当前位置:文档之家› 应用声学201205水声换能器研究新进展

应用声学201205水声换能器研究新进展

应用声学201205水声换能器研究新进展
应用声学201205水声换能器研究新进展

水声换能器的基础知识

水声换能器基础知识 地球表面积的71%是海洋,海洋里蕴藏着丰富的生物和矿物质资源,是人类今后生存和发展的第二个空间。而声纳这一水下探测设备则是人类开发海洋的重要帮手,更是海军和民用航海事业不可缺少的组成部分。声纳设备的功能,就是收听水下有用信号并把它转变为电信号以供视听;或者自身产生一个电信号再转变为声信号在水介质中传播,遇到目标后反射回来再进行接收,转变为电信号供收听或观察,由此来判断被测物体的方位和距离。在这个水下电声信号的转换过程中,关键设备就是水声换能器或是换能器阵。 1. 水声换能器的应用 目前,水声换能器已经普遍地应用到工业、农业、国防、交通和医疗等许多领域。这里仅介绍几种在水下探测方面的应用: (1)在测深方面的应用:为保证航行安全,无论是军舰或是民船都要安装测深声纳;专门的航道检测船只都配备精度高、功能齐全的测深仪。根据测深深度的不同,测深换能器的频率和功率也相差甚远。以频率范围在10kHz~200kHz的较多,功率从数瓦到数十千瓦不等,其中,高频小功率用于内河或浅海,低频大功率用于远洋、大深度。对这类换能器的要求是波束稳定、主波束尖锐。 (2)在定位和测距方面的应用:测量航船对地的航行速度,大多采用多普勒声纳,利用四个性能相同的换能器分别排列与龙骨相垂直的左右舷方向上。一般工作频率在100kHz~500kHz。 (3)在海洋考察和海底地层勘探方面的应用:海底地质调查主要采用低频大孔径声纳。拖曳式声纳是当今装在活动载体上最大尺寸的声学基阵,作用距离也最远。水中成像方面,通常采用高频旁视声纳,在船底左右舷对称地沿龙骨平行方向装两个直线基阵,各自向海底发射扇形指向性声束,然后接收来自海底的反射波,由于海底凹凸不平反射波强度有别,在显示图像上就会出现亮度不同的图像,因为工作频率较高,声信号衰减较快,作用距离不远,现在试验的频率范围为数十千赫到500千赫。 2. 水声换能器的分类 换能器按照不同的机电能量转换原理可以分为电动式、电磁式、磁致伸缩式、静电式、压电式和电致伸缩式等。如廿世纪中叶开发的压电陶瓷是经过高压直流极化处理之后才具有压电性的,因此,被称作电致伸缩材料,是当今压电换能器的主流,尤其在超声换能器领域有极其广泛的使用价值。 水声换能器按照不同的振动模式可以分为以下几类: (1)纵向振动换能器:其振动方向与长度方向平行。在换能器的长度方向传播应力波,它的谐振基频取决于长度,是声纳系统中使用得最广泛的类型。 (2)圆柱形换能器:采用压电陶瓷圆管(或圆环),通过合适的机械结构,安装成所需的长度。它可以做成水平无指向性、垂直指向性可控的宽带换能器,是声纳系统中仅次于纵向换能器的一种类型,此外它还是水声计量中惯用的标准水听器和标准发射器的选型之一。 (3)弯曲振动换能器:弯曲振动换能器具有低频下尺寸小、重量轻的优点(与相同频率下、同一种有源材料的换能器相比较),其振动形式有弯曲梁、弯曲圆盘、弯曲板等。

