当前位置:文档之家› 分布式能源并网的技术要求与管理

分布式能源并网的技术要求与管理

分布式能源并网的技术要求与管理
分布式能源并网的技术要求与管理

分布式能源并网的技术要求与管理

1.与电网的连接方式

燃气冷热电联供分布式能源系统实际用途不同。燃气冷热电联供分布式能源系统与电力系统之间存在如下的4种方式:

方式1:燃气冷热电联供分布式能源系统与电网系统并网不售电运行(并网不售电);

方式2:独立运行(孤网运行);

方式3:系统独立运行向附近的服务区域供电(微电运行);

方式4:燃气冷热电联供分布式能源系统与电网系统并网运行,且向当地电网输出电能(并网售电)。

目前在我国冷热电联供系统基本采用第一或者第二种方式运行,并网运行对燃气冷热电联供分布式能源系统运行的稳定性及可靠性大大增强。

2.并网运行的要求

分布式能源系统能否与电网安全、可靠、经济地并网,并作为城市电网电力的补充和备用,要保证电网和分布式能源系统自身的运行安全,应符合电网运行的相关技术要求。

2.1.当地配电系

并网配电系统要有足够的容量接纳分布式能源系统,在机组停运时能够有备用容量向用送电。

2.2.并网电压

当分布式能源系统与电网并联时,需要选择介入的电压等级,一般与当地配电电压级电网相联。在北京市内建设的分布式能源系统电力并网可选择400V、10.5kV、110kV三个电压等级。在选择输电等级上,要考虑输送容量的限制。

3.接入比例

为了保证电网的安全稳定,一定区域内的分布式电源比例不能过高,对于分布式能源在接入点所占比例参考国外技术导则中给出经验值小于30%。

4.电能质量要求

电能质量是分布式电源并网中最容易量化的技术标注,分布式能源系统并网运行要符合电网对于电网质量的相关规定。

GB12325-90电能质量供电电压允许偏差

GB12326-2000电能质量电压波动和闪变

GB/T14549-93电能质量公用电网谐波

GB/T15543-1995电能质量三相电压允许不平衡度

GB/T15945-1995电能质量电力系统频率允许偏差

GB/T18481-2001电能质量电能质量暂时过电压和瞬态过电压、CCHP并网运行应该符合上述国标的要求。

4.1.运行电压

分布式能源系统不应主动调节并网点的电压,应保证在运行时并网点的电压在规定的允许偏差之内。

国标规定10kV及以下三相供电电压允许偏差为额定电压的正负7%。220V单相供电电压允许偏差为额定电压的+7%、-10%。

4.2.运行频率

分布式能源系统要保证与电网同步运行,频率偏差不能超出规定范围。在国际中规定电网额定频率为50Hz,正常运行偏差值允许正负0.5Hz。

4.3.谐波

分布式能源系统不能对电网进行谐波污染,其电压电流谐波要满足国标的规定。如果需要应加装滤波器、隔离变压器等谐波治理设备。

4.4 在运行过程中分布式能源系统要限制注入配电系统的直流分量。

4.5 分布式能源系统并网运行不应给其他电力用户带来电压波动、闪变等问题。

5. 接地设计

并网运行的分布式能源系统的接地应该根据当地电网的接地安排进行合理设计。设计的基本原则是不能对现有店里系统接地系统和零序保护系统造成干扰,不能引起过电压等不正常工况,同时有利于分布式能源系统艰检测出系统故障。

6.继电保护装置

并网运行的分布式能源系统应根据发电容量、接入电压等级、接口类型等因素、配备相应各种发电机本体以及路线的保护。

6.1 继电保护的功能

6.1.1 在非正常状态将分布式能源系统与电网分离;

6.1.2 能够自动防止分布式电源设备向失电的配电系统电路重新供电。

6.2 继电保护的类型包括:

过电流保护、方向过流保护、接地过电流保护、接地过压保护、过/欠电压保护、过/欠频率等。

6.3分布式能源系统并网应具备主动和被动防孤岛效应保护。

6.4 当分布式能源系统和配电系统分开后,应监测并网点的电压和频率。待电压和频率都保持在允许偏差范围内2分钟后,发动机才能重新并网。

6.5建议分布式能源系统采用隔离变压器。

7.配电系统为配合分布式能源系统并网作出的调整

7.1在分布式能源系统并网的线路上加装方向过流保护装置。

7.2 调整重合闸时间,防止发生非同期重合闸,提高供电可靠性。

国家标准《能源管理体系—要求》标准草案编制说明

国家标准《能源管理体系—要求》 (征求意见稿)编制说明 (2008年8月11日) 一、任务来源 本国家标准由全国能源基础与管理标准化技术委员会提出并归口,由中国标准化研究院中标认证中心负责组织起草,按照国家标准化管理委员会《关于下达“2006年制修订国家标准项目计划”的通知》中的要求,原定于2007年完成相关标准的制定工作,但由于近两年来,有关国际组织一直积极努力促进能源管理体系国际标准的制定进程,并就能源管理体系标准的基本结构和内容进行了多次研讨,同时,国际标准化组织也将制定能源管理体系国际标准纳入议事议程。为了更好地借鉴国际经验并考虑到尽量与国际标准相协调等原因,对我国能源管理体系标准的制定进程有所推延。 项目编号:20068111-T-469 项目名称:能源管理体系-要求 制、修订:制订 上报单位:全国能源基础与管理标准化技术委员会(TC20) 二、能源管理体系标准研制的背景、意义及其理论基础

