当前位置:文档之家› 第2章+垂直位移监测

第2章+垂直位移监测

基坑边坡水平位移及周边道路竖向位移监测周期及次数

基坑边坡水平位移及周边道路竖向位移监测周期及次数 表5.1 基坑边坡水平位移及基坑周围建筑物、道路竖向位移监测周期、次数监测阶段监测周期监测次数合计 基坑开挖~基坑回填 基坑开挖前 2 42次开挖0~-6m(每层土一次) 2 开挖-6m~-9.5m(每层土二次) 4 开挖-9.5m~-19.5m(每层土三次)12 开挖后2个月内每7天监测1次8 开挖后3~5个月内每15天监测1次 6 6个月~10个月每20天观测1次8 注:在监测过程中如遇大雨或水平位移变化异常等情况,及时增加监测次数。 预计本工程变形监测总次数为84次,其中基坑水平位移监测42次,竖向位移监测42次。

主楼沉降观测周期和次数 观测周期及次数 沉降观测的周期和观测时间应按下列要求并结合实际情况确定: (1)建筑物施工阶段的观测,浇筑基础时设置沉降观测点开始第一次观测,以后的观测次数与间隔时间应视地基与加荷情况而定,主体结构每加高1层观测一次; (2)施工过程中若暂停工,在停工时及重新开工时应各观测一次,停工期间可每隔2~3个月观测一次; (3)建筑主体封顶后100天内,每15天观测一次,直至稳定为止; (4)后续的观测周期应根据主体结构封顶后的百日平均沉降值确定,详见下表(当最后100天的沉降值小于0.01mm/d时,可停止观测。) 编号百日观测平均值后续观测周期备注 1>=0.3mm/d15天 20.1~0.3mm/d30天 30.05~0.1mm/d90天 40.02~0.05mm/d180天 50.01~0.02mm/d365天 (5)在观测过程中,若有基础附近地面荷载突然增减、基础口周大量积水、长时间连续降雨等情况,均应及时增加观测次数。当建筑突然发生大量沉降、不均匀沉降或严重裂缝时,应立即进行逐日或2~3d一次的连续观测;并在观测记录中注明这些情况,及时向甲方和设计方汇报,具体的观测时间,以双方的书面约定为准; (6)建筑沉降是否进入稳定阶段,应由沉降量与时间关系曲线判定。当最后100d的沉降速率小于0.01~0.04mm/d时可认为已进入稳定阶段。 预计本工程沉降观测总次数为36次,总历时36个月。

基坑水平位移监测

深基坑水平位移监测 测量深基坑水平位移可采用视准线法、小角度法、投点法、前方交会法、自由设站法、极坐标法等。本节简要叙述常用的小角度法、极坐标法及前方交汇法。 监测控制值: 监测频率: 基准点及测点布置要求: 监测基准点应在基坑开挖影响范围之外设立强制对中观测墩,且尽量通视各测点,观测墩使用混凝土浇筑地下1.4M地面1.2M,顶面长宽20CM*20CM,顶部嵌入焊接中心螺旋的钢板,螺旋与钢板垂直且均做防腐处理。监测基准点观测按三级平面控制要求施测,且每个月与高等级控制网联测一次。为防止观测墩被破坏,顶部应加钢保护盖。埋设示意图如下:

当采用精密的光学对中装置时,对中误差不宜大于0.5mm,且尽量通视测点。 在混凝土支撑、连续墙顶等混凝土结构上安装水平位移桩,可直接在结构上用冲击钻成孔插入水平位移桩,垂直放置,缝隙使用锚固剂填充,容易受施工破坏的地方应加保护装置。在土体等松软结构埋设水平位移测点应采用混凝土桩顶插入水平位移桩的形式,混凝土桩采用直径10CM地下50CM地面10CM,中心用钢筋加固。如有需要应加保护装置,并设置醒目标志。实物图如下: 仪器架设: 到达测量现场后打开仪器箱一段时间,使仪器温度与周围环境温度相适应,消除由环境温度带来的误差。检查设备是否完整,配件是否齐全,电源电力是否充足等。仪器架设时应注意仪器安全,在光滑的地面上架设全站仪时须在脚架上套绳索,防止脚架滑落损坏仪器。全站仪脚架高度与观测者肩高齐平,拧紧脚架螺旋,将脚架均匀架设在基准点上。取出仪器一手提全站仪手提柄,一手拧紧中心螺旋,将全站仪平稳架设在脚架上。 对中整平: 在有强制对中装置的观测墩上架设全站仪时,应一手提全站仪手提柄,另一只手旋转基座使仪器牢固地固定在观测墩上。调节基座脚螺旋使圆水准气泡居中,旋转仪器使管水准平行于两脚螺旋的连线,调节脚螺旋使管水准气泡居中,再将仪器旋转90°调节脚螺旋使管

水平位移监测方案

水平位移监测方案 一、精度选择 按照设计要求,对照《工程测量规范》(GB 50026-2007),选用三等水平位移监测网进行检测,可以满足精度要求。 表1-2 水平角方向观测法的技术指标 (1)观测原理:如下图所示,如需观测某方向上的水平位移PP′,在监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上。沿监测点与基准点连线方向在一定远处(100~200m)选定一个控制