水声通信技术研究进展及应用

水声通信技术研究进展及应用 摘要:水声通信是当前唯一可在水下进行远程信息传输的通信形式,由于其在民用和军事上都有重大意义,水声通信的研究一直是国内外研究的热点。文章介绍了水声 通信的历史,分析了水声通信发展的关键技术,讨论了水声信道的特点、系统组 成和国内外的发展现状。最后对未来的水声通信技术作了预测。 关键词:水声通信,通信信道,声纳,正交频分复用,声纳信号处理 1 引言 当今世界已进入了飞速发展的信息时代,通信是这一进程中发展最为迅速、进歩最快的行业。陆地和空中通信领域包括的两个最积极、最活跃和发展最快的分支--Internet网和移动通信网日臻完善,而海中通信的发展刚刚崭露头角。有缆方式的信息传输由于目标活动范围受限制、通信缆道的安装和维护费用高昂以及对其他海洋活动(如正常航运)可能存在影响等缺点,极大地限制了它在海洋环境中的应用。另外由于在浑浊、含盐的海水中,光波、电磁波的传播衰减都非常大,即使是衰减最小的蓝绿光的衰减也达到了40dB/km,因而它们在海水中的传播距离十分有限,远不能满足人类海洋活动的需要。在非常低的频率(200Hz以下),声波在海洋中却能传播几百公里,即使20 Hz的声波在水中的衰减也只有2—3dB/km,因此水下通信一般都使用声波来进行通信。而在这个频率范围内,声波在水中(包括海水)的衰减与频率的平方成正比,声波的这个特性导致了水下声信道是带宽受限的。采用声波作为信息传送的载体是目前海中实现中、远距离无线通信的唯一手段。 海洋水下信道是一个极其复杂的时间-空间-频率变化、强多径干扰、有限频带和高噪声的信道,这是至今还存在的难度最大的无线通信信道。研究水声通信必须综合物理海洋学、声学、电子技术和信号处理等多种学科和技术的知识,现在水声通信的研究已经成为各国科学和工程技术人员研究的热点之一。另外,海洋声学技术尤其是水声通信技术是国际发达国家对我国实行封锁的领域,因此研制具有自主知识产权的水声通信技术意义深远。 2 水声通信的历史 水声通信的历史可以追溯到1914年,在这一年水声电报系统研制成功可以看作是水下无线通信的雏形。世界上第一个具有实际意义的水声通信系统是美国海军水声实验室于1945年研制的水下电话,该系统使用单边带调制技术,载波频率8。33kHz,主要用干潜艇之间

现代水声通信技术发展探讨

现代水声通信技术发展探讨 近年来,随着各种新技术的层出不穷,对我国各行业的发展建设都起到了重要推进作用。尤其是在通信技术方面水声技术的发展也越来越成熟,国内外对其研究也越来越重视。目前水声通信主要有以下几种方式,如OFDM、扩频以及其他方式等都是比较常见的,且随着信息技术的不断创新与发展,利用网络技术进行无线电水声通信的研发已经进入比较成熟的阶段,对于实现海洋全方位监测有着不可忽视的重要影响,下面文章就其现代水声通信技术的发展现状进行详细地分析与阐述,希望可以为相关人员提供一定的参考。 标签:水声通信;相干通信;非相干通信 Abstract:In recent years,with the endless emergence of various new technologies,it has played an important role in promoting the development and construction of various industries in China. Especially in communication technology,the development of underwater acoustic technology is becoming more and more mature,and more attention has been paid to the research of underwater acoustic technology at home and abroad. At present,underwater acoustic communication mainly has the following several ways,such as OFDM,spread spectrum and other methods are relatively common,and with the continuous innovation and development of information technology,The research and development of radio underwater acoustic communication using network technology has entered a relatively mature stage,which has an important impact on the realization of marine all-directional monitoring. The following article carries on the detailed analysis and the elaboration to its modern underwater acoustic communication technology development present situation,in order to provide the certain reference for the related personnel. Keywords:underwater acoustic communication;coherent communication;incoherent communication 1 水聲通信技术的发展 早在欧美发达国家就已经将水声通信技术应用于军事和民用两方面,甚至随着计算机技术的发展,在国外一些机构组织研究中已经将计算机技术彻底融入至水声通信技术中并形成了水声通信网络化。水声技术作为海洋开发的重要技术之一,对于海洋的研究及开发有着不可忽视的重要影响。利用水声通信技术可以有效对海底各种信息的传输及数据进行精准分析,对于海洋资源的开发及运用都起到了很重要的影响。通过水声通信技术可以有规律的了解到海洋的全天候的变化和信息资料的收集,作为海洋系统之一水声通信技术的建立和水声通信网络的完善,可以为不同海洋开发客户资源提供全面的检测。甚至能够精准测出环境对海洋资源的影响和自然灾害的发生。在我国在水声通信网络计划方面还处于初级研究阶段,相信在不久的将来,同样可以结合各种先进技术,建立完善的水声通信