(一)能源管理体系概念的产生背景 能源管理体系概念的产生源自于对能源问题的关注。世界经济的发展,在不同程度上给各个国家带来了能源制约问题,发展需求与能源制约的矛盾唤醒和强化了人们的能源危机意识。而且人们意识到单纯开发节能技术和装备仅仅是节能工作的一个方面,人们开始关注工业节能、建筑节能等系统节能问题,研究采用低成本、无成本的方法,用系统的管理手段降低能源消耗、提高能源利用效率。一些思想前瞻的组织还建立了能源管理队伍,有计划地将节能措施和节能技术用于生产实践,使得组织能够持续降低能源消耗、提高能源利用效率,这不仅极大地促进了系统管理能源理念的树立,也因此产生了能源管理体系的思想和概念。 (二)建立、实施能源管理体系标准的意义 我国人均能源占有量远低于世界平均水平,能源供给不足已经成为社会经济可持续发展的一个重要制约因素。由于我国许多行业和地区能源利用效率低、浪费大,目前我国单位国内生产总值能源消耗量大大高于世界平均水平。且我国正处于高速工业化和城市化的发展阶段,这一阶段的能源供给矛盾尤为突出,因此,在一定程度上制约了我国的经济发展。 在国家宏观能源政策导向下,虽然能源管理工作在我国已经得到了重视并取得了一定成绩,但是组织能源管理的各项制度和措施之间尚未形成一个有机整体,缺乏全面系统地策划、实施、检查和改进,缺乏全过程系统的科学监控,系统的能源管理思想没有得到具体体现和贯彻实施。为了切实地加强组织的能源管理,促进节约能源并降低组织生产成本,需要有新的思路、新的管理理论和方法。推行规范化管理、建立能源管理体系,便是一条科学可行的途径。对我国现阶段实现“十一五”规划提出的节能目标、建设节约型社会、缓解能源紧缺对经济发展的制约矛盾具有十分重要的意义。 在组织内部建立规范的能源管理体系,使能源管理的各项手段和措施形成一个有机整体,全面系统地策划、实施、检查和改进各项能源管理活动,实施全过程管理,以期获得最佳的节能效果。建立和实施能源管理体系的重要意义在于: (1)有利于推进国家能源方面法律法规、政策、标准和其他要求的实施。建立能源管理体系标准能够有效地将企业现有的能源管理制度与能源有关的法律法规、能源节约和鼓励政策、能源标准,如能效标准、能耗限额标准、计量和监测标准等,以及其他的能源管理要求有机结合,形成规范合理的一体化推进体系,使组织能够科学的强化能源管理,降低能源消耗和提高能源利用效率,促进组织节能减排目标的实现。 (2)有利于组织能将节能工作落到实处。这是由于传统的能源管理方式,只解决了“谁来做、做什么”的问题,而“如何做”、“做到什么程度”,主要由执行者凭个人的经验甚至意愿来决定,导致有些节能工作不能达到预期的效果。通过系统的建立一套科学合理且具有可操作的能源管理体系,便能大大减少工作中的随意性,进而提高节能工作整体效果和效率。 (3)有利于及时发现能源管理工作中职责不清问题,为建立和完善相互联系、相互制约和相互促进的能源管理组织结构提供保障。通过识别节能潜力以及节能管理工作中存在的问题,并通过持续改进,不断降低能源消耗,从而实现组织的能源方针和能源目标。 (三)能源管理体系标准的基本理论基础 能源管理体系以降低能源消耗、提高能源利用效率为目的,针对组织活动、产品和服务中的能源使用或能源消耗,利用系统的思想和过程方法,在明确目标、职责、程序和资源要求的

能源管理培训手册版

目录0 引言 0.1能源管理手册发布令 0.2 管理者代表任命书 0.3 能源方针 0.4 能源目标和指标 0.5 企业概况 0.6 手册管理 1 边界和范围 2 规范性引用文件 3 术语和定义 4 能源管理体系 4.1总要求 4.2 管理职责 4.3 能源方针 4.4 策划 4.4.3 能源评审 4.4.4 能源基准 4.5实施与运行 4.5.1 总则 4.5.7 能源服务、产品、设备和能源采购 4.6检查 4.7管理评审

0 引言 0.1 能源管理手册发布令 本手册根据《能源管理体系要求》(GB/T23331-2012)编制,旨在运用先进的管理思想,建立和实施科学化、标准化、信息化的能源管理体系,不断降低企业能源消耗,提高能源利用效率,实现企业全面协调可持续发展的目标。本手册符合相关的法律、法规及其他要求,也符合本公司能源管理的实际需要,现予以批准发布,自2013年9月16日正式实施。 本手册是公司能源管理体系建立、实施、保持和持续改进的法规性、纲领性文件,是开展从制定能源方针、策划、实施与运行到检查、改进活动的行为准则,它体现了公司对内外部相关方的承诺,因此任何与能源有关的活动、行为或文件均必须遵循本管理手册的要求。 为此,公司从总经理到全体员工必须遵守和执行能源管理手册的各项规定,确保全体员工熟悉并理解公司的能源方针、目标及相关规定,树立节能意识,将有关要求贯穿于各自岗位的实际工作当中,为公司能源管理体系的有效和高效运行奠定基础,以满足内外部相关方的要求。 总经理:曹永兴 2013年9月18日 0.2 管理者代表任命书 为按照GB/T23331-2012《能源管理体系要求》等标准建立、实施、保持和持续改进能源管理体系,确保在管理体系运行、保持、改进过程中有关工作的有效开展,任命李达磊同志担任管理者代表,代表总经理对能源管理体系的建立、实施、保持和运行进行控制和协调,并向总经理汇报能源管理体系的运行情况以供评审,并提出改进建议。 总经理:曹永兴 2013年9月18日 0.3 能源方针 遵守法律法规,推行清洁生产; 优化能源结构,全面过程控制; 科学循环发展,建设绿色糖业。 释义: 依据公司实际情况以及造纸行业特点,及时收集获取与公司相关的节能法律法规、