(2)精度分析: 由小角法的观测原理可知,距离D和水平角β是两个相互独立的观测值,所以由上式根据误差传播定律可得水平位移的观测误差: 水平位移观测中误差的公式,表明: ①距离观测误差对水平位移观测误差影响甚微,一般情况下此部分误 差可以忽略不计,采用钢尺等一般方法量取即可满足要求; ②影响水平位移观测精度的主要因素是水平角观测精度,应尽量使用 高精度仪器或适当增加测回数来提高观测度; ③经纬仪的选用应根据建筑物的观测精度等级确定,在满足观测精度 要求的前提下,可以使用精度较低的仪器,以降低观测成本。 优点:此方法简单易行,便于实地操作,精度较高。 不足:须场地较为开阔,基准点应该离开监测区域一定的距离之外,设在不受施工影响的地方。 由此可知,对仪器测角精度的要求,取决于监测点距离站点的远近。距离越远,则要求测角精度越高。根据现场踏勘布点,最远监测点距离站点不超过50m,对照《工程测量规范》,选用三等或四等水平位移监测网进行检测,可以满足精度要求。本次实习采用测小角法测量三等水平位移监测网进行检测。 二、作业流程 1.选点选取两个监测点P1,P2、一个测站点(工作基点)A、一个后视点B。 2.观测按照测回法水平角观测水平夹角。在A点安置全站仪,在B点和P1,P2点设置瞄准标志,按下列步骤进行测回法水平角观测。 (1)在全站仪盘左位置瞄准目标B,将度盘置零,读得水平度盘读数并记录。(2)瞄准目标P1,读得水平度盘读数并记录。盘左位置测得半测回水平角。(3)倒转望远镜成盘右位置,瞄准目标B,将度盘置零,读得水平度盘读数并记录。 (4)瞄准目标P1,读得水平度盘读数并记录。盘右位置测得半测回水平角。(5)用盘左、盘右两个位置观测水平角取平均值作为一测回水平角观测的结果。

建筑基坑沉降、位移监测的内容及方法

《建筑基坑沉降、位移监测的内容及方法》 一、深基坑监测的意义 随着城市建设的发展,基坑施工的开挖深度越来越深,从最初的5~7m发展到目前最深已达20m多。由于地下土体性质、荷载条件、施工环境的复杂性,对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已成了工程建设必不可少的重要环节。 对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析、预测的方法,这就必定要依赖于施工过程中的现场监测。首先,靠现场监测据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。第二,可及时了解施工环境——地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。第三,可及时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施充当耳目。 二、深基坑监测的内容及方法 深基坑施工,必须要有一定的围护结构用以挡土、挡水。围护设施必须安全有效。浅基坑的围护结构以前常用的是钢板桩或混凝土板桩;深基坑则大多采用现场浇灌的地下连续墙结构或排桩式灌注桩结构,并配以混凝土搅拌桩或树根桩止水。开挖时,坑内必须抽去地下水,7~15m深的基坑,中间必须配二到三道水平支撑,水平支撑采用钢管式结构或钢筋混凝土结构。围护结构必须安全可靠,并能确保施工环境稳定。从经济角度来讲,好的围护设计应把安全指标取在临界点附近,再靠现场监测提供的动态信息反馈来调整施工方案。 1、以下内容是基坑监测目前能够做到的也是应该做到的项目: (1)地下管线、地下设施、地面道路和建筑物的沉降、位移。 (2)围护桩地下桩体的侧向位移(桩体测斜)、围护桩顶的沉降和水平位移。 (3)围护桩、水平支撑的应力变化。 (4)基坑外侧的土体侧向位移(土体测斜)。 (5)坑外地下土层的分层沉降。 (6)基坑内、外的地下水位监测。 (7)地下土体中的土压力和孔隙水压力。 (8)基坑内坑底回弹监测。

水平位移监测方案

水平位移监测方案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

水平位移监测方案 一、精度选择 按照设计要求,对照《工程测量规范》(GB 50026-2007),选用三等水平位移监测网进行检测,可以满足精度要求。 表1-1 水平位移基准网的主要技术指标 表1-2 水平角方向观测法的技术指标

(1)观测原理:如下图所示,如需观测某方向上的水平位移PP′,在监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上。沿监测点与基准点连线方向在一定远处(100~200m)选定一个控制点B,作为零方向。在B点安置觇牌,用测回法观测水平角BAP,测定一段时间内观测点与基准点连线与零方向间角度变化值,根据δ=△β*D/ρ(式中D为观测点P至工作基点A的距离,ρ=206265)计算水平位移。 (2)精度分析: 由小角法的观测原理可知,距离D和水平角β是两个相互独立的观测值,所以由上式根据误差传播定律可得水平位移的观测误差: 水平位移观测中误差的公式,表明: ①距离观测误差对水平位移观测误差影响甚微,一般情况下此部分误差可以忽 略不计,采用钢尺等一般方法量取即可满足要求; ②影响水平位移观测精度的主要因素是水平角观测精度,应尽量使用高精度仪 器或适当增加测回数来提高观测度; ③经纬仪的选用应根据建筑物的观测精度等级确定,在满足观测精度要求的前 提下,可以使用精度较低的仪器,以降低观测成本。 优点:此方法简单易行,便于实地操作,精度较高。 不足:须场地较为开阔,基准点应该离开监测区域一定的距离之外,设在不受施工影响的地方。 由此可知,对仪器测角精度的要求,取决于监测点距离站点的远近。距离越远,则要求测角精度越高。根据现场踏勘布点,最远监测点距离站点不超过50m,对照《工程测量规范》,选用三等或四等水平位移监测网进行检测,可以满足精度要求。本次实习采用测小角法测量三等水平位移监测网进行检测。

胸墙及轨道梁沉降及位移监测总结报告

散粮码头水工工程监测 总 结 报 告 2016年5月

散粮码头水工工程 监测总结报告 编写: 审核: 审定: 2016年5月 地址:网址:电话:传真

目录 1工程概况 (1) 1.1简况 (1) 1.2周边环境 (1) 1.3地质概述 (1) 2监测目的及依据 (1) 2.1监测目的 (1) 2.2监测依据 (2) 2.3方案编制原则 (2) 3监测内容及项目 (2) 4基准点、监测点布设与保护 (3) 4.1基准点及监测控制网的布设 (3) 4.2监测点的布设 (3) 4.3监测点的保护 (4) 5监测方法 (4) 5.1垂直位移监测 (4) 5.2水平位移监测 (5) 6监测周期及频率 (5) 6.1监测周期 (5) 6.2监测频率 (5) 8监测仪器设备及检定要求 (5) 8.1监测仪器设备 (5) 主要采用仪器设备为GPS T5 +1台;其精度为:水平±15mm;竖直±20mm (5) 8.2仪器检定 (5) 9施工工况 (5) 10曲线图及分析 (6) 10.1轨道梁垂直位移累计变化一览表及曲线图 (6) 10.2胸墙垂直位移累计变化一览表及曲线图 (8) 11 结论 (10)