201110水声换能器在水下探测应用中的发展

水声换能器在水下探测应用中的发展 郑乙 (海军装备部,山西侯马043003) [摘要]水声换能器是利用声波对水下目标进行探测、识别以及定位或者进行水下通信和发报的主要工具。用来发射声波的换能器称为发射器。当换能器处于发射状态时,将电能转换成机械能,再转换成声能。目前利用压电材料设计的常规换能器阵元,尤其是低频换能器,由于其结构上的特点,使得体积与重量庞大,不仅使制造、使用与维修成本提高,而且对平台提出了特殊要求,并限制了组阵的规模和形式,从而约束了战术与技术指标。如何解决声基阵的组阵规模与组阵形式问题,如何将低频、高频声纳基阵的结构设计统一起来,并在新阵元结构的基础上,通过组合大规模共形基阵,提高声纳基阵的各项技术指标,无疑是发挥平台与水中兵器作战性能,提高我军水下作战能力的迫切需要。 [关键词]水声换能器;水下探测;应用;发展 1新型压电复合换能器 图3.1月芽式压电复合换能器阵元与阵元剖面图 图3.2钹式换能器阵元与阵元剖面图 月芽式压电复合换能器(如图3.1)和钹式压电复合换能器(如图 3.2)是当前国外重点研究的最具代表性的弯张换能器。这两种结构的 压电复合换能器由其金属端帽的形状而得名。月芽式结构的金属端帽腔 体为月芽式,而钹式结构的金属端帽腔体为翘钹式,腔体为空气,它们 都是通过金属与压电陶瓷复合制作而成。金属—压电陶瓷复合材料通过 板状、壳状和帽状金属与压电陶瓷复合,改变陶瓷内部的应力分布,从 而提高压电材料的性能。 其主要特点是设计简单、易于加工、成本低。月芽式压电复合换 能器和钹式压电复合换能器显现出良好的压电性能,这种结构通过帽状 金属与陶瓷介面的应力转换,改变陶瓷介面的应力分布,使复合材料的 纵向压电性能和横向压电性能产生加合作用,从而大大提高材料的压电 耦合性能d h 。其中月芽结构复合材料的d h较压电陶瓷高10~20倍。帽 状结构可以较压电陶瓷提高30~40倍。月芽和帽状金属—压电陶瓷复 合材料与压电陶瓷的性能比较见表3.1。 表3.1金属—压电陶瓷复合材料的性能 2钹式换能器 图4.1钹式换能器阵元基本结构剖面图 图4.2钹式阵元陶瓷片的径向位移转化为金属帽厚度方向位移 阵元结构:阵元基本结构如图4.1,它是由两片冲压成钹状的金属 片与压电陶瓷片粘结成型,金属片材料可以为钛合金、黄铜、合金钢 等。利用钛合金作为金属片材料,可以使钹式阵元具有较大的抗水压性 能,对于阵元直径dp=10mm的钹式换能器可以承受600米水深时的 压力。但是钛合金材料较黄铜和合金钢材料昂贵,因此在不考虑水深使 用时,钛合金材料相对受限。黄铜与合金钢材料相比,当它们同时应用 于钹式阵元时,黄铜材料的钹式阵元具有更好的压电性能。压电陶瓷的 材料也主要包括PZT-4、PZT-8和PZT-5,钹式换能器作发射换能器 使用时,常用PZT-4和PZT-8压电陶瓷,作接收换能器使用时,常 用PZT-5压电陶瓷。工作原理:当在钹式阵元的两极施加电压时,压 电陶瓷会产生纵向和横向的振动,压电陶瓷的纵向振动,使得阵元的两 金属片直接产生纵向位移;压电陶瓷片的横向位移使得金属片发生径向 的压缩或扩张,由于钹式的特殊形状,这同样导致金属片顶端产生纵向 的位移,如图4.2。压电陶瓷纵向和径向位移都会使得金属端帽产生纵 向的位移,而且两种位移叠加后的结果,即为金属端帽的位移,从而产 生了金属端帽位移的放大。 3钹式压电换能器的特点及应用前景 3.1钹式压电换能器的特点 1)阵元体积小,静压压电系数高,易与水介质匹配,具有十分大 的带宽;其中利用凹型阵元设计、特殊静液压平衡设计,突破基阵的工 作深度限制。 2)为水下平台与水中兵器提供一类全面适用的声传感器与阵列, 该类声基阵体积小、重量轻、适用范围广,采用共形阵方式,布阵安装 灵活,对平台结构无要求。 3)由于新型钹式阵元小而轻的特点,可以将其进行大规模组阵, 获得较高灵敏度(FFVS)和较大的发射幅压响应(TVRS)。 4)用钹式阵元设计理论与专用软件,将各个频段(下转第60页)