多能互补分布式能源关键技术发展研究

多能互补分布式能源关键技术发展研究 发表时间:2019-12-27T16:51:52.270Z 来源:《中国电业》2019年第17期作者:丁阳[导读] 为了能够使中国能源清洁生产以及更加有效地发展,提高各个区域的能源使用效率摘要:为了能够使中国能源清洁生产以及更加有效地发展,提高各个区域的能源使用效率,促进区域稳定发展,对多功能互补分布式能源系统架构及综合能源管理系统进行讨论和分析是十分必要的。综述了目前中国国内外多能互补分布式能源主要技术的原理及特点,并重点介绍了燃气分布式能源、分布式光伏、蓄能系统、热泵技术等。 关键词:多能互补;燃气分布式;分布式光伏 能源的充足与多样性是当今社会经济发展以及进步的前提条件。但是,目前中国人口众多,人们越来越依赖能源,能源的消耗量也越来越大。就目前中国的发展形式而言,许多能源都是一次性的,这给中国的资源利用带来了很大的挑战,同时,还带来了许多垃圾和环境问题。所以,人们不能再依赖一次性的能源,要摒弃一部分不可再生能源。目前,中国面临着资源利用率较低、资源需求量较大和能源结构方面不合理等重大问题。面对这种状况,人们要大力发展可再生能源和一些节能环保的能源,构建多能互补分布式能源系统架构,实现能源结构的转型升级。 1中国国内发展现状多能互补包括终端一体化集成供能系统和风光水火储多能互补系统两种类型。为构建优良的多能互补分布式智慧能源系统,中国国内外研究团队不仅在多种能源组合方面尝试各种配置,在分布式电源、储能等方面也进行不断创新。分布式电源指规模容量较小,产生的电能不需要大规模、远距离输送,与用户就近布置,直接进行就地消纳的微小型发电系统,其一般包括传统发电模块、可再生能源发电模块等。相对于传统电源,分布式电源系统简单,各组件互相独立,容易控制,对负荷变动的适应性强,拥有很好的调峰能力。同时由于采用了新兴发电模块与引入了可再生能源,对温室气体及固体废弃物减排也有很大的促进作用。近年来,由于具有以上优点,分布式电源发展迅速,包括就近供电、海岛供电、保障供电、备用电源、“黑起动”电源等。 在研究综合能源系统的过程中,只有协同好各种能源之间的关系,才能够提高能源的利用效率,促进中国环境和经济的可持续发展。在构建协同互补关系时,需要考虑光伏、风机、天然气的关系,同时,要以低成本高效率为根本目标,制订出最优的模型和基本攻略;要深入研究冷热电联供系统的主动调度方法,对于化石燃料和光伏互补方面的内容也要进行全方面沟通,从整体上提高性能。另外,对以热定电和以电定热两种运行模式进行全面对比和分析,并针对不同的区域进行协同方法的规划。除此之外,还要深入研究可再生能源的不确定性以及差错,防范危险事故的发生,并针对冷热复合方面的内容进行针对性研究,以提高整个研究的精准度。 2多能互補分布式能源关键技术 2.1燃气分布式能源 燃气分布式能源指以天然气为主要燃料,在用户端就近布置,通过冷热电三联供技术实现能源梯级利用的能源供应模式。典型的燃气分布式能源系统包括原动机、余热锅炉、蒸汽轮机、发电机、制冷设备等。天然气在原动机(燃气轮机/内燃机/微型燃气轮机等)燃烧后,带动发电机进行发电,其中排出的高温烟气余热可以依据终端用户的需求采用多种利用形式,可以经过余热利用设备的换热过程,将水加热成高温水蒸气,高温水蒸气再进入蒸汽轮机内推动叶片旋转,然后通过发电机发电;从余热利用设备中排出的低温烟气可通过烟气驱动吸收式热泵来提供热水,而从蒸汽轮机排出的中温蒸汽可驱动热泵来提供冷量和热量。 2.2分布式光伏 光伏发电借助太阳能电池,利用光生伏特效应,把太阳光能直接转化为电能。分布式光伏是在用户侧就近布置,以自发自用、余电上网为原则,以平衡调节配电系统为特征的光伏发电装置。它以就近发电、并网、使用为原则,不仅可以有效提高光伏电站发电量,还能有效解决长距离传输的损耗问题。目前城市建筑物屋顶光伏应用最为广泛,同时光伏车棚、幕墙光伏等光伏建筑一体化也在不断推广。 目前,分布式光伏应用与新能源汽车紧密结合,利用车棚的屋面资源建设光伏车棚,同时同步配套建设充电桩,对新能源汽车进行充电。光伏车棚所发电量除供给车辆使用外,多余的电量供上网,从而减缓城市的用电压力,实现社会效益和环境效益的双赢。 2.3蓄能系统 蓄能其实就是指能量的储存,是把一种能量利用某种装置和介质转换成另一种形式的能量并储存的循环过程,在将来必要时以所需的能量形式释放使用。多能互补系统中由于供能侧与负荷侧的能源供求关系直接影响系统能否实现高效运行,蓄能系统可以保证能源系统的稳定运行,而且还能达到调和供需矛盾的作用。当用户负荷波动较大时,由于蓄能系统发挥了供需关系中的缓冲作用,可以使整个大系统仍然以高效率运行,确保全能量供应系统的整体性能。 2.4余热回收热泵 燃气分布式能源系统主要原动机设备有燃气轮机、燃气内燃机,也是系统主要的余热来源。就燃气内燃机而言,余热形式有烟气、高温缸套水、中冷水、滑油冷却热,烟气温度一般在300-500℃之间,高温缸套水温度一般在85-95℃,中冷水温度一般在40-50℃,滑油冷却热通过高温缸套水带走;就燃气轮机而言,余热形式为烟气,温度一般在450-600℃间。常见燃气分布式系统通过锅炉烟气余热利用设备可将排烟温度降低到80-120℃,这仍会造成部分能量浪费,影响系统综合能源利用效率。热泵技术作为一种可以将低位热能提升至高品位并加以再利用的设备,可进一步回收余热,在节能方面有良好应用前景。燃气分布式系统中,可通过烟气余热回收热泵技术,进一步挖掘余热潜力,将排烟温度可降低至40℃以下后将烟气排至室外;而热泵系统的进水由低温水提高至中温水后用于系統应用,由此提高系统综合能源利用效率,提高项目综合收益。 能源站在发电供热的同时,有大量的乏汽冷凝热(约20%)通过冷却塔排放到大气中,通过溴化锂吸收式热泵可有效回收乏汽冷凝热。由于吸收式热泵能将低温水的温度提升至比较高的温度,且机组单机供热量大,适合于北方集中供暖系统以及工艺用热和锅炉补水加热。在热泵加热一次网回水场景中,可抽取汽轮机低压蒸汽作为溴化锂吸收式热泵机组的驱动热源,回收发电系统乏汽冷凝热,将一次网回水温度从50℃提高至80℃供热。在不发生燃料消耗、不减少电厂发电量的情况下,可增加供热能力30%以上;在热泵加热锅炉给水场景中,可抽取汽轮机低压蒸汽作为溴化锂吸收式热泵机组的驱动热源,回收发电系统乏汽冷凝热来加热锅炉水,以减少锅炉能耗。 2.5污水源热泵

