。 平台选型说明 选用Freescale MK10DN512ZVLL10嵌入式开发板。

农作物温室环境智能监控系统研究背景意义及国内外现状

农作物温室环境智能监控系统研究背景意义及国内外现状 1研究背景及其研究意义 (1) 研究背景概述 (1) 项目研究意义 (2) 2国内外研究现状 (3) 国外研究现状 (3) 国内研究现状 (4) 1研究背景及其研究意义 研究背景概述 农业是国家重要的支柱产业,我国作为世界第一农业大国,农业生产在我国经济建设和社会发展中占有举足轻重的地位。良好的气候与生态环境条件是农业生产的重要保障,而我国幅员辽阔,气候与生态环境条件相对恶劣,制约农业的发展。 我国作为世界第一农业大国,在农业也是积累的相当多的经验和知识,但我国大部分地区都存在山多土地少,土质不好,土壤资源匮乏,气候条件复杂多变等劣势,这些劣势对农作物的生长极其不利;况且随着社会的进步,从事农业生产的人也日趋减少,而社会的对农产品的需求却日益增高,原有农作种植方式已经不能满足社会发展的需要,必须对传统的农业进行技术更新和改造。因此,在我国发展现代化农业和生态农业是今后农业发展的必然趋势,推广高新技术在农业生产中的应用势在必行。而现代温室农业技术就能满足以上的要求。 温室控制技术主要针对湿度、温度、光照度等温室作物生长必须的外在物理要素进行调节,以达到作物生长的最佳条件。现代温室控制技术主要是能通过系统实时采集温室环境的温湿度和光照度,以达到温室植物生长环境实时监控的目的。近年来,我国在温室控制技术方面也做了很多的研究,并在温室栽培等方面取得了显着成果。但由于我国在这方面的研究时间不算长,在配套技术与设备上都比较匮乏,使得环境的监控能力不高,生产力有限。能够实现全年生产的大型现代化温室很少。而且需要进口温室设备,但投资又太大,需要的操作人员的素质要求也高。所以我国温室环境控制还有很多地方需要改善与提高。 温室环境智能监控系统的研究涉及到计算机技术、传感器技术、控制技术、通讯技

农业大棚智能温室监测系统设计方案

农业大棚智能温室监测系统设计方案 托普物联网认为:智能温室监测系统是根据无线网络获取的植物实时的生长环境信息,如通过各个类型的传感器可监测土壤水分、土壤温度、空气温度、空气湿度、光照强度、植物养分含量等参数。其它参数也可以选配,如土壤中的PH值、电导率等等。信息收集、负责接收无线传感汇聚节点发来的数据、存储、显示和数据管理,实现所有基地测试点信息的获取、管理、动态显示和分析处理以直观的图表和曲线的方式显示给用户,并根据以上各类信息的反馈对农业园区进行自动灌溉、自动降温、自动卷模、自动进行液体肥料施肥、自动喷药等自动控制。 一、概述 农业大棚智能温室监测系统通过实时采集农业大棚内空气温度、湿度、光照、土壤温度、土壤水分等环境参数,根据农作物生长需要进行实时智能决策,并自动开启或者关闭指定的环境调节设备。通过该系统的部署实施,可以为农业生态信息自动监测、对设施进行自动控制和智能化管理提供科学依据和有效手段。 大棚监控及智能控制解决方案是通过可在大棚内灵活部署的各类无线传感器和网络传输设备,对农作物温室内的温度,湿度、光照、土壤温度、土壤含水量、CO2浓度等与农作物生长密切相关环境参数进行实时采集,在数据服务器上对实时监测数据进行存储和智能分析与决策,并自动开启或者关闭指定设备(如远程控制浇灌、开关卷帘等)。 二、项目需求 在每个智能农业大棚内部署无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等,分别用来监测大棚内空气温湿度、土壤温度、土壤水分、光照度、CO2浓度等环境参数。为了方便部署和调整位置,所有传感器均应采用电池供电、无线数据传输。大棚内仅需在少量固定位置提供交流220V市电(如:风机、水泵、加热器、电动卷帘)。 每个农业大棚园区部署1套采集传输设备(包含路由节点、长距离无线网关节点、Wi-Fi 无线网关等),用来覆盖整个园区的所有农业大棚,传输园区内各农业大棚的传感器数据、设备控制指令数据等到Internet上与平台服务器交互。 在每个需要智能控制功能的大棚内安装智能控制设备(包含一体化控制器、扩展控制配电箱、电磁阀、电源转换适配设备等),用来接受控制指令、响应控制执行设备。实现对大棚内的电动卷帘、智能喷水、智能通风等行为的实现。 三、智能温室监测系统架构设计