(完整版)第2章水声换能器

第2章 水声换能器1.水听器2.水声发射换能器3.实验 1.水听器 (1) 分类 根据其用途和校准的准确度 根据其使用材料 根据其用途和校准的准确度分为两级: A.一级标准水听器 建立水声声压基准,并通过它传递声学量单位。绝对法校准。 B.二级标准水听器(测量水听器)用作实验室中一般测试。比较法校准。 根据其使用材料可分为:a 、压电式:b 、动圈式(或电动式)c 、磁致伸缩式d 、光纤式 (2) 参数①水听器接收灵敏度 ②水听器的指向性③水听器的电阻抗④动态范围 ①水听器接收灵敏度水听器自由场电压灵敏度: 水听器在平面自由声场中输出端的开路电压与声场中放入水听器之前存在于水听器声中心位置处自由场声压的比值。 水听器声压灵敏度:水听器输出端的开路电压与作用于水听器接收面上的实际声压的比值。②水听器的指向性 · 指向性响应图 · 指向性指数 · 指向性因数 水听器的指向性图 表示水听器在远场平面波作用下,所产生的开路输出电压随入射方向变化的曲线图。 指向性指数DI 和指向性因数R θ 对于水听器,其指向性因数代表定向接收器输出端的信噪比比无指向性接收器输出端的信噪比提高的倍数。10lg DI R θ=

③水听器的电阻抗 在某频率下加于换能器电端的瞬时电压与所引起的瞬时电流的复数比。换能器电阻抗的倒数称为换能器的电导纳。 ④动态范围水听器主轴方向入射的正弦平面行波使水听器产生的开路电压等于水听器实际输出的带宽1Hz的开路噪声电压时,则该声波的声压级就是水听器的等效噪声声压级。水听器的过载声压级与等效噪声声压级之差。 水听器的过载声压级引起水听器过载的作用声压级。 水听器的等效噪声压级 (3)GB/T4128-1995 一、二级标准水听器声学性能指标 灵敏度 指在水听器输出电缆末端测得的声压灵敏度或自由场低频灵敏度。 按照国家标准规定用于1Hz~100kHz频率范围的压电型标准水听器(以下同): 一级:不低于-205dB(0dB re 1v /μPa) 二级:不低于-210dB(0dB re1v/μPa) 自由场灵敏度频率响应 自由场灵敏度频响相对于声压灵敏度在整个使用频率范围内,至少有三个十倍频程范围:一级:其灵敏度的不均匀性小于±1.5dB,在其他频率范围内灵敏度变化不超过+6dB或-10dB。 二级:其灵敏度的不均匀性小于±2dB,在其他频率范围内灵敏度变化不超过+6dB或-10dB。灵敏度校准及其准确度 低频段应用国标GB4130-84中规定的一级校准方法进行校准,其校准准确度优于±0.5dB;高频段应用国标GB3223-82中规定的互易法进行校准,其校准准确度应优于±0.7dB。 低频段应用国标GB4130-84中规定的二级校准方法进行校准,其校准准确度优于±1.0dB;高频段应用国标GB3223-82中规定的比较法进行校准,其校准准确度应优于±1.5dB。 指向性 一级:水平指向性:在最高使用频率下的-3dB波束宽度应大于300,在选定方向(或主轴)±50的范围内灵敏度变化应小于±0.2dB。 垂直指向性:在最高使用频率下的-3dB波束宽度应大于150,在选定方向(或主轴)±20的范围内灵敏度变化应小于±0.2dB。