国家电网营销〔 〕 号国家电网公司分布式电源项目并网服务管理规范

国家电网公司关于分布式电源并网服务管理规则的通知 国家电网营销,2014?174号 各省(自治区、直辖市)电力公司,国家电网公司客户服务中 心: 为促进分布式电源快速发展,规范分布式电源项目并网服务 工作,提高分布式电源项目并网服务水平,公司制定了《国家 电网公司分布式电源并网服务管理规则(修订版)》,现予印发,请遵照执行。 国家电网公司 2014年1月28日(此件发至收文单位所属各级单位)

国家电网公司分布式电源项目并网服务管理规范 第一章总则 第一条为促进分布式电源快速发展,规范分布式电源并网管理工作,提高分布式电源并网服务水平,践行公司“四个服 务”宗旨及“欢迎、支持、服务”要求,按照公司《关于做好 分布式电源并网服务工作的意见(修订版)》、《关于促进分布式电源并网管理工作的意见(修订版)》(国家电网办[2013]1781号)要求制定本规范。 第二条按照“四个统一”、“便捷高效”和“一口对外”的基本原则,由公司统一管理模式、统一技术标准、统一工作 流程、统一服务规则;进一步整合服务资源,压缩管理层级, 精简并网手续,并行业务环节,推广典型设计,开辟“绿色通道”,加快分布式电源并网速度;由营销部门牵头负责分布式电 源并网服务相关工作,向分布式电源业主提供“一口对外”优 质服务。 第三条本管理规则所称分布式电源是指在用户所在场地 或附近建设安装,运行方式以用户侧自发自用为主、多余电量 上网,且在配电网系统平衡调节为特征的发电设施或有电力输 出的能量综合利用多联供设施。包括太阳能、天然气、生物质 能、风能、地热能、海洋能、资源综合利用发电(含煤矿瓦斯 发电)等。 第四条本规则适用于以下两种类型分布式电源(不含小水电):

T能源管理体系要求图文稿

T能源管理体系要求 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

G B/T23331-2012能源管理体系要求前言 本标准等同采用国际标准ISO 50001:2011《及使用指南》。 本标准按照GB/T 给出的规则起草。 本标准代替了GB/T 23331-2009,与GB/T 23331-2009相比主要变化如下: —增加了“边界”(见)、“持续改进”(见)、“纠正”(见)、“纠正措施”(见)、“能源消耗”(见)、“能源管理团队”(见)、“能源措施参数”(见)、“能源评审”(见)、“能源服务”(见)、“能源使用”(见)、“相关方”(见)、“内部审核”(见)、“不符合”(见)、“组织”(见)、“预防措施”(见)、“程序”(见)、“记录”(见)、“范围”(见)、“主要能源使用”(见)和“最高管理者”(见)等术语; —修改了“能源”(见)、“能源基准”(见)和“能源绩效”(见)的定义;—修改了有关“总要求”(见)、“管理职责”(见)、“能源方针”(见)、“策划”(见)、“实施与运行”(见)、“检查”(见)、“管理评审”(见)等各部分内容的具体要求; —删除了“能源因素”和“能源管理标杆”术语。

本标准中“能源”、“能源使用”、“能源消耗”等术语与我国能源领域中的习惯定义存在差别,此类术语仅应用于能源管理体系的实施、应用过程,从而确保与ISO 50001协调一致。 本标准还做了下列编辑性的修改: —删除了部分有关术语来源参考文件的批注; —删除了部分与我国应用情况无关的批注; —附录B中,将ISO相关标准修改为等同转化的国家标准并进行比较。本标准由国家发展和改革委员会、国家标准化管理委员会提出。本标准起草单位:中国标准化研究院、方圆标志认证集团、德州市能源利用监测中心、中国合格评定国家认可中心、宝山钢铁集团、中国电力企业联合会标准化管理中心、中国建材检验认证集团股份有限公司。本标准主要起草人:王赓、,李爱仙、李铁男、王世岩、朱春雁、李燕)、黄进、梁秀英、任香贵、桂其林、杨德生、李燕)、刘立波、周璐、周湘梅、张娣、石新勇。本标准于2009年3月首次发布,本次为第一次修订。 引言 制定本标准的目的是指导组织建立能源管理体系和必要的管理过程,提高其能源绩效,包括提高能源利用效率和降低能源消耗。本标准的实施旨在通过系统的能源管理,降低能源成本、减少温室气体排放及其他相关环境影响。本标准适用于所有类型和规模的组织,不受其地理位置、文化及社会条件等的影响。本标准能否成功实施取决于组织各职能层次的承诺,尤其是最高管理者的承诺。

分布式能源与微电网技术

分布式能源与微电网技术 摘要:在现代城市化进程加快发展下,能源需求量逐渐增长。分布式能源和微 电网技术能促进城市的绿色化和清洁能源的应用,达到节能减排的目的,也能为 现代智能电网建设提供有效依据,保证电网的安全与稳定。 关键词:分布式;能源;微电网技术 在中国经济快速提升下,工业化和城镇化进程加快发展,其存在的能源安全 问题更为突出。尤其是二氧化碳带来的全球变暖问题,引起社会的关注。在该发 展背景下,对城市的建设思想和发展模式有序转变,加大力度引进风力发电、太 阳能发电模式等,促进整体的规模化发展。 一、分布式能源和微电网技术的研究意义 第一,加强对分布式能源和微电网技术的研究,能确保清洁能源的有效应用。基于太阳能、风能等多个形式清洁能源的应用,能保证能源的灵活接入和智能化 控制,将其应用到智能终端进行消费,促使低碳城市建设目标的实现。第二,加 强对分布式能源和微电网技术的研究,也能提升总体的供电可靠性。基于分布式 发电的投入以及微网的统一管理,在先进系统和设备下,为电网运行提供强大保障,促使电能质量更可靠。第三,分布式能源和微电网技术的研究,也能为其提 供双向互动用电服务模式。基于微网、智能家居和分布式发电,能为系统提供统 一接口,维护用户和电网之间的相互沟通和交流,也能使用户获得新的体验。加 强对分布式能源和微电网技术的研究,将其作为智能电网建设中的主要部分,是 新时期建设与发展下的主要模式,也承担者社会建设职责。其中的分布式能源, 在智能集成模式下,能保证接入系统的安全与可靠,也能确保微网更灵活。所以,加强对分布式能源和微电网技术的应用,是城市绿色、清洁能源推动和应用的主 要条件,在节能减排工作中,将其渗透到工作中,对电网的安全运行也具备十分 重要的作用[1]。 二、分布式能源和微电网技术的关键 (一)容量配置 清洁能源具备明显的间歇式能源特点,受到天气情况影响较大,电能的输出 波动大。基于对分布式能源和微电网技术的应用,能够在各个单位组成模式下, 对其容量有效配置,确保风能、太阳能相互应用,发电单位和储能单元之间也能 互补。在整个分布式能源和微电网中,结合时间功率,为其输出曲线,也能避对 电网产生的影响。通过对储能系统应用,对分布式能源和微电网技术有效调度, 以达到清洁能源的充分应用。比如:储能电池,能对分布式能源生产中存在的问 题有效解决,尤其是在较小负荷下,达到电能的储存目的。如果负荷较大,将释 放电能,保证系统的科学稳定运行。如:将储存电池和系统交流侧进行链接,基 于储能单元和发电单元的协调,为其提供对平滑分布式能源的波动,避免给电力 系统带来较大冲击,维护其稳定性。储能电池也能对当地的交流负荷需要无功功率、负荷电流谐波的获取,以免电压波动、闪变现象的发生,这样才能达到有效 的节能效率[2]。 (二)接入方式 结合当前的建设标准和规程,需要在谐波、电压波动和电压不平衡度上给予 全面控制和探讨,也要为分布式能源和微电网技术的应用提出合理对策。分布式 能源和微电网利用分布发电和集中并网接入方式来实现。集中并网多为直流母线 汇流、各个发电单元在电能控制模式下,将其转变为直流母线。基于逆变器,将