智能环境监测系统的设计说明

智能环境监测系统的设计 Design on the intelligent system of monitoring environment

摘要 系统主要由数据采集端和移动监控终端两部分组成。采用16位单片机SPCE061A为处理核心,在数据采集端,利用两片CD4067BE分别挂接16只DHT11温湿度传感器和16只光照强度传感器;采用10位ADC实现对环境声音的实时录制,加入OV7670摄像头进行实时拍照监控,最后把所采集到的数据帧通过NRF905无线传输模块传送到移动监控终端。在移动监控终端,通过NRF905接收数据,将处理后的环境参数数据进行显示,接收到的语音压缩编码通过10位DAC进行解码播放,通过按键切换进入全屏环境参数显示模式或全屏监控照片显示模式,并将接受到的环境参数、声音、照片存储到SD卡中。本文以SPCE061A超低功耗单片机为核心,设计了通用智能终端和智能温湿度传感器,重点介绍了该终端和传感器的任务、硬件、软件以及控制算法的设计与实现。硬件方面,介绍了系统各个部分的设计思想、原理电路以及,并给出了系统总硬件原理图;另外,为了实现系统的低成本和低功耗,在满足设计要求的前提下,尽可能选用了价格低廉和低功耗的元器件。软件方面,采用了时间触发的混合调度器模式设计,对系统各个任务进行了设计,并给出了系统软件低功耗设计方法。 关键词:SPCE061A;多节点;无线传输;HMI Abstract The system is designed for two parts of data acquisition terminal and mobile monitoring terminal. Its processing core is SPCE061A which is a 16 bits mcu. In the data acquisition terminal, 16 DHT11 of single bus temperature, humidity sensor and 16 light intensity sensor are hung on two CD4067BE. The environmental sound is recorded to coding and compression with 10 bits ADC which is built in the mcu at any time. Add OV7670 which is a camera module to monitor at anytime. ALL collected data is transmitted to the mobile monitoring terminal through NRF905 of wireless transmission module. In the mobile monitoring terminal, the data is received through NRF905.The environmental parameter data is displayed after dealing with and the compression coding of speech is decoded to play with 10 bits DAC.We can switch to full-screen environment parameter display mode or full-screen picture display mode with the keys. At last, the environmental parameter, sound and photos are stored to the SD card.Based on the SPCE061A ultra low power microcontroller as the core, a general intelligent terminal and intelligent temperature and

智能温室大棚整体控制设计报告

智能温室大棚整体控制设计报告设计人员:

目录 一、智能温室大棚简介 (3) 二、智能温室大棚结构设计 (3) 一、温室结构设计 (3) 1.温室结构布局 (3) 2.温室覆盖材料 (3) 3.温室的通风 (4) 二、温室运行机构 (4) 1.电力系统 (4) 2.降温增湿系统 (4) 3.遮阳系统 (4) 4.增温系统 (4) 5.浇灌系统 (4) 三、智能温室大棚控制系统 (5) 一、控制系统的主要构成 (5) 1、传感器 (5) 2、控制器 (5) 3、执行器件 (6) 4、上位机 (6) 二、具体控制过程 (6)

一、智能温室大棚简介 智能温室也称作自动化温室,是指由计算机控制温室内的执行器件来改善温室内的环境,营造适合农作物生长的环境。温室内的主要系统主要有可移动天窗、遮阳系统、保温系统、升温系统、降温系统、浇灌系统、移动苗床等自动化设施系统。 智能温室的控制一般有信号采集系统、中心计算机和控制系统三大部分组成。 二、智能温室大棚结构设计 一、温室结构设计 首先应进行温室建筑布局、形式、尺寸等方面设计,应考虑结构、机械、覆盖与支撑材料、荷载、通风、保温、给排水以及环境调控设备等多种因素,同时还应该考虑本地的地理气候条件,充分利用自然资源,力图降低制造成本和运行费用。 其结构框架设计的基本特点 1.温室结构布局尽量采用南北栋方式建筑可使太阳直射光 平均日总量透过率最高。 2.温室覆盖材料温室材料透光率对温室的光照总量有着重 要影响,可采用浮法玻璃其透光率可达90%以上。亦可采用超 长塑料薄膜(阳光穿透率85%)为覆盖材料。但其耐用性不高。 PC塑料板在造价、使用年限、透光率等方面是一个不错的选