1工程概况 1.1简况 本工程位于辽东半岛、大连市渤海一侧海岸线的中段,瓦房店市境内北面,地理坐标39°59'55"N,121°46'25"E。本工程南距瓦房店市区50km,距长兴岛90km,距大连市区130km,北距鲅鱼圈45km,距沈阳240km。本工程包含1个12万吨级散粮泊位(泊位编号303#),2个7 万吨级散粮装船泊位(泊位编号301#及302#,水工结构预留10万吨级),码头岸线长度约832m。码头东西侧两个临时护岸,长度分别为129m、110m。不含港池、航道及配套工程。 按照规范要求我方在2015年11月5日完成对现场的E级GPS首级控制网的校核及加密工作。 1.2周边环境 本工程所属三个泊位为沉箱重力式码头,其三面环海,一面为陆域回填。前后两个方向均有施工作业,后沿方向是码头胸墙后方50米到100米之间回填区域的地基强夯处理;前沿方向是施工船队炸焦施工作业。 1.3地质概述 详见本工程《岩土工程勘察报告》。 2监测目的及依据 2.1监测目的 在胸墙施工期间,由于回填区域基础加固和航道清淤施工等,可能会对码头胸墙产生影响,为了保证胸墙的安全运营和正常使用,必须对码头胸墙及轨道梁的沉降进行周期性的观测,及时发现隐患,并根据监测结果对应地及时调整施工方案 本工程的监测目的主要有: 1)通过将监测数据与预测值比较,判断上步施工工艺和施工参数是否合理 或达到预期效果,同时实现对下步施工工艺和施工进度控制,从而切实

水平位移观测法、垂直位移观测法的种类_特点和适用条件(仅供参考版)

水平位移观测法、垂直位移观测法的种类,特点和适用条件 水平位移监测:对水工建筑物的顺水流方向或顺轴线方向的水平位移变化进行监测常用观测方法分两大类。一类是基准线法,基准线法是通过一条固定的基准线来测定监测点的位移,常见的有视准线法、引张线法、激光准直法、垂线法。 另一类是大地测量方法,大地测量方法主要是以外部变形监测控制网点为基准,以大地测量方法测定被监测点的大地坐标,进而计算被监测点的水平位移,常见的有交会法、精密导线法、三角测量法、GPS观测法等。 一、视准线法:通过视准线或经纬仪建立一个平行或通过坝轴线的铅直平面作为基准面,定期观测坝上测点与基准面之间偏离值的大小即为该点的水平位移。 适用于直线形混凝土闸坝顶部和土石坝坝面的水平位移观测。当采用这一方法时,主要的是要求它们的端点稳定,所以必须要作适当的布置,只能是定期地测定端点的位移值,而将观测值加以改正。视准线观测方法特点是速度快,精度较高,原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用。不足是对较长的视准线而言, 由于视线长, 使照准误差增大, 甚至可能造成照困难。当即准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。 小角法:是水平位移监测中常用的方法,该方法最早应用于水库大坝的变形监测,其基本原理是一通过大坝轴线的固定不变的铅直平面为基准面,通过测定基准线方向之间的微小角度从而计算观测点相对予基准线的偏离值,根据偏离值在各观测周期中的变化确定位移量。由于所需测定的位移通常很细微,因此对位移的观测精度要求很高,需要采取各种提高观测精度的措施,观测过程中需要对各作业环节严格把握,哪怕仅仅是一个小环节的失误,都可能导致最终监测精度不能满足要求。 二、引张线法:利用张紧在两工作基点之间的不锈钢丝作为基准线,测量沿线测点和钢丝之间的相对位移,以确定该点的水平位移。 适用于大型直线形混凝土的廊道内测点的水平位移观测。主要用于测定混凝土建筑物垂直于轴线方向的(顺水流方向)水平位移。 活动觇牌法: 主要用于短距离视准线观测中,活动觇牌多用于水工建筑物、桥梁、码头和滑坡等水平位移观测,可满足坝内精密导线测量的近坝区水平位移监测网等各种场合的测量需要,活动觇标是被安置在位移标点上,供经纬仪照准,从而在觇标的游标尺上读出位移标点的偏离值。主要特点传动灵活、隙动差小,可精确到0.1mm .

垂直位移监测

§2-1概述 ?对监测点高程变化量的测量工作 ?有时用“+”表示下沉,用“-”时表示上升。 沉降产生的原因 ?与地基的土力学性质和地基的处理方式有关; ?与建筑物基础的设计有关; ?与建筑物的上部结构有关,即与建筑物基础的荷载有关; ?施工中地下水的升降对建筑物沉降也有较大的影响。 §2-2精密水准测量 ?精密水准测量精度高,方法简便,是垂直位移监测最常用的方法。 ?垂直位移监测的测量点分为水准基点、工作基点和监测点三种。 ?水准基点是垂直位移监测的基准点,一般3~4个点构成一组,形成近似正三角形或正方形,为保证其坚固与稳定,应选埋在变形区以外的岩石上或深埋于原状土上,也可以选埋在稳固的建构筑物上。 水准基点 ?普通混凝土标 ?地面岩石标 ?浅埋钢管标 ?井式混凝土标 ?深埋钢管标 ?深埋双金属标 工作基点 ?工作基点是用于直接测定监测点的起点或终点。 ?工作基点应布置在变形区附近相对稳定的地方,其高程尽可能接近监测点的高程。 ?工作基点一般采用地表岩石标,当建筑物附近的覆盖层较深时,可采用浅埋标志,当新建建筑物附近有基础稳定的建筑物时,也可设置在该建筑物上。 ?因工作基点位于测区附近,应经常与水准基点进行联测,通过联测结果判断其稳定状况,保证监测成果的正确可靠。 监测点 ?监测点是垂直位移监测点的简称,布设在被监测建(构)筑物上。 ?布设时,要使其位于建(构)筑物的特征点上,能充分反映建(构)筑物的沉降变形情况,点位应当避开障碍物,便于观测和长期保护,标志应稳固,不影响建构筑物的美观和使用,还要考虑建筑物基础地质、建筑结构、应力分布等,对重要和薄弱部位应该适当增加监测点的数目。 监测仪器 ?针对具体的监测工程,应当使用满足精度要求的水准仪,采用正确的测量方法; ?对特级、一级垂直位移监测,应使用DS05型水准仪配和因瓦合金标尺; ?对二级垂直位移监测,应使用DS1或DS05型水准仪和因瓦合金标尺; ?对三级垂直位移监测,应使用DS3水准仪和区格式木质标尺或DS1型水准仪和因瓦合金标尺。 仪器的检验 ?无论使用何种仪器,开始工作前,应该按照测量规范要求对仪器进行检验; ?水准仪的i角误差是最重要的检验项目。