水声通讯系统调研

0 引言 通信技术的发展主要集中在空间通信上。近年来,由于军事和海洋开发的要求,人们开始越来越重视水下通信系统的研究与开发。由于电磁波在水中传播时衰减严重,而声波是人类迄今为止已知的唯一能在水中远距离传播的能量形式,所以海洋中检测、通信、定位和导航主要利用声波。声波是目前水中信息传输的主要载体。因此,人们对水下通信的研究主要集中在对水声通信的研究之上。 水声通信是当前唯一可在水下进行远程信息传输的通信形式,由于其在民用和军事上都有重大意义,水声通信一直被人们所重视。文章介绍了水声通信的特点、系统组成、发展历史和国内外的发展现状。 1 水声通信的历史 水声通信的历史可以追溯到1914 年,在这一年水声电报系统研制成功可以看作是水下无线通信的雏形。世界上第一个具有实际意义的水声通信系统是美国海军水声实验室于1945 年研制的水下电话,该系统使用单边带调制技术,载波频率8.33 kHz,主要用于潜艇之间的通信。早期的水声通信多使用模拟频率调制技术。如在50 年代末研制的调频水声通信系统,使用20kHz 的载波和500Hz 的带宽,实现了水底到水面船只的通信。模拟调制系统不能减轻由于水声信道的衰落所引起的畸变,限制了系统性能的提高。 70 年代以来随着电子技术和信息科学突飞猛进的发展,水声通信技术也因此得到了迅速的发展,新一代的水声通信系统也开始采用数字调制技术。采用数字技术的重要性在于,首先,它可以利用纠错编码技术来提高数据传输的可靠性;其次,它能够对在时域(多途)和频域(多普勒扩展)上的信道畸变进行各种补偿。随着处理器技术的提高,各种采用快速解调的算法也随之发展起来。数字调制技术的主流为幅移键控(ASK)、频移键控(FSK)和相移键控调制(PSK)。 随着用于空间无线电衰落信道技术的发展,水声通信的下一代系统对数字编码的数据采用了频移键控(FSK)调制方式。作为一种能量检测(非相干)而不是相位检测(相干)算法,FSK 系统被认为对于信道的时间和频率扩展具有固有的稳健特性。采用数字技术有两个方面的好处:首先,它允许采用纠错编码技术来提高传输的可靠性;第二,它允许对信道混响做一定的补偿,包括时间和频率上的补