蔬菜大棚视频监控系统

果蔬大棚数字视频监控系统 设 计 方 案 2011年9月

目录 第一章项目背景及意义 (2) 1.1项目背景 (2) 1.2项目建设意义 (2) 第二章设计依据 (4) 第三章设计原则 (4) 第四章系统特性 (5) 第五章系统功能 (5) 第六章系统设计 (7) 6.1前端设计 (8) 6.2监控中心(中心机房)设计 (9) 6.3系统供电及传输系统 (10) 第一章项目背景及意义 1.1项目背景 果蔬大棚担负培植各类优质果蔬品种的重任。作为果蔬大棚的经营者最头疼的问题莫过于两点:一是作物的生长状况;二是所经营作物的防盗问题。多数经营管理者在大棚里安营扎寨日夜守护着、或疲于奔波在大棚之间,投入了大量的费用和人力。而建设“果蔬大棚数字视频监控系统”能大大提高研究效能、解决了果蔬大棚管理难的问题,为果蔬大棚的安全、管理系统提高效率做出贡献。 1.2项目建设意义 1、农产品生产监控视频化网络化是完善农产品质量安全监管体系的需要。在 2011年金山区农委的13项工作重点中的第四点明确提到:以建立完善农产品质量安全监管体系为抓手,推动我区农产品质量安全监管工作上新水平。 要求确保农业生产从田头到餐桌的安全,这也是市委市府对农产品质量安全的要求。农产品生产的实时监控可以对每种农产品从播种到采摘对其进行24小时全天候的数据收集、分析,提高农产品质量安全的监控。完全取代了传

统以人工以纸张记录数据不全面不详细且容易出错的弊端。 2、农产品生产监控视频化网络化是农业标准化生产推进的需要。农业生产标准 化是以后农产品推广中重要的基础,标准化体系的建设离不开基础数据的采集,而农产品生产监控视频化后将完全可以满足这些基础数据采集的需要,网络化则可以通过互联网将这些基础数据进行广泛的传播推广。 3、农产品生产监控视频化网络化是市场的需要。目前围绕种植户、养殖户最大 的难题是产品的销售,而市场上特别是有机类蔬菜很大一部分是鱼目混珠,消费者往往分不清真假,而视频化网络化以后我们可以将我们的农产品的实时视频资料直接作为宣传资料,包括网络宣传,大大提高的产品本身的可信度,更有利于农产品销售。 4、农产品生产监控视频化网络化是全球农产品工业化中被广泛采用的手段,是 农产品生产监管的趋势。在发达国家农产品工业化的地方,无一例外的都采用了对农作物进行实时有效的监控,同时通过网络对作物的疾病、发展、各方面进行广泛的交流 5、完善金山特色农产品品牌的需求。有利于对外宣传金山的生态绿色农业,创 建并提升金山品牌竞争力,让更多的人知道、了解金山生态农业;借助网络平台进行金山农产品营销、推广;加大宣传效应,以网站为载体,全方位展示金山的生态农业种植;利用网络优势,增加与顾客互动,提高整体服务水平;为农产品的销售增加渠道,为农民增收。 6、网络新营销的需求。随着计算机使用的普及以及互联网的迅速发展,网络 已经逐渐融入人们的生活。2010年1月15日,中国互联网络信息中心(CNNIC)在京发布了《第25次中国互联网络发展状况统计报告》(以下简称《报告》)。 《报告》数据显示,截至2009年12月,我国网民规模已达3.84亿,互联网普及率进一步提升,达到28.9%。随着我国互联网普及率的逐年提高,互联网正在走进人们的工作与生活。网络购物用户规模增长了45.9%,2009年中国网络购物市场交易规模达到2500亿,2010年后网络购物市场将迎来更大规模的发展。而上海的互联网普及率高达45.8%,居全国第二,仅次于北京。 网络已经成为人们日常生活中必不可少的工具之一,所以农产品生产监控系统的建设监控视频化网络化建设刻不容缓。 总之,在新农村建设大力发展专业合作社,互联网发展日趋成熟,网络已经融入人们生活的背景下,借助网络平台,即时展示种植现场的标准化生产管理,宣传有机种植,推广生态食品、无公害农产品,对外创新营销搞活专业合作社经济。特色农产品生产监控视频化网络化试点的建设是一项创新的举措,也是必然的趋势

物联网智能环境监测系统

《传感器与物联网技 术》 综合报告 题目:智能环境与物联网技术 专业: 学号: 姓名: 提交日期:二О一六年六月 摘要

环境与所有人的日常生活都息息相关,而物联网技术也随着计算机技术,信息技术,以及智能技术的发展越来越多的开始被应用到我们的日常生活中来。本文主要针对物联网技术应用到环境监测中的相关问题进行了分析与探讨。 智能环境利用各种传感器技术,移动计算,信息融合等技术对空气环境,海洋环境,河,湖水质,生态环境,城市环境质量进行全面有效地监控,通过构建全国各地环境质量的检测实现对全国范围内的环境进行实时在线监控和综合分析,建立全国性的污染源信息综合管理系统,为采取环境治理措施和污染预警提供更客观,有效的依据。 关键字:智能环境物联网技术传感器