位移监测方案

铁路局职工集资建房二工黄土山高层住宅小区深基坑支护 工程位移监测方案 1 工程概况及周围环境 1.1工程概况 拟建的铁路局职工集资建房二工黄土山高层住宅小区深基坑支护工程为乌鲁木齐铁路住房建设管理办公室投资建设,其场地基坑支护由新疆建华地质工程有限公司负责设计,勘察单位为新疆建华地质工程有限公司。 铁路局职工集资建房二工黄土山高层住宅小区深基坑支护工程位于乌鲁木齐市长春南路东侧,华春苏杭明珠花园小区旁。 拟建场地A地块拟建建筑物为3栋地上18层住宅楼,1栋地上16层住宅楼,1栋地上9层住宅楼,部分住宅楼带一层地下车库,建筑面积约76886㎡,建设用地面积约26406 m2。拟采用框架剪力墙结构。 拟建场地B地块拟建建筑物为1栋地上18层住宅楼,1栋地上4层住宅楼,部分住宅楼带一层地下车库,建设用地面积约6418.75 ㎡。拟采用框架剪力墙结构。 拟建场地A地块设计±0.000标高相当于黄海高程751.80m,地下二层各部分的楼板标高均有错位,基础筏板底板板面标高分别为-8.3m、-8.7m、-9.4m、-9.7m、-10.1m。地下车库近似长方形状,预计基坑支护周长574m左右。场地周边开阔,四周建筑物情况简单。 拟建场地B地块设计±0.000标高相当于黄海高程754.35m,地下一层各部分的楼板标高均有错位,基础筏板底板板面标高分别为-8.05m。地下车库近似长方形状,预计基坑支护周长313m左右。场地周边管线密布,四周建筑物情况复杂。 根据现场踏勘,本次基坑侧壁临时支护结构拟采用挡土桩与土钉墙锚喷支护相结合的支护结构。

A地块 基坑周边侧壁支护采用逆作法土层土钉施工,边开挖边支护,开挖深度到2.0米时,进行挡土桩施工。剩余部分每开挖3米,进行一次支护,具体施工位置及支护处理方法详见施工图。 B地块 沿基坑南侧和西侧预先用旋挖机打一排桩径800的钢筋混凝土挡土桩,桩间距1.2m,排间距1.0m,上端用混凝土冠梁连接,下端嵌固在圆砾层中,嵌固深度不小于4.0m,局部不下于6.5m。基坑南侧局部地段增加一排桩径1000的钢筋混凝土挡土加强桩,并做止水帷幕加固处理,及对周边挡墙做加固处理。基坑北侧同A地块,东侧同已开挖基坑相连。 2 工程地质条件 2.1、地层概况 根据《岩土工程勘察报告》(新疆建华地质工程有限公司) A地块:地层主要由①杂填土、②粉土、③灰绿色粉土及④圆砾层组成。 ①杂填土:杂色,松散,稍湿,场区均有分布。主要由生活垃圾、建筑垃圾、植物腐殖质、素填土等组成,该层分布于地表,厚度2.3m~7.6m。 ②粉土:土黄色,可塑,稍湿-饱水,湿润时用刀切,无光滑面,切面较粗糙,手捻摸感觉有细颗粒存在,有轻微粘滞感,粘性差,湿土能搓成2-3mm的土条,干土用手很易捏碎,孔隙发育一般。局部含有粉细砂、砾石薄夹层及透镜体。该层埋深在2.3m~7.6m,厚度3.5m~7.9m。 ③灰绿色粉土:以灰绿色为主,硬塑,稍湿-饱水。有臭味,局部含有少量植物腐殖质,并有少量植物根系腐烂后的空管道。该层埋深在4.7m~16.5m,厚度1.2m~7.5m。 ④圆砾:以青灰色为主,中密,饱水,该层多呈圆形状、次圆形状,骨架颗粒质量大于总质量的50%,粒径多在10mm左右,充填物主要为粉土、中粗砂,级配一般,该层层顶埋深在11.0m~18.9m,最大勘探深度(-25.5m)内未揭穿该层 B地块:地层主要由①杂填土、②粉土及③圆砾层组成。