能源管控中心系统项目技术要求

河北华丰煤化电力有限公司能源管理中心系统 招标文件 技 术 文 件 河北华丰煤化电力有限公司 二O一一年十月

目录 一.招标范围及内容 1.1总体说明 1.2范围及内容 二.项目概况 2.1项目的背景 2.2公司能源管理现状及技术要求 2.3项目实现的目标 2.4 工程进度安排 三.设计技术要求 3.1 项目设计采用的标准及规范 3.2 总体设计原则 3.3 EMS系统要求与设计原则 3.4系统设计要求 四.工程服务 4.1 技术要求 4.2 培训 4.3 系统设计 4.4 现场技术服务 4.5 项目验收 4.6 资料交付要求

一.招标范围及内容 1.1总体说明 1.1.1本规范书适用于河北华丰煤化电力有限公司(以下简称本公司)能源管控中心系统项目的技术要求,包括功能、性能等方面。本技术招标书提出了一般常规的技术要求,并未涉及到所有的技术要求和适用的标准,投标方应根据招标方技术招标书的要求,并结合自身产品的特点,向招标方提交一整套最新、最成熟的投标技术方案。 1.1.2投标方应向招标方提供企业相关资质,必须具有近3年在国内外3个以上能源中心的项目业绩,并提供用户证明。 1.1.3投标方如对本技术招标书有异议偏差(无论多少或微小)都必须清楚地表示在投标文件的“差异表”中,否则招标人将认为投标人完全接受和同意本技术招标书的要求。 1.1.4双方使用的技术标准发生矛盾时,按高标准执行。 1.1.5在签订合同过程中,招标方保留对本技术招标书提出补充和修改的权利,投标方应予以配合。将根据需要,双方应召开设计联络会,具体项目和条件由招标人、投标人双方协商确定。 1.2范围及内容 河北华丰煤化电力公司能源调度管控中心系统招标范围包括以下十方面的内容: 一、能源调度管控中心系统设计及管理咨询服务 能源管理模式和机制建设咨询服务、仪表及数据采集设计,工业网络设计、集中值守系统(包括生产过程数据)设计,能源监控大厅装饰及辅助设备的设计,能源调度监控软件功能需求设计、基础能源管理软件功能需求设计。 二、水计量、能源动力、电力等系统数据采集、改造等建设。 三、工业网络建设。 四、数字视频监视系统(包括重大危险源)建设。 五、集中值守系统(生产过程数据)建设,实现远程监视。 六、能源集中调度监控平台、能源基础管理信息平台建设,实现集中调度监控与协调管控,实现能源管理信息化,完成计划与实绩管理、调度优化支持、能源综合预测与优化平衡、能源设备管理、能源质量管理、能源综合分析管理、环保管理、能源报表与数据发布、与ERP系统改造等重点内容建设。 七、监控中心的大屏幕、装修、核心机房建设。 八、采集大宗商品计量数据,形成公司及各单位日、月、季、年度能源平衡表,分析公司及各单位工序能耗变化情况,为能源考核提供依据。 九、新一期改造能源项目建设,预留专用线、物流园区能源项目接口等。 十、生产调度系统建设。

分布式电源并网管理措施分析

分布式电源并网管理措施分析 摘要:应用分布式电源作为节能减排的一项重要内容。为新能源和低碳技术等领域发展提供了契机,分布式电源并网的需求日益增多。本文结合分布式电源并网工作中的一些问题,提出并网管理的具体措施。 关键词:分布式电源;并网;管理措施;分析 分布式电源应用前景广阔,国家陆续出台扶持分布式电源发展的政策,如何将这些扶持政策深入贯彻,更加高效推进分布式电源接入工作,提出符合实际的并网管理措施,将成为供电企业应该重点考虑的课题。 一、分布式电源界定范围 分布式电源是指在用户所在场地或附近建设安装、运行方式以用户侧自发自用为主、多余电量上网,且在配电网系统平衡调节为特征的发电设施或有电力输出的能量综合梯 级利用多联供设施、包括太阳能、天然气、生物质能、风能、地热能、海洋能、资源综合利用发电(舍煤矿瓦斯发电)等。 适用范围。目前有两种类型的分布式电源符合国家政策支持、程序简化的范畴。①l0kV及以下电压等级接入,且单个并网点总装机容量不超过6MW的分布式电源;②以35kV 电压等级接入,年自发自用电量大于50%的分布式电源,或