目录 1引言 (4) 1.1 物联网简介 (4) 1.2智能环境研究的目的和背景 (4) 2需求分析 (4) 2.1智能环境功能需求分析 (5) 2.2各子系统需求分析 (5) 2.2.1大气污染监测子系统需求分析 (5) 2.2.2海洋污染监测子需求分析 (5) 2.2.3水质监测子系统需求分析 (5) 2.2.4生态环境检测子系统需求分析 (5) 2.2.5城市环境检测子系统需求分析 (5) 2.3其他非功能需求分析 (6) 2.3.1可靠性需求 (6) 2.3.2开放性需求 (6) 2.3.3可扩展性需求 (6) 2.3.4安全性需求 (6) 2.3.5应用环境需求 (6) 3详细设计 (6) 3.1各环境监测子系统解决方案 (6) 3.2智能环境监测系统结构图 (5) 3.2.1各子系统环境监测拓扑结构图 (6) 4结论 (12) 参考文献 (13)

农业大棚远程智能监控与PLC自动化控制系统解决方案

农业大棚远程智能监控与P L C自动化控制系统解决方案 目录

1前言 1.1 智能农业远程智能监控系统的概念 智能农业是采用比较先进、系统的人工设施,改善农作物生产环境,进行优质高效生产的一种农业生产方式,20世纪80年代以来,智能农业发展很快,特别是欧美、日本等一些发达国家,目前已经普遍采用计算机控制的大型工厂化设施,进行恒定条件下全年候生产,效益大为提高;在社会主义市场经济条件下,我国的智能农业以其较高的科技含量、市场取向的新机制、短平快的产销特点、效益显着的竞争力,取得了快速发展,改善了传统农业的生产方式、组织方式和运行机制,提高了农业科技含量和物质装备水平,成为现代农业重要的生产方式。 深圳市信立科技有限公司智能农业远程智能监控系统是指利用现代电子技术、移动网络通信技术、计算机及网络技术相结合,将农业生产最密切相关的空气的温度、湿度及土壤水分等数据通过各种传感器以无线ZigBee技术动态采集,并利用中国电信的4G,4G CDMA网络通讯技术,将数据及时传送到智能专家平台,使智能农业管理人员、农业专家通过手机或手持终端就可以及时掌握农作物的生长环境,及时发现农作物生长症结,及时采取控制措施,及时调度指挥,及时操作,达到最大限度的提高农作物生长环境,

降低运营成本,提高生产产量,降低劳动量,增加收益。 1.2 实施农业远程智能监控系统的必要性 江苏智能农业发展,已经初步形成了政府引导、社会支持、市场推动和农民投入的良性运行机制,当前,全省发展智能农业,有丰富的资源、成熟的技术和广阔的市场,具备了进一步发展的基础,也蕴藏着巨大的潜力。 智能农业远程监控管理系统融合先进的信息技术、自动化控制、无线通讯技术等高新技术和农业科技专家为一体的综合平台,实现资金、技术、人才和信息的有效调配,改善农民的传统作业和手工操作,将产生巨大的经济和社会效益,推动农业和农村经济发展,成为江苏统筹城乡经济发展,建设现代化农业的重要内容和全面建设小康社会的强势产业。 2背景分析 江苏省在“十二五”期间加大智慧城市建设,将智能农业纳入六大智慧产业之一,突出显示了农业信息化在智慧城市建设中的重要地位。智慧农业建设较好地适应了市场经济发展要求和农业增效、农民增收的需要,取得了突破性进展,生产规模稳步扩大,突破了光热水气资源的限制,基本实现了淡季不淡、全年生产、保障供应;科技含量较快提高,无立柱日光温室、二氧化碳气肥、病虫害生物防治、无公害栽培、组织培养、工厂化育苗等先进技术得到推广应用,科技进步贡献率达到65%以上,成为种植业中科技含量较高的产业;智能农业以其病虫害相对较轻、用药量少、标准化程度高的优势,成为全省无公害蔬菜的骨干,质量安全水平明显提高。 随着自动化农业、精准农业、绿色农业的发展需求,迫切需要在农业领域引入物联网、4G等技术,进一步深化农业各环节的信息化水平,结合ZigBee技术、CDMA网络数据传输和传感器技术组成无线传感网络,通过ZigBee无线网络实时采集温室内温度、湿度信号以及光照、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数,自动开启或者关闭指定设备。可以根据用户需求,随时进行处理,为智能农业综合生态信息自动监测、对环境进行自动控制和智能化管理提供科学依