基坑监测水平和竖向位移

建筑基坑水平和竖向位移 检测细则文件编号HX-ZY-BX-04 版号2014版第0次修订实施日期2014.10.18 页数第1页共7页 1. 总则 本细则适用于一般土及软土建筑基坑工程水平位移及竖直位移监测。目的是为了掌握基坑施工对临近建筑物造成的影响,及时起到预警预报的作用,为了深基坑施工提供科学的决策依据,确保施工安全,减少对周边环境的不利影响。 2. 仪具与材料 全站仪,水准仪。 其它:脚架,棱镜,三脚架,因瓦尺等。 3. 监测原理和方法 为保证所有监测工作的统一,提高监测数据的精度,使监测工作有效的指导整个工程施工,监测工作采用整体布设,分级布网的原则。即首先布置统一的监测控制网,再在此基础上布设监测点。 3.1监测点垂直位移测量:根据国家二等水准测量规范要求,历次垂直位移监测是通过工作基点间联测一条二等水准闭合或附合路线,由线路的工作点来测量各监测点的高程,各监测点高程初始值在监测工程前期两次测定(两次取平均),某监测点本次高程减前次高程的差值为本次垂直位移,本次高程减初始高程的差值为累计垂直位移。 3.2监测点水平位移测量:采用轴线投影法。在某条测线的两端远处各选定一个稳固基准点A、B,经纬仪或全站仪架设于A点,定向B点,则A、B连成一条基准线。观测时,在仪器上读取各监测点至AB基准线垂距E值,某监测点本次E值和初始E值即为该点累计水平位移,各变形监测点初始E值均为取两次平均的值。 4、监测点的布置原则及测点的设置 4.1、布置原则 4.1.1、符合有关规范及设计技术要求 4.1.2、《建筑变形测量规范》JGJ 8-2007 4.1.3、《工程测量规范》GB50026-2007

水平位移监测作业指导书

水平位移监测作业指导书 1 目的和适用范围及标准 测定建筑主体倾斜、水平位移、挠度和基坑壁侧向位移,并对建筑场地滑坡进行监测。操作方法执行标准《工程测量规范》(GB50026-2007)、《建筑变形测量规范》(JGJ 8-2007)、《国家一、二等水准测量规范》(GB/T 12897-2006)、《国家三、四等水准测量规范》(GB12898—2009)、《精密工程测量规范》(GB/T 15314-94)。 2 仪器设备 全站仪 3 平面控制点布设 平面基准点、工作基点的布设应符合下列规定: 1)各级别位移观测的基准点(含方位定向点)不应少于3个,工作基点可根据需要设置; 2)基准点、工作基点应便于检核校验。 平面基准点、工作基点标志的形式及埋设应符合下列规定: 1)对特级、一级位移观测的平面基准点、工作基点,应建造具有强制对中装置的观测墩或埋设专门观测标石,强制对中装置的对中误差不应超过土0.1mm; 2)照准标志应具有明显的几何中心或轴线,并应符合图像反差大、图案对称、相位差小和本身不变形等要求。根据点位不同情况,可选用重力平衡球式标、旋人式杆状标、直插式觇牌、屋顶标和墙上标等形式的标志。观测墩及重力平衡球式照准标志的形式,可按《建

筑变形测量规范》(JGJ 8-2007)附录B的规定执行; 3)对用作平面基准点的深埋式标志、兼作高程基准的标石和标志以及特殊土地区或有特殊要求的标石、标志及其埋设应另行设计。沉降监测点的布设应位于建(构)筑物体上。高程基准点和工作基点标石、标志的选型及埋设应符合有关规范规定。 4 水平位移观测 沉降观测分为:定期对平面控制网进行复测以确定控制网的稳定性,同时对变形监测点进行观测。 基准点应设置在变形区域以外、位置稳定、易于长期保存的地方,并应定期复测。复测周期应视基准点所在位置的稳定情况确定,在建筑施工过程中宜1~2月复测一次,点位稳定后宜每季度或每半年复测一次。当观测点变形测量成果出现异常,或当测区受到地震、洪水、爆破等外界因素影响时,应及时进行复测,并按《建筑变形测量规范JGJ 8-2007》规定对其稳定性进行分析。 有工作基点时,每期变形观测时均应将其与基准点进行联测,然后再对观测点进行观测。 变形监测点的精度、观测仪器、观测方式均应达到相应等级的水准测量规范要求。 5 观测周期 按照《工程测量规范GB50026-2007》、《建筑变形测量规范JGJ 8-2007》中的技术要求,确定相应等级的观测周期。 6 水平位移观测数据计算

水库大坝水平位移与垂直位移监测方法分析

水库大坝水平位移与垂直位移监测方法分析 【摘要】水库大坝的位移监测方法是当前一个重点研究的课题。从当前的整体研究来看,主要有水平位移与垂直位移监测的方法,通过在不同技术环境下的综合运用,尤其是采用GPS技术的综合运用,能收到更好的效果。本文将结合工程实例进行分析,将水库大坝的水平位移与垂直位移的监测方法更好的运用起来,形成良好的运用模式,研究提高GPS大地观测精度的方法.对GPS监测的高程数据进行平差处理,以便相邻两期监测所反映的垂直位移与实际变形情况相吻合,更好的发挥出水平位移与垂直位移监测的整体效能。 【关键词】水库大坝水平位移垂直位移监测方法 在水库大坝水平位移与垂直位移监测技术与方法的运用中,通过结合GPS 技术布网以及视准线测量相结合的方式,对水库大坝的水平位移进行监测,并采用全局控制欲局部控制相结合的方式,建立水库大坝垂直位移的监测网络,形成水库变形技术处理的有效方式,能起到更好的实际效果。 1 概述水库大坝水平位移与垂直位移监测的概念 1.1 水平位移监测 从传统的水库大坝监测方式来看,水平位移通常使用的是采用经纬仪三角测量或者视准测量的有效方法,尤其是在结合水库大坝变形量的整体因素,在监测精确度要求高的情况下,就会产生更新的检测方式。从传统方法向垂线、引张线的发展,更好的显示出自动化监测技术的不断发展,特别是步进电机式、光电式、感应式等自动遥感器的设备运用,更加促进了整个监测效果的精确度。 1.2 垂直位移监测 垂直监测在水库大坝中的运用,主要采用人工光学水准测量,尤其是在自动化遥感测量的发展基础上,并伴随着静力遥测技术的出现,在我国研制的差动变压器以及电容式静力水准装置的运用,更好的提升了垂直位移监测技术的整体运用,并得到了广泛的应用。 2 分析当前水库大坝变形监测的主要技术手段 2.1 土石坝安全监测技术运用 土石坝安全监测技术是一项综合性的管路方式,其中,对于整个大坝的变形监测包括有更多的内容,主要有表面变形、内部形状转变、裂缝的形成、渗水现象的出现、岸坡位移等现象,要从安全的角度出发,将大坝表面的变形监测形成竖向位移监测与水平位移监测。在竖向位移监测的技术使用上,主要采用精密水准的方法,或者采用静力水准的方法;在水平位移监测的使用中,可以从横向位