水声通信

水声通信 水声通信是一项在水下收发信息的技术。它的工作原理是首先将文字、语音、图像等信息经过编码、调制处理后,由功率放大器推动声学换能器将电信号转换为声信号。声信号通过水这一介质,将信息传递到远方的接收换能器,这时声信号又转换为电信号,经过放大、滤波和数字化后,数字信号处理器对信号进行自适应均衡、纠错等处理,还原成声音、文字及图片。 特点: 声波通信是水下远程无线信息传输的唯一有效和成熟的手段。声波是水中信息的主要载体,广泛应用于水下通信、传感、探测、导航、定位等领域。声波属于机械波(纵波),在水下传输的信号衰减小(其衰减率为电磁波的千分之一),传输距离远,使用范围可从几百米延伸至几十公里,适用于温度稳定的深水通信。 水介质与空气介质的特性不同,水声信道与空气中的无线电信道具有许多明显的差异。水下声信道是时间散布快速衰落信道,具有多普勒不稳定性。水声通信的衰耗因素较多,特别是在海水中传播,声传播损失不仅与频率有关,而且还受海水的盐度、温度、密度、深度以及传播距离等因素的影响,造成中远程水声信道带宽极其有限。水中的声速计算公式可见下式: c=1449.2+4.6T-0.055T2+(1.34-0.010T)(S-35)+0.016D 其中:r是海水温度,s是盐度,D是深度。海水中不均匀分布的声速剖面造成声线的弯曲,而声波的界面反射和随机散射又引起声波接收信号的多途效应。在实现高速通信时,有限的信道带宽和信号的多途传输会引起严重的码间干扰,造成接收数据的严重误码。同一声源发出的声波,在不同的海区或不同的季节,传播情况可能都不同。从信道中的各种限制因素到时变、空变性,水声信道都远比无线电信道复杂。 举例: (一)我国厦门大学以许克平教授为首的这个课题组出色地完成了国家交给他们的863项目,已经成功解决了在10公里之内水下信号相互清晰的传递,他们这个系统已达到实用要求。他们认真分析了世界上抗多途干扰的几种方法,最后课题组一致认为还是采用电磁波抗干扰的手段——跳频通信,它既能抗多途径干扰又能保证信息安全。 如果电磁波的跳频技术用在海中,频率资源充足的情况下传输一组信号,频率相差大时,电路内部做处理的时候,就用两个不同频率表示1和0,相当于颜色相差大,如:赤、橙、黄、绿、青、蓝、紫这一组信号代表一个文字,碰到干扰后虽然到达的时间不一致,但由于颜色区别大也就是频率相差大接收方就容易辨认了,这样就解决了信号干扰问题。经过攻关他们研制出一个全新的跳频技术,终于成功解决了多途径干扰问题。因为语音传输是水声通信最难攻克的瓶颈问题,要求精确度极高,难度也最大,语音传输成功的实现,使这个项目完全成功了,他们做到了。 (二)水声通信是当前海洋军事中最重要和关键的技术,该研究方向发挥厦门大学电子与海洋等相关学科专业的优势和特色,课题组完成了“水下图像水声传输实用样机研制”、“视频图像水下传输试验研究”等国家“863”相关课题项目, “水下图像传输系统”项目通过国家“863”专家组验收。该系统能在浅海域实现全方向无缆图象信息传输,每8秒传送一帧(160*100象素,十六级灰度),距离10公里。99年中国国际高新技术成果交易会

水声换能器

一、1-3-2型复合材料矩形线列换能器阵 (1) 矩形线列换能器阵结构 利用1-3-2型复合材料阵元组成的矩形线列换能器阵结构见图1,该线列阵由四片矩形1-3-2复合材料阵元构成,阵元沿直线紧密排列。四个1-3-2型复合材料阵元的外形尺寸、内部结构完全相同,均为25mm×25mm×5mm的矩形薄片,内部结构的每个周期中陶瓷柱截面为0.84mm×0.84mm,环氧树脂宽为0.43mm,陶瓷基底厚为0.5mm。1-3-2型复合材料矩形线列换能器阵的其它辅助部件包括换能器外壳、背衬、解耦材料、聚氨酯、电极引线和电缆等。其中外壳材料选用金属黄铜,形状为上部敞口的长方体空盒,外形尺寸为114mm×33mm×15mm,四面侧壁厚度为2mm,底座厚6mm,其中开有83mm×4mm×3mm 的走线槽。另外,底座中心还有一直径3mm的通孔,用于同轴电缆穿过。外壳的作用主要是定位阵元,承受压力和抗腐蚀等。设计中采用硬质泡沫塑料作为换能器的背衬和边条,背衬和边条厚度均为2mm,复合材料阵元通过环氧粘接剂粘在背衬上,背衬具有反声、绝缘的作用;每个阵元四周由硬质泡沫边条将阵元之问、阵元与外壳之间隔离,目的是解耦和绝缘。另外,背衬和边条还起到定位复合材料阵元的作用。换能器阵元上表面,即换能器辐射面被覆有2mm厚的聚氨酯匹配层,用于防水、透声。 图1矩形线列换能器阵结构 (2) 矩形平面阵结构 图2矩形平面阵结构 (a)整体结构(b) 剖面结构(c) 外壳结构

(3) 圆柱形换能器 (b) 图3圆柱形换能器参考附件中李莉的毕业论文112-128页 二、平面水听器及双激励加匹配层换能器 (非压电复合材料)参考杭州应用声学所