毕业设计农业大棚温湿度监控系统设计

长沙学院CHANGSHA UNIVERSITY 毕业设计资料 设计(论文)题目:农业大棚温湿度监控系统监控系统设计 系部:电子与通信工程系专业:通信工程 学生姓名: 班级:学号 指导教师姓名:职称 最终评定成绩 长沙学院教务处 二○一四年五月制

目录 第一部分设计说明书 一、设计说明书 第二部分外文资料翻译 一、外文资料原文 二、外文资料翻译 第三部分过程管理资料 一、毕业设计课题任务书 二、本科毕业设计开题报告 三、本科毕业设计中期报告 四、毕业设计指导教师评阅表 五、毕业设计评阅教师评阅表 六、毕业设计答辩评审表

2014届 本科生毕业设计资料第一部分设计说明书

(2014届) 本科生毕业设计说明书 基于单片机的粮库温度监控系统设计系部:电子与通信工程系 专业:通信工程 学生姓名: 班级:学号 指导教师姓名:职称 最终评定成绩 2014年5月

长沙学院本科生毕业设计 基于单片机的农业大棚温湿度监控系统设计 系(部):电子与通信工程系 专业:通信工程 学号: 学生姓名: 指导教师:教授 2014年5月

摘要 大棚技术在全国各个乡镇已经普及了,但是随着这些温室大棚的数量不断增加,对于大棚内的温度、湿度、光照强度和二氧化碳浓度的控制显得极其重要,特别是温湿度的监控。本课题设计了基于单片机的农业大棚温湿度监控系统,更好的对各个农业大棚内各个环境因素进行监控。 本系统由三部分组成:第一部分的功能是在农业大棚中负责监控温室,主要是有单片机读取温湿度传感器DT11测得的温湿度,并且在数码管显示。第二部分功能是负责将所测得的温湿度从农业大棚传到管理员的电脑或其他通讯设备上,这样可以让管理员及时准确的查看大棚内的温湿度,这部分主要是有485通讯总线完成传输。第三部分的功能则是上位机处理接收的温湿度值,并且判断这些温湿度值是否在合理的温湿度范围内,如果超出预设值就立即报警。 通过多次测试表明,系统各个部分功能正常,相互衔接良好,操作简单方便,大大提高了温室大棚的科学管理水平,可以减少劳动者的工作量,减少支出,提高大棚内产品的产量,增加劳动者的收入,提高国民生产值,具有很好的发展未来。 关键词:单片机、温室大棚、温湿度监控、485通讯总线、DHT11

农业温室大棚智能环境监控系统解决方案

智能温室大棚环境监控系统 1、系统简介 该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。本系统适用于各种类型的日光温室、连栋温室、智能温室。 2、系统组成 该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。 (1)传感终端 温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。 (2)通信终端及传感网络建设 温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。 (3)控制终端 温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。 (4)视频监控系统

配电室环境监控系统 智能化改造技术方案设计

10-35kV配电室环境监控系统智能化改造技术方案 电科恒钛智能科技 2020年4月

目录 1 10-35kV配电室环境控制要求 (1) 2 10-35kV配电室辅助设施现状及存在问题 (1) 3 10-35kV配电室辅助设施目标功能 (1) 4 配电室环境监控改造方案 (3) 4.1 配电房综合监控装置 (3) 4.2 传感器采集单元 (4) 4.3 环境控制单元 (4) 4.4 排水单元 (6) 4.5 消防系统接口 (6) 4.6 照明控制单元 (6) 4.7 其它辅助设施 (6) 5典型10kV配电室改造布置图 (7)

1 10-35kV配电室环境控制要求 根据国网公司10~35kV的户主要设备长期运行环境要求及变电运行相关管理规定,变电站配电室的环境要求包括: 2 10-35kV配电室辅助设施现状及存在问题 现有已建成的常规变电站均未配置辅助控制系统及环境控制系统,变电站环境参数未考虑数据采集及在线监测,配电室环境控制均采用人工控制方式,由运行人员根据外部环境条件,到变电站现场巡视及操作,在各配电室通过人工控制空调运行模式、风机启停、百叶窗开关等方式就地控制配电室环境,无法实现自动控制和在线监测。 现有常规变电站风机均为普通通风机,空调为普通民用空调,进风窗为普通通风百叶。通过人工控制空调运行模式、风机启停、百叶窗开关等方式就地控制配电室环境,无法自动控制及和在线监测。 3 10-35kV配电室辅助设施目标功能 针对目前变电站配电室运行环境现状,需在配电室配置一套配电房综合监控装置,该装置包含环境数据采集单元、环境控制(温湿度)单元、照明控制单元、火灾报警与消防系统接