基坑监测水平和竖向位移

基坑监测水平和竖向位移 1.总则 本细则适用于一般土及软土建筑基坑工程水平位移及竖直位移监测。 目的是为了掌握基坑施工对临近建筑物造成的影响,及时起到预警预报的作用,为了深基坑施工提供科学的决策依据,确保施工安全,减少对周边环境的不利影响。 2.仪具与材料 全站仪,水准仪。 其它:脚架,棱镜,三脚架,因瓦尺等。 3.监测原理和方法 为保证所有监测工作的统一,提高监测数据的精度,使监测工作有效的指导整个工程施工,监测工作采用整体布设,分级布网的原则。即首先布置统一的监测控制网,再在此基础上布设监测点。 3.1监测点垂直位移测量:根据国家二等水准测量规范要求,历次垂直位移监测是通 过工作基点间联测一条二等水准闭合或附合路线,由线路的工作点来测量各监测点的高程,各监测点高程初始值在监测工程前期两次测定(两次取平均),某监测点本次高程

减前次高程的差值为本次垂直位移,本次高程减初始高程的差值为累计垂直位移。 3.2监测点水平位移测量:采用轴线投影法。在某条测线的两端远处各选定 一个稳固基准点A、B,经纬仪或全站仪架设于A点,定向B点,则A、B连成一条基准线。观测时,在仪器上读取各监测点至AB基准线垂距E值,某监测点本次E值和初始E 值即为该点累计水平位移,各变形监测点初始E值均为取两次平均的值。 4.监测点的布置原则及测点的设置 4.1、布置原则 4.1.1、符合有关规范及设计技术要求 4.1.2、《建筑变形测量规范》JGJ 8-2007 4.1.3、《工程测量规范》GB50026- 2007 4.1.4、《建筑基坑工程监测技术规范》GB50497- 2009 4.2、基准点的设置 位移观测为基坑施工过程中的位移测量。精度要求高,观测时间长。根据 《建筑变形测量规范》JGJ 8-2007和《建筑基坑工程监测技术规范》GB50497- 2009中要求,为减少测量误差,位移基准点应布设在观测建筑物的沉降区域之外。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测基准点具有稳定性高、保存时间长的特点,本次监测拟位移观测基准点设置8个。基准 点设置在不易受沉降及施工影响的地区,为保证基准点能够长期使用,采用① 18钢筋埋入地下,埋深不少于1.0米,四周采用混凝土固定,并砌筑保护井,钢筋裸露出 1-2公分,在裸露的顶部设置十字标识。 4.3、位移点的布设 4.3.1、基坑垂直、水平位移监测: —8,测点间距在基坑周圈围护顶面上布置垂直位移及水平位移监测点号 1 20内米。

浅谈水平位移的几种方法

浅谈几种水平位移的方法 【摘要:】本文对常用的几种水平位移的观测方法进行了比较系统的分析和比较,列出了这几种方法的原理,精度分析,优点以及不足,他们适用的场合等内容,对于在生产实践中进行水平位移观测时进行方法的选取具有一定的指导价值。 【关键字:】水平位移,视准线法,测小角法,前方交会法,极坐标法,反演小角法 当要观测某一特定方向(譬如垂直于基坑维护体方向)的位移时,经常采用视准线法、小角度法等观测方法。但当变形体附近难以找到合适的工作基点或需同时观测变形体两个方向位移时,则一般采用前方交会法。水平位移观测观测实践中利用较多的前方交会法主要有两种:测边前方交会法和测角前方交会法。另外还有极坐标法以及一些困难条件下的水平位移观测方法。 视准线法: 当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或测小角法。

另外此方法还受到大气折光等因素的影响。 优点: 视准线观测方法因其原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用,并且派生出了多种多样的观测方法,如分段视准线,终点设站视准线等。 不足: 对较长的视准线而言, 由于视线长, 使照准误差增大, 甚至可能造成照准困难。当即准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。精度低,不易实现自动观测,受外界条件影响较大,而且变形值(位移标点的位移量)不能超出该系统的最大偏距值,否则无法进行观测。 测小角法: 当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或小角度法 原理:如下图所示,如需观测某方向上的水平位移PP′,在监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上。沿监测点与基准点连线方向在一定远处(100~200m)选定一个控制点B,作为零方向。在B

沉降位移观测方案

沉降位移观测方案 一、工程概况 本工程利用与京杭运河相连的陆窖灌溉引水渠,在其两侧建设4个2000吨级泊位,6个1000吨级泊位和2个1000吨级多用途泊位,泊位岸线总长856m,拓宽水渠作为港池靠船,码头采用现浇扶壁式结构,码头基础采用抛石基床,后方回填土方形成码头堆场。该工程沉降位移观测的关键是在码头胸墙后方回填土过程中对码头的沉降位移观测。 二、技术标准和规范 1、宿迁中心港果园作业区二期工程《施工图设计说明》 2、《国家一、二等水准测量规范》(GB/T12897-2006) 3、《建筑变形测量规范》(JGJ8-2007) 4、《工程测量规范》(GB50026-2007) 5、《水工工程测量规范》(JTJ203-2001) 三、沉降位移观测目的 沉降、位移观测是码头结构不可忽视的工作之一,特别是该工程在土方回填过程中,通过沉降、位移观测,可以监测码头胸墙的沉降位移情况,便于及时发现异常情况,采取措施,同时也为优化填土方案及填土速率,提供直接的数据参考,确保工程的安全施工及后期运行。 四、测量精度指标与观测仪器的选择 1.根据设计要求和现行国家规范中对建筑物沉降、位移观测的各项规定,结合本工程具体的特点,建筑变形测量规范的三级标准满足本工程的需要,用来作为本工程的变形观测工作的精度指标。建筑变形测量规范标准为沉降观测点测站高差中的中误差为±1.5m m,位移观测点坐标中误差为±10m m。