以l0kV电压等级接入且单个并网点总装机容量超过6MW,年自发自用电量大于50%的分布式电源。 范围适当扩展。由原来的只能以l0kV及以下电压等级接入,且单个并网点不超过6MW的范围,扩展至35kV及以下电压等级接入、以35kV接入,或以l0kV接入且总装机容量超过6MW的分布式电源,其中年自发自用电量大于50%的,才能享受并网更优惠的政策。 自发自用电量大于50%的界定方法。供电企业受理第二类分布式电源时,需要校对自发自用电量比例。具体方法:对于既有用户,根据分布式电源技术特性,估算的年自发自用电量应大于上一年该用户年发电量的50%;对于新报装用户,根据分布式电源技术特性和用户负荷特性,估算的年自发自用电量应大于上一年该用户年发电量的50%。 接入点为公共连接点、发电量全部上网的发电项目,小水电,除上述二类以外的分布式电源项目等其他类型的电源,接入时仍执行常规电源并网有关管理规定。 二、并网管理流程和内容 1.申请和受理。供电企业为分布式电源项目业主提供接入申请受理服务,协助项目业主填写接入申请表,接收相关支撑性材料。 2.接入方案的制定和确认。供电企业受理分布式电源接入申请后,依据分布式电源适用类别按期制定接入方案,并

天然气分布式能源技术及其应用 陈婧

天然气分布式能源技术及其应用陈婧 发表时间:2018-07-24T11:59:10.773Z 来源:《基层建设》2018年第15期作者:陈婧 [导读] 摘要:伴随着我国社会经济的高速增长,环保问题、电力短缺、负荷峰谷的巨大差异等一系列问题迅速显现。 南昌市燃气集团有限公司江西南昌 330039 摘要:伴随着我国社会经济的高速增长,环保问题、电力短缺、负荷峰谷的巨大差异等一系列问题迅速显现。以往的大容量、大机组等集中式发电装置建设模式早已无法应对现代化社会经济发展的实际需求。在此背景下,天然气分布式能源作为新兴的高效清洁能源,它的作用将会得到充分性的发挥。而天然气分布式能源技术在具体应用过程中存在的一系列问题,本文主要针对天然气分布式能源技术及其应用进行论述,望具有一定的可参考性价值。 关键词:天然气;分布式能源;技术应用 l天然气分布式能源系统概述 天然气分布式能源即是以天然气为燃料,设置于用户侧可以独立输出冷、热、电能的综合能源利用系统。天然气分布式能源系统的基本构成和工艺流程如图1所示,天然气充当燃料进入燃烧动力设备并驱动发电机发电,剩下的余热根据其品质不同来驱动设备制冷制热,进而实现能源的高效利用,以防止能源的浪费。天然气分布式能源系统实际发电效率按照动力设备的差异通常在25%~40%,总能源利用率通常保持在80%左右。天然气分布式能源系统的应用和推广,能够在很大程度上释放大电网在用电高峰阶段的压力与负荷。 图1 天然气分布式能源系统的基本组成及工艺流程 2天然气分布式能源系统的特征分析 2.1能源损失少,输送成本低 按照国际分布式能源联盟给出的报告,现阶段很大一部分电量损耗出现在输配环节,如果从用户端进行计算,集中式供电的能源利用效率不到35%。而天然气分布式能源的利用效率最高能达到80%甚至90%。直接设置在用户附近的天然气分布式能源和大电网联系起来,能在很大程度上补充大电网在可靠性方面的缺陷,进而有效地增强用户供电的安全稳定性,特别是当电网出现崩溃或者意外事故的状态下,依旧能够持续对重点用户予以供电。 2.2装机容量小,灵活性较大 与集中式功能系统相比,分布式能源的装机容量相对较小(kw级到Mw级)。其中,楼宇型天然气分布式能源系统装机容量一般保持在20MW内;而区域型天然气分布式冷热电联系统因为功能规模更大,因此装机容量一般是在100~200MW;装机容量大于200MW时,则予以限制。可以说,天然气分布式能源系统和用户的实际需求联系十分紧密,系统规模更小且灵活性较强,天然气分布式能源系统更有助于进行调节,具有十分突出的节能减排优势。 2.3系统集成多学科交叉协同 天然气分布式能源系统集成技术发展较快,同时表现出多种学科交叉协同的特点。所以,针对用户实际需求的集成方式有不同的类型,拥有十分明显的个性化特征,复制性较差。现代新型天然气分布式能源系统借助于选择有针对性的科学技术,通过系统优化与调整,可确保同时实现多个不同的功能目标,以符合不同用户的具体需求。 3天然气分布式能源技术的应用 3.1楼宇型天然气分布式能源 楼宇型天然气分布式能源系统主要应用于某一建筑的耗能需求,该系统的规模不大,因为在同一建筑中不同用户的能耗需求差异较小,同时负荷变化方向一般比较趋同,供需之间的缓冲空间较小,回旋余地也相对较小。因此,系统应当对用户的实际能耗需求变化进行第一时间的快速反应,联产系统的运行必须要根据负荷变化而调整,运行工况也必须要及时予以变化,始终处在一种相对被动的状态下,这就对系统的全工况性能要求有所提升。根据系统集成原则,可以选择输出能力比例可调、蓄能调节,另外将部分常规分产系统和联产系统进行整合,也可选择网电配合的优化运行模式来加以调整。燃气轮机—余热吸收式冷热电联产系统,根据其热力循环的差异可以划分为简单循环型和回热循环型两类。前者系统相对简单,维护便利,但发电效率仅仅可达30%左右,比如适用于用电需求较小但对冷热量需求较大的用户,冷热电比约为1.5-2.5;后者更加适合冷热电相对较低的用户,一般其冷热电比为1.0—1.5,热能用于发电的比例较高。近年来,楼宇型天然气分布式能源出现了新的发展趋势,即是以燃用天然气的微小型燃气轮机作为分布式能源系统的核心动力,广泛的应用在一些别墅或者庄园。 3.2区域型分布式冷热电联供系统 所谓区域型分布式冷热电联供系统,主要针对某一区域中部分建筑共同组成的建筑群,和单一建筑目标相比,建筑群的实际能耗需求更大,同时因为各个建筑自身的实际功能差异,其能耗需求也存在较大差异性。所以,不同用户的负荷变化难以同步,一般不会遇到同时高峰、低谷耗能的现象。因此,系统运行过程中必须充分结合负荷的同时使用系数,增强供需的回旋余地,进而降低系统全工况性能要求。所以,如果规模相对较大,能够选择更加高效的燃气轮机——汽轮机发电机组,确保燃气、蒸汽、冷气及热水的科学匹配,有效增强