农业温室大棚智能控制系统详解

随着温室大棚近年来的发展,农业智能温室大棚控制系统也被广泛的应用,该监控系统充分应用现代信息技术,集成软件、物联网技术、音视频技术、智能控制、3S技术、无线通信技术及专家智慧与知识,实现大棚控制各关键环节的信息化、标准化,是云计算、物联网、地理信息系统等多种信息技术在大棚控制中综合、的应用,实现更完备的信息化基础支撑、更透彻的农业信息感知、更集中的数据资源、更广泛的互联互通、更深入的智能控制、更贴心的公众服务。 【温室大棚控制系统作用】 (农业温室大棚智能控制系统构架-图例) 农业智能温室大棚控制系统可以实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像、通过模型分析,自动控制温室湿帘风机、喷淋灌溉、内外遮阳、顶窗侧窗、加温补光等设备。同时,系统还可以通过手机、计算机等信息终端向管理者发送实时监测信息、

报警信息,以实现温室大棚智能化远程管理,充分发挥物联网技术在设施农业生产中的作用,保证温室大棚内环境适宜作物生长,实现精细化的管理,为作物的高产、生态、安全创造条件,帮助客户提率、降低成本、增加收益。 【温室大棚控制系统组成部分】 (农业温室大棚智能控制系统-图例) 一、智能控制 通过控制系统,可以对农业生产区域内各种设备运行条件进行设定,当传感器采集的实时数据结果超出设定的阈值时,系统会自动通过继电器控制设备或模拟输出模块对温室大棚自动化设备进行控制操作,如自动喷洒系统、自动换气系统等,确保温室内为植物生长适宜环境。 常用的现场设备包括灌溉设备、风机、水帘、遮阳板等,这些设备均可以通过信号线进行控制,服务

器发送的指令被转化成控制信号后即可实现远程启动/关闭现场设备的运转。 用户通过点击界面上的按钮即可完成启动/关闭现场设备的指令发送。 除了手工进行指令的发送之外,系统还能够根据检测到的环境指标进行自动控制现场设备的启动/关闭。用户可以自定义温湿度、光照、CO2浓度等指标的上限值、下限值,并定义当指标超过上限或者下限时,现场设备如何响应(启动/关闭);此外,用户可以设置触发后的设备工作时间。 建立手机系统,客户直接采用微信客户端就可以控制和查看实时数据,手机端具有手动启动、关闭电磁阀,水泵等设备功能。 二、视频监控 (农业温室大棚智能控制系统-图例) 通过在农业生产区域内安装高清摄像机置,对包括种植作物的生长情况、投入品使用情况、病虫害状况情况进行实时视频监控,实现现场无人职守情况下,种植者对作物生长状况的远程在线监控,农业专家远程在线病虫害作物图像信息获取,质量监督检验检疫部门及上主管部门对生产过程的有效监督和及时干预,以及信息技术管理人员对现场数据信息和图像信息的获取、备份和分析处理。

基于单片机的智能温室大棚监控系统的设计

基于单片机的智能温室大棚监控系统的设计 This model paper was revised by the Standardization Office on December 10, 2020

学科分类号: ___________ 湖南人文科技学院 本科生毕业设计 题目:基于单片机的智能温室大 棚监控系统的设计 学生姓名:胡佳欣学号 系部:信息学院 专业年级:2012级电子信息科学与技术 指导教师:张吉左 职称:工程师 湖南人文科技学院教务处制

湖南人文科技学院本科毕业设计诚信声明本人郑重声明:所呈交的本科毕业设计,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本设计不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 作者签名:(手写) 二○年月日(手写)

目录

基于单片机的智能温室大棚监控系统的设计 摘要:在科学技术的推动下,智能温室大棚应运而生,它能让农作物拥有更好的生长 环境。将单片机运用到对大棚内温度、湿度的采集与监控,提出了基于单片机的智能 温室监控系统的设计方案。整套系统由温湿度传感器、AT89C51单片机、声光报警器、显示器等部分组成。本设计以AT89C51单片机为核心单元,温湿度传感器为测量元 件,储存并分析所测量的数据,通过与预设参数的对比,判断是否发出警报。 通过此设计可以实时有效的对农作物生长过程中的温度、湿度进行测量,并能直 观的显示出来。系统克服了人工传统温湿度采集的迟滞性、不准确性等诸多弊端,操 作更方便,效率更高。 关键词:单片机;传感器;数据传输;监控系统 Design of Intelligent Greenhouse Monitoring System Based on SCM Abstract:Under the promotion of science and technology, intelligent greenhouse came into being, it can make crops have better growing environment in the promotion of science and technology, the intelligent greenhouse came into being, it can with a better environment for the growth of crops. The SCM is applied to the collection and monitoring of temperature and humidity in the greenhouse,a design scheme of Intelligent Greenhouse Monitoring System Based on SCM is put forward. The whole system consists of sensor, AT89C51 SCM, sound and light alarm, display. Comparison of the design AT89C51 microcontroller as the core unit, temperature and humidity sensor for measuring components, connected by single chip computer, storage and analysis of the measured data with preset parameters to determine whether the alarm. Through this design, we can measure the temperature and humidity in the process of crop growth in real time. The system overcomes the disadvantages