2.在沉降观测工作中选用DSZ2精密自动安平水准仪上加装测微器,配合精密铝合金水准尺进行作业,读数精度可以达到0.1mm。位移观测选用徕卡TCRP1201+全站仪,其测距精度为1mm+1.5ppm*D,测角精度为1.0″。 3.为观测工作提供技术保证,监测所用的观测仪器等设备定期经过校核,定期计量监督检测院等鉴定。 五、沉降位移控制点的布设及联测 在码头上下游离开施工区域30至50米各设一个固定测站点,测站点处下挖1.5米深,1米见方的基坑用浆砌块石填筑后在其中间浇筑混凝土观测墩,观测墩尺寸为上口30cm,下口40cm,高1.3m。观测墩顶部预埋强制对中基座及水准点。观测墩周围用涂有红白相间的钢管围栏进行保护,并设立警示牌。观测墩稳定后与码头平面高程控制网进行联测平差。 六、沉降位移观测点布设 观测点设置在胸墙顶部护轮坎的中间位置,每道伸缩缝旁的同一侧设置一个观测点。埋设钉预埋的时候顶部不超过护轮的顶高程,但是不低于1cm,埋设钉外露4cm,用5cm长,直径10cm的PVC管套在其周围与混凝土分离。埋设的观测钉如下图所示,埋设时要牢固并且保持垂直。 埋设钉反射棱镜埋设钉和反射棱镜的连接

土体分层竖向位移监测作业指导书实施细则

***公司 测量专业作业指导书 土体分层竖向位移监测实施细则文件编号: 版本号: 分发号: 编制: 批准: 生效日期:

土体分层竖向位移监测实施细则 1. 检测目的 测量土体的分层沉降或隆起,垂直(竖向)位移量,以便及时发现问题更改施工中的不足。 2. 检测依据 《建筑基坑工程监测技术规范》(GB50497-2009); 3.主要仪器设备 3.1 CJG-7086型PVC沉降管; 3.2 分层沉降仪CJY-7080; 3.3 沉降磁环。 4.仪器设备精度 分层沉降仪CJY-7080:最小读数:1mm,重复性误差:±2mm,工作电压:DC9V。 5. 检测条件 5.1 气温应在5℃ - +45℃; 5.2 相对湿度30%-85%。 6.沉降管埋设 6.1 用Φ108钻头钻孔,为了使管子顺利地放到底,一般都需比安装深度深一些,它的原则是10米+0.5米,20米+1米,以次类推。 6.2 清孔,钻头钻到预定位置后,不要立即提钻,需把泵接到清水里向下灌清水,直至泥浆水变成清混水为止,再提钻后安装。 安装管子的联接采用外接头,一边下管子一边向管子内注入清水(管子浮力太大时)。 6.3 磁环的安装,按设计要求在每节管子上套上磁环和定位环,并用螺丝固定定位环,然后再把管子插入外接头内,拧紧螺钉,这样边接边向下放到设计深度止。 6.4 若磁环的间隔距离不是正2米时,可采取调节管子长短来实现,也可采用管子上套定位环的方法来解决,但要掌握一个原则:磁环向下要有足够的沉降距离,必须满足其设计要求。 6.5 沉降管放到设计要求后,盖上盖子就可以进行回填。回填原料为现场干细土或中粗沙,回填速度千万不能太快,以免堵塞后回填料不去,从而形成空隙,最好时隔一两天后再去检查一下,回填料下沉后再回填满之后即可,管子周围加上保护措施,方可放心待后测量。 7.检测操作步骤 7.1 测量时,拧松绕线盘后面的止紧螺丝,让绕线盘转动自由后,按下电源按钮(电源指示灯亮),把测头放入导管内,手拿钢尺电缆,让测头缓慢地向下移动,当测头接触到土层中的磁环时,接收系统的音响器会发出连续不断的蜂鸣叫声,此时读写出钢尺电缆在管口处的深度尺寸,这样一点一点地测量到孔底,称为进程测读,用字母Ji 表示,当在该导管内收回测量电缆时, 也能通过土层中的磁环,接受到系统的音响仪器发出的音响,此时也须读写出测量电缆在管口处的深度尺寸,如此测量到孔口,称为回程测读,用字母Hi 表示.该孔各磁环在土层中的实际深度用Si表示。 8. 计算方法 Si =( Ji+ Hi )/2 式中: i —为一孔中测读的点数,即土层中磁环的个数; Si — i测点距管口的实际深度(㎜); Ji — i测点在进程测读时距管口的深度(㎜); Hi — i测点在回程测读时距管口的深度(㎜); 若是在噪声比较大的环境中测量时,蜂鸣声听不见,可改用峰值指示,只要把仪器面板上的选择开关拨至电压档即可,测量方法同上,此时的测量精度与音响测得的精度相同。 9.现场检测工作的安全措施及注意事项 9.1 当测头进入到土层中磁环时,音响器会立即发出声音或电压表有指示,此时应缓慢地收、