校园能源管理控制技术

高校校园能源管理技术及平台的建设 随着我国经济的高速发展,建筑能耗特别是国家机关办公建筑和大型公共建筑高耗能的问题日益突出。学校作为大型公共机构建筑的重要组成部分之一,其特点是占地面积大,建筑分布广、数量多、类型多样,用能情况复杂,校园供配电系统、自来水管网和供暖管网面广量大。但目前校园能耗计量统计上普遍存在计量表计不全或者有表计还是采用人工抄表的方式,因而造成校园能耗的数据不完整、不准确、不全面的现象;由于缺乏准确而详实的能耗数据作为依据,因而无法进行能源的定量、定额管理、能耗动态趋势分析、能效的分析诊断,节能潜力的挖掘、节能效益的评价等方面的工作,另一方面,校内的大量能耗设备缺乏行之有效的手段进行节能控制,存在各种能源利用浪费的现象。 为了确保校园正常教学、科研的能源需求和实现有效节能,教育部和建设部联合颁布的《高等学校节约型校园建设管理与技术导则》。“节约型校园”能源管理系统的研究日益引起人们的重视。为了掌握校园建筑能耗的实时数据,对校园各种能源系统进行分布式监控与集中管理,通过“节约型校园”能源管理系统,可实现校园用能的实时在线分类、分项、分户监测和计量,自动化节能控制,能耗数据自动采集与存贮、数据统计与分析、数据远程传输、数据显示和打印、数据显示发布等,使学校能源管理部门对能源系统进行有效的监控与管理;为校园节能降耗研究、设计与改(建)造提供参考数据;对已实施节能改造的建筑提供节能效果真实数据。 高校校园建筑能耗管理和建筑节能平台的建设是一项涉及面广、时间跨度大、影响范围大的系统工程,因此引起了越来越多的高校重视。到目前为止,国内已经有几十家高校开展了校园建筑能耗管理平台的建设,采用的技术也各不相同,基本上实现了《高等学校节约型校园建设管理与技术导则》的指标,达到了节能的目的。当然,全国还有大多数的高校校园没有实施该项工作,加之现有系统的改造和升级还有很大空间,因此这一领域的科学研究和技术发展仍然如火如荼。 本书的出版面世将会极大地推进高校校园建筑能耗管理和建筑节能平台的建设工作,具有广阔的应用前景和参考价值。

分布式能源简介

分布式能源 一、定义 所谓“分布式能源”(distributed energy resources)是指分布在用户端的能源综合利用系统。一次能源以气体燃料为主,可再生能源为辅,利用一切可以利用的资源;二次能源以分布在用户端的热电冷(值)联产为主,其他中央能源供应系统为辅,实现以直接满足用户多种需求的能源梯级利用,并通过中央能源供应系统提供支持和补充;在环境保护上,将部分污染分散化、资源化,争取实现适度排放的目标;在能源的输送和利用上分片布置,减少长距离输送能源的损失,有效地提高了能源利用的安全性和灵活性。 二、简介 分布式能源是一种建在用户端的能源供应方式,可独立运行,也可并网运行,是以资源、环境效益最大化确定方式和容量的系统,将用户多种能源需求,以及资源配置状况进行系统整合优化,采用需求应对式设计和模块化配置的新型能源系统,是相对于集中供能的分散式供能方式。 国际分布式能源联盟WADE对分布式能源定义为:安装在用户端的高效冷/热电联供系统,系统能够在消费地点(或附近)发电,高效利用发电产生的废能--生产热和电;现场端可再生

能源系统包括利用现场废气、废热以及多余压差来发电的能源循环利用系统。国内由于分布式能源正处于发展过程,对分布式能源认识存在不同的表述。具有代表性的主要有如下两种:第一种是指将冷/热电系统以小规模、小容量、模块化、分散式的方式直接安装在用户端,可独立地输出冷、热、电能的系统。能源包括太阳能利用、风能利用、燃料电池和燃气冷、热、电三联供等多种形式。第二种是指安装在用户端的能源系统,一次能源以气体燃料为主,可再生能源为辅。二次能源以分布在用户端的冷、热、电联产为主,其它能源供应系统为辅,将电力、热力、制冷与蓄能技术结合,以直接满足用户多种需求,实现能源梯级利用,并通过公用能源供应系统提供支持和补充,实现资源利用最大化。

分布式电源接入管理规范

分布式电源接入管理规范 (讨论稿)

前言 为规范分布式电源接入管理,提高分布式电源接入运行管理水平,适应电网技术进步和当前管理工作的要求,特制定本规范。 本规范由*****提出并解释。 本规范由*****归口。 本规范主要起草单位:***** 本规范主要起草人:*****

目录 1 范围 (2) 2 规范性引用文件 (2) 3 术语和定义 (3) 4.总则 (4) 5前期管理(规划、设计) (4) 6 投产管理(调试、验收) (6) 7运行管理(正常、异常) (6)

1 范围 本规范规定了分布式电源接入配电网的运行控制管理规定和基本技术要求,适用于以同步电机、感应电机、变流器等形式接入35kV及以下电压等级配电网的分布式电源接入管理。 2 规范性引用文件 下列文件对于本规范的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本规范。凡是不注日期的引用文件,其最新版本(包括所有修改单)适用于本规范。 GB 2894 安全标志及其使用导则 GB/T 12325-2008 电能质量供电电压偏差 GB/T 12326-2008 电能质量电压波动和闪变 GB/T 14285-2006 继电保护和安全自动装置技术规程 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15543-2008 电能质量三相电压不平衡 GB/T 15945-2008 电能质量电力系统频率偏差 GB/T 17883 0.2S和0.5S级静止式交流有功电度表 DL/T 584-2007 3kV~110kV电网继电保护装置运行整定规程 DL/T 1040 电网运行准则 DL/T 448 电能计量装置技术管理规定 DL/T 614 多功能电能表 DL/T 645 多功能电能表通信协议 DL/T 5202 电能量计量系统设计技术规程 DL/T 634.5101 远动设备及系统第5-101部分传输规约基本远动任务配套标准 DL/T 634.5104 远动设备及系统第5-104部分传输规约采用标准传输协议集的IEC60870-5-101网络访问