温室大棚环境监测系统在温室大棚的作用

温室大棚环境监测系统在温室大棚的作用对于植物生长来说,农业气象环境非常重要,虽然现在随着温室大棚的推广,植物的生长不再受太多自然环境的影响,但是由于温室大棚是一个封闭的环境,因此在这个环境中,利用温室大棚环境监测系统创造适合植物生长的条件,是现代农业温室生产的重要内容。 温室大棚环境监测系统集传感器、自动化控制、通讯、计算等技术于一体,通过用户自定仪作物生长所需的适宜环境参数,搭建温室智能化软硬件平台,实现对温室中温度、湿度、光照、二氧化碳等因子的自动监测和控制。温室大棚环境监测系统可以为植物提供一个理想的生长环境,并能起到减轻人的劳动强度、提高设备利用率、改善温室气候、减少病虫害、增加作物产量等作用。 在现代智能温室大棚中,温室环境监测是其中一项重要的功能,智能温室大棚内湿度、温度、光照强弱及土壤的温度和含水量等因素,对大棚内的农作物生长起着关键性作用。而通过温室环境监测,可以帮助种植户通过计算机监测整个大棚内农作物生长情况,从而更便于记录农作物生长各种数据,也有利于新品种的实验。同时,温室环境监测的另外一个重要意义在于,通过环境的监测,可以获知温室中环境的变化,从而方便种植户采取措施进行调控,保证植物所处的环境始终是合适的,这样更加便于育苗工作的开展,育苗也更成功,需要的工作人员也少了很多。 温室大棚环境监测系统可以模拟基本的生态环境因子,如温度、湿度、光照、CO2浓度等,以适应不同生物生长繁育的需要,它由智能监控单元组成,按照预设参数,精确的测量温室的气候、土壤参数等,并利用手动、自动两种方式启动或关闭不同的执行结构(遮阳幕、湿帘水泵及风机、通风系统等),程序所需的数据都是通过各类传感器实时采集的。

设计农业大棚环境监控系统方案

农业大棚环境监控系统方案 一简介 (2) 二农业大棚环境监控概述 (2) 三背景与需求 (2) 四系统的组成 (3) 1)总体架构 (3) (2)系统有两种典型配置结构 (3) (3)传感信息采集 (4) 五大棚监测点现场分布 (4) 六系统的软件 (5) 七常用的传感器 (5) 1、空气温湿度传感器 (5) 2、土壤温度传感器 (6) 3、土壤水分传感器 (6) 4、CO2含量传感器 (6) 5、NH3含量传感器 (7) 6、光照度传感器 (7) 2014.9

一简介 近年来,温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速 浓度等环境因子对作物的推广和应用。种植环境中的温度、湿度、光照度、CO 2 的生产有很大的影响。传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。 针对目前大棚发展的趋势,提出了一种大棚智能监控系统的设计。根据大棚智能监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互连网或者手机信息了解区域大棚的实时状况。基于GPRS的智能大棚监控系统使这些成为可能。 二农业大棚环境监控概述 农业温室大棚监控系统通过实时采集农业大棚内空气温度、湿度、光照、土壤温度、土壤水分等环境参数,根据农作物生长需要进行实时智能决策,并自动开启或者关闭指定的环境调节设备。通过该系统的部署实施,可以为农业生态信息自动监测、对设施进行自动控制和智能化管理提供科学依据和有效手段。 开拓者kitozer系列的农业温室大棚监控及智能控制解决方案是通过可在大棚内灵活部署的各类无线传感器和网络传输设备,对农作物温室内的温度,湿度、光照、土壤温度、土壤含水量、CO2浓度等与农作物生长密切相关环境参数进行实时采集,在数据服务器上对实时监测数据进行存储和智能分析与决策,并自动开启或者关闭指定设备(如远程控制浇灌、开关卷帘等)。 三背景与需求 在每个智能农业大棚内部署无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等,分别用来监测大棚内空气温湿度、土壤温度、土壤水分、光照度、CO2浓度等环境参数。为了方便部署和调整位置,所有传感器均应采用电池供电、无线数据传输。大棚内仅