水平位移几种监测方法

水平位移几种监测方法的分析和比较 【摘要:】本文对常用的几种水平位移的观测方法进行了比较系统的分析和比较,列出了这几种方法的原理,精度分析,优点以及不足,他们适用的场合等内容,对于在生产实践中进行水平位移观测时进行方法的选取具有一定的指导价值。 【关键字:】水平位移,视准线法,测小角法,前方交会法,极坐标法,反演小角法 当要观测某一特定方向(譬如垂直于基坑维护体方向)的位移时,经常采用视准线法、小角度法等观测方法。但当变形体附近难以找到合适的工作基点或需同时观测变形体两个方向位移时,则一般采用前方交会法。水平位移观测观测实践中利用较多的前方交会法主要有两种:测边前方交会法和测角前方交会法。另外还有极坐标法以及一些困难条件下的水平位移观测方法。 视准线法: 当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或测小角法。 原理:如下图所示,点A、B是视准线的两个基准点(端点),1、2、3为水平位移观测点。观测时将经纬仪置于A点,将仪器照准B点,将水平制动装置制动。竖直转动经纬仪,分别转至1、2、3 三个点附近,用钢尺等工具测得水准观测点至A—B这条视准线的距离。根据前后两次的测量距离,得出这段时间内水平位移量。 精度分析: 由基准线的设置过程可知,观测误差主要包括仪器测站点仪器对中误差,视准线照准误差,读数照准误差,其中,影响最大的无疑是读数照准误差。 可知,当即准线太长时,目标模糊,读数照准精度太差;且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。 另外此方法还受到大气折光等因素的影响。 优点: 视准线观测方法因其原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用,并且派生出了多种多样的观测方法,如分段视准线,终点设站视准线等。

水平位移几种监测方法

水平位移几种监测方法的分析和比较 【摘要:】本文对常用的几种水平位移的观测方法进行了比较系统的分析和比较,列出了这几种方法的原理,精度分析,优点以及不足,他们适用的场合等内容,对于在生产实践中进行水平位移观测时进行方法的选取具有一定的指导价值. 【关键字:】水平位移,视准线法,测小角法,前方交会法,极坐标法,反演小角法 当要观测某一特定方向(譬如垂直于基坑维护体方向)的位移时,经常采用视准线法、小角度法等观测方法。但当变形体附近难以找到合适的工作基点或需同时观测变形体两个方向位移时,则一般采用前方交会法。水平位移观测观测实践中利用较多的前方交会法主要有两种:测边前方交会法和测角前方交会法。另外还有极坐标法以及一些困难条件下的水平位移观测方法。 视准线法: 当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或测小角法。

另外此方法还受到大气折光等因素的影响。 优点: 视准线观测方法因其原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用,并且派生出了多种多样的观测方法,如分段视准线,终点设站视准线等。 不足: 对较长的视准线而言, 由于视线长,使照准误差增大, 甚至可能造成照准困难。当即准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。精度低,不易实现自动观测,受外界条件影响较大,而且变形值(位移标点的位移量)不能超出该系统的最大偏距值,否则无法进行观测。 测小角法: 当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或小角度法 原理:如下图所示,如需观测某方向上的水平位移PP′,在监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上.沿监测点与基准点连线方向在一定远处(100~200m)选定一个控制点B,作为零方向。在B

大坝GPS表面位移观测方案

1工程概况 参考本大坝监测设计资料 2编写依据 (1) 《工程测量规》GB50026-2007 (2) 《全球定位系统(GPS)测量规》GB/T 18314-2009 (3) 《精密工程测量规》GB/T 153-94 (4) 《国家三角测量规》GB/T 17942-2000 (5) 《测绘技术总结编写规定》CH/T 1001-2005 (6) 《本大坝安全监测设计方案》 (7) 《混凝土大坝安全监测技术规》SDJ336-89

3传统表面变形监测方案及精度估算 3.1传统表面变形监测方案 目前大坝常规的监测方法是将水平位移和垂直位移分开观测 3.1.1水平位移监测 水平位移监测有如下几种方法:引线法,视准线法,激光准直法,正/倒垂线法,前方交会法和精密导线法等。 引线法 该法采用一条不锈钢钢丝(直径0.6~1.2mm)在两端点处施加力,使其在水平面的投影为直线从而测出被测点相对于该直线的偏距。引线法的特点是:受外界影响小,应用普遍。其测量精度主要取决于读数精度,人工读数精度为±0. 2mm~±0.3mm,自动读数精度优于±0.1mm。但引线的两端一般要设有正倒垂线,以提供测量的基准,客观上增加了系统的成本。 视准线法 视准线法用于测量直线型大坝的水平位移,对于非直线型大坝,可采用分段视准线的方法施测。 视准线法又可分为活动砚牌法和测小角法。测小角法精度优于活动砚牌法。视准线法的特点是:工程造价低,精度低,不易实现全自动观测,受外界条件的影响比较大,而且变形值不能超出系统的最大偏距值。 激光准直法

激光准直法利用激光的单色性好和方向性强的特点,建立起一条物理的视准线作为测量基准,根据测量原理的不同可分为直接准直和衍射法准直,后者精度高于前者。对于衍射法准直,根据其传播介质不同,主要有2种方式:大气激光准直和真空激光准直。 a大气激光准直 大气激光准直让激光直接在大气中传播,应用对象是坝长小于300m`坝高较低的大坝,如泉水双曲薄拱坝(坝长109m),测量相对精度为10`5—10`6。大气激光准直由于受大气折射及喘流的影响而引起光束的抖动,测量精度低且不易实现自动化观测。最新发展是采用CCD技术,消除了光斑随机抖动的难题,实现了自动化监测,测量精度达+/-0.1mm,在南桠河闸坝顶及城电厂等工程中有着成功的应用。 b真空激光准直 真空激光准直将波带板激光准直系统置于一个真空管道中,减少了光束的折射和抖动的误差,综合精度高达1*10`7—2*10`7。与引线法相当,主要用于长坝`高坝的变形观测,已成功应用于太平哨`丰满`龚且`云峰`桓仁`宝珠寺等工程。激光准直法的发展方向是双向位移观测(垂直位移和上下游水平位移),在两端点处安装倒垂线作为水平位移的基准点,安装双金属标作为顺治位移的基准以实现双向位移观测。 正倒垂线法 正倒垂线既可以实现水平位移监测,又可以实现土坝的挠度观测。正垂线是一端固定于坝顶附近,另一端悬挂重锤,以便观测坝体各点间及坝体相对于坝基

相关主题
文本预览
相关文档 最新文档