能源管理体系认证规则

能源管理体系认证规则 目录 1。目的和适用范围 2.认证业务范围 3.认证依据 4。认证机构的条件和要求 5.认证人员的条件和要求 6。认证程序和要求 7.认证证书的管理 8.获证组织信息的报告 9。及其他管理体系认证的结合审核 10.受理能源管理体系认证证书转换申请11。认证机构认可和认证人员注册的要求12.附则 附表:能源管理体系认证业务范围

1。目的和适用范围 1。1为规范能源管理体系认证工作,保证能源管理体系认证的规范性和有效性,根据《中华人民共和国认证认可条例》和《认证机构管理办法》等相关法规规章,制订本规则。 1。2本规则适用于在我国境内开展能源管理体系认证的认证机构及认证活动的管理。 1.3能源管理体系认证遵循用能单位自愿原则。 2.认证业务范围 根据能源管理体系实施组织的能耗设备、设施和系统用能方式特点的共性,将能源管理体系认证按能源供给和能源需求两个方面划分为15个业务范围,详见附件. 3.认证依据 能源管理体系认证以国家标准GB/T23331《能源管理体系要求》和国家认监委发布或备案的认证认可行业标准《能源管理体系行业认证要求》为认证依据. 4。认证机构的条件和要求 为保证能源管理体系认证工作的专业性和有效性,国家认监委会同国家发展改革委向社会公布认证机构名单,并加强对能源管理体系认证机构的监督管理。认证机构开展能源管理体系认证活动应符合下列条件: 4。1经国家认监委批准并具有3年以上管理体系认证从业资

格的; 4。2了解国家节能法律、法规、政策和标准等; 4。3有10名以上经注册的能源管理体系专职审核员; 4.4申请机构一年内没有违反认证认可法规的记录; 4.5管理体系认证能力符合国家标准GB/T27021《合格评定管理体系审核认证机构的要求》,且在提交申请前两个年度内的认可评审中没有严重不符合; 4。6建立有内部制约、监督和责任机制,实现受理、培训(包括相关增值服务)、审核和作出认证决定等环节的相互分开; 4。7国家认监委、国家发展改革委规定的其他条件. 5。认证人员的条件和要求 5.1审核员的资格要求 认证机构从事能源管理体系认证的审核员应符合下列条件:5。1.1具备能源技术或管理相关学历及工作经验; 5.1。2取得中国认证认可协会能源管理体系审核员专业注册资格; 5.1.3两年内没有违反认证认可相关规定的记录. 5.2认证人员的专业能力要求 人员注册机构和认证机构每年应根据能源管理体系标准、审核和行业能源技术发展的实际情况确定能源管理体系认证人员持续教育的培训内容,对能源管理体系认证人员开展持续教育培

合同能源管理技术通则

合同能源管理技术通则 中华人民共和国国家标准GB/T 24915—2010 合同能源管理技术通则 General technical rules for energy performance contracting 2010-08-09发布 2011-01-01实施 国家质量监督检验检疫总局\国家标准化管理委员会发布 前言 本标准的附录A为资料性附录。 本标准由国家发展和改革委员会资源节约和环境保护司提出。 本标准由全国能源基础与管理标准化技术委员会归口。 本标准起草单位:中国标准化研究院、中国节能协会节能服务产业委员会、深圳达实智能股份有限公司、北京市大成律师事务所、山东融世华租赁有限公司、上海久隆电力科技有限公司、北京硕人海泰能源科技有限公司、北京华联律师事务所、施耐德电气(中国)投资有限公司、通标标准技术服务有限公司、挪威船级社(中国)有限公司、远大能源利用管理有限公司、新时空(北京)节能科技有限公司。 本标准主要起草人:李鹏程、陈海红、赵明、谌树忠、李铁牛、钱靖、于力、王康、程丹明、聂海亮、刘昕、何生、范莉莉、贾洲平、刘秋生、罗丽芬、李明奎、邢向丰。 合同能源管理技术通则 1 范围 本标准规定了合同能源管理的术语和定义、技术要求和参考合同文本。 本标准适用于合同能源管理项目的实施 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2587 用能设备能量平衡通则 GB/T 2589 综合能耗计算通则 GB/T 3484 企业能量平衡通则

分布式能源技术在数据中心的应用

分布式能源技术在数据中心的应用 对河北某数据中心的用能情况进行深入分析及核算,并设计了分布式能源冷电联供方案,通过天然气分布式能源,为某数据中心进行冷电联供,可保障某数据中心用能安全和降低能源费用,减少污染排放,并將传统供能方式作为比较对象,从经济效益、节能减排等方面进行分析。 标签:分布式能源;数据中心;天然气;燃气内燃发电机组 引言 据GE收集的数据,包括IBM的数据,整体上一个云计算基地的运营成本,接近于75%来自于能源方面的消耗。机房设备发热量大且全年不间断运行,冷负荷全年变化幅度小,波动范围为0.8~1.0[1]。 因此如何降低云计算基地的用能成本,采用清洁能源以减少云计算基地能耗对环境的影响,显得越来越重要。 天然气分布式能源技术是近年来在国内逐步推广的一种先进清洁能源绿色高效利用技术。该技术是集燃气轮机、内燃机、吸收式冷热水机、能效控制等高新技术和设备为一体的先进环保型能源系统,目前在发达国家得到了广泛应用,近年来得到了我国政府的积极倡导。 本文主要介绍河北某数据中心燃气分布式能源站的项目情况,对能源站的前期调研,项目建成后的经济指标进行分析。最后,依据上述分析,给出项目开发建议。 1 项目基本介绍 河北某数据中心项目为燃气分布式能源项目,位于河北省廊坊市,能源站所占建筑面积为1200m2。包括高、低压配电室、制冷机房、控制室等用房,其中分布式能源所用辅助用电引自自配动力变压器。本项目采用天然气分布式供能技术,以天然气内燃机发电机组、烟气热水型溴化锂机组为核心设备组成分布式能源站,结合数据中心原设计方案的市电和电制冷机,稳定地为数据中心提供电力和冷量,在冬季工况,数据中心采用自然冷却。 项目总建筑面积约为24566.6m2,设有满足T3标准的机柜1780个,其中电负荷19080kW、冷负荷13465kW。 2 负荷预测分析 2.1 气象条件

相关主题
文本预览
相关文档 最新文档