温室大棚智能监控系统安装方案

温室大棚智能监控系统安装方案 我国是农业大国,为了给农作物创造合适的生长环境,农业生产人员需实时关注各项环境指标是否正常,传统的人工现场监测已经无法满足现代农业的需求,托莱斯的温室大棚环境智能监控系统有效的解决了这一难题,本文就对此系统的设计进行深度解析。 温室大棚环境智能监控系统通过在传统农业的基础上融合了物联网、信息化、自动化等技术,利用部署在大棚内的各类传感器节点采集土壤水分、温度、湿度、光照、CO2等环境信息,实现无线采集、无线传输、视频监控、异地监控等功能,不仅解放了劳动力,降低了生产成本,还能调节农作物产期,提高生产率。 环境采集节点主要由信立环境传感器、控制器和WIFI模块所组成,其中常用的环境传感器包括光照度传感器、空气温湿度传感器及土壤温湿度传感器。控制器通过IIC协议与485协议等实现对数字传感器的数据采集,并通过UART口将数据转送给WIFI模块。WIFI模块、无线摄像头、移动终端等与WIFI基站建立连接,并由基站通过光纤将数据传输至监控中心的服务器,实现远程PC和移动终端的实时监测温室大棚内环境数据。 无线网络覆盖及接入设计 WIFI技术是近年出现的基于以太网的无线局域网技术,WIFI网络传输速率快,传播距离远,最大可以达到300米左右,在移动状态下,WIFI网络也能保持很好的传输特性,且十分易于系统后期扩展。智能WIFI基站配备了高功率天线,可以有效覆盖方圆200米内的范围,之内的环境采集节点、PC及移动终端可与其连接。同时基站具有Ping Watchdog功能,即通过设置一定时间内Ping 1至2个IP地址的方式来检测当前连接状态,当远程IP地址均Ping失败的时候,基站会执行失败动作,失败动作可配置为重启基站或重新建立WIFI连接,这一机制,有效保证了智能基站长期稳定工作。 环境采集节点设计 环境采集节点由数据处理模块、数据采集模块及稳压电源模块组成。 数据处理模块通常采用STM32F来实现,STM32F具有外围接口广、功耗低、串口资源丰富,抗干扰能力强及价格低廉的优势。STM32F工作频率可达72MHz,MHZ下的功耗仅为uA级别,有效保证了数据采集及处理的时效性,也方便SP706设计硬件看门狗电路。 数据采集模块主要用于感知温室大棚内的环境信息,包括光照度传感器、空气温湿度传感器及土壤温湿度等传感器。我们对传感器的筛选建议是在满足精度的前提下,尽量选择低功耗的复合型传感器。

温室大棚智能控制系统

摘要 本课题运用STC89C52单片机、DS-18B20 数字温度传感器、继电器和 M4QA045电动机、ULN-2003A集成芯片、湿敏电阻,以及四位八段数码管等元器件,设计了温湿度报警电路、M4QA045电机驱动电路、电热器驱动电路,实现了温室大棚中温度和湿度的控制和报警系统,解决了温室大棚人工控制测试的温度及湿度误差大,且费时费力、效率低等问题。该系统运行可靠,成本低。系统通过对温室内的温度与湿度参量的采集,并根据获得参数实现对温度和湿度的自动调节,达到了温室大棚自动控制的目的。促进了农作物的生长,从而提高温室大棚的产量,带来很好的经济效益和社会效益。 关键词: STC89C52单片机、DS-18B20 数字温度传感器、ULN-2003A集成芯片、温室、自动控制、自动检测 目录 第1章绪论 §1.1选题背景 §1.2选题的现实意义 第2章系统硬件电路的设计 §2.1系统硬件电路构成系统整体框图 §2.1.2系统整体电路图 §2.1.3系统工作原理 §2.2温度传感器的选择

§2.2.1 DS18B20简介 §2.2.2 DS18B20的性能特点 §2.2.3 DS18B20的管脚排列 §2.2.4 DS18B20的内部结构 §2.2.5 DS18B20的控制方法 §2.2.6 DS18B20的测温原理 §2.2.7 DS18B20的时序 §2.2.8 DS18B20使用中的注意事项 §2.3单片机的选择 §2.3.1单片机概述 §2.3.2 AT89C2051芯片的主要性能 §2.3.3 AT89C2051芯片的内部结构框图 §2.3.4 AT89C2051芯片的引脚说明 §2.3.5使用AT89C2051芯片编程时的注意事项§2.4 RS-485通信设计 §2.4.1串行通信的分类 §2.4.2串行通信的制式

相关主题
文本预览
相关文档 最新文档