水声通信技术的发展及其应用

水声通信技术的发展及其应用 姓名:付卓林 班级:机电1015 学号:10223060

摘要:目前水下通信最主要最有效的手段——水声通信技术一直是国内外研究的热点技术,也是一门极具挑战性的课题。本文主要叙述水声通信技术的发展历程以及其在民生、军事等方面的应用,讨论了其发展前景。 关键词:水声通信,声纳,调制解调 Abstract Acoustic communication,the most commonly used and most effective method applied in submarine communication,has long been a hot spot for researchers,and is also a challenging subject.This text focuses mainly on the development of acoustic communication and its applications,andtakes a brief look into its prospects. 1引言 水声通信是一项在水下收发信息的技术,和光波、电磁波相比,声波在水下衰减 较慢,因此可用于水下长距离信号传输。水下通信有多种方法,但是最常用的是使用 水声换能器。水下通信非常困难,主要是由于通道的多径效应、时变效应、可用频宽窄、信号衰减严重,特别是在长距离传输中。水下通信相比有线通信来说速率非常低, 因为水下通信采用的是声波而非无线电波。常见的水声通信方法是采用扩频通信技术,如CDMA等。 2 水声通信技术的发展历程 水声通信技术起源于1914年,这一年水生电报系统研制成功。1945年,美国海军水 声实验室研制成功了第一个有实际意义的水下电话采用单边调制技术,载波频率8.3 3KHz,用于潜艇的通信。早期的水声通信多使用模拟频率调制技术。如在50 年代 末研制的调频水声通信系统,使用20kHz 的载波和500Hz 的带宽,实现了水底到水 面船只的通信。模拟调制系统不能减轻由于水声信道的衰落所引起的畸变,限制了系 统性能的提高。70 年代以来随着电子技术和信息科学突飞猛进的发展,水声通信技 术也因此得到了迅速的发展,新一代的水声通信系统也开始采用数字调制技术。采用 数字技术的重要性在于,首先,它可以利用纠错编码技术来提高数据传输的可靠性;其次,它能够对在时域(多途)和频域(多普勒扩展)上的信道畸变进行各种补偿。随着 处理器技术的提高,各种采用快速解调的算法也随之发展起来。数字调制技术的主流 为幅移键控(ASK)、频移键控(FSK)和相移键控调制(PSK)。随着用于空间无线电衰落 信道技术的发展,水声通信的下一代系统对数字编码的数据采用了频移键控(FSK)调

水声通信的信号处理实现

水声通信的信号处理实现 1.工作参数: 采样率:80ksps; FFT点数:2048; FFT输入精度:18比特; FFT输出精度:18比特,加6位精度控制; 输出波束为-60:8:60度,共16个波束; 波束上加30dB的切比雪夫窗用于抑制波束泄漏; 频域积分:500Hz~20kHz输出32或者64个频域区间,频域积分区间可通过软件控制; 时间积分:1、2、4、8个周期平均,可以通过软件控制。 因此:每次上传的数据为2边,每边16个波束,每个波束32个频率区间的时间平均。因此每一次上传采用一个数据包实现。 2.重要组成部分和实现: 水声通信信号的主要包括以下3个部分: 32个通道的2048点FFT处理; 32个通道的FFT由一个FFT的IP核实现,输入为实部为信号,虚部为0,输入是18位定点。输出的实部和虚部为18位,再加一个6比特的精度控制信息,表示数据低位舍去了多少位。 上面是2048FFT IP的实现的一些参数。它完成一次FFT的时间为3096个时钟周期。下面计算一下处理的时间,按照时钟周期计算。处理时钟为40MHz,2048点数据的采样时间为25.6毫秒,因此一个处理的时钟周期为1024000个时钟周期,由于通道数为32个通道,所以平均每个通道的时钟周期为32000个,远大于实际所需的时钟周期。因此采用一个FFT

模块就可以实现。 ●频域波束形成; 波束形成完成16个波束的频域乘累加运算。该运算的运算量为2个16个通道16个波束的运算。每个波束要16次的复数运算,一次波束共1024点。因此一次波束形成需要2×16×16×1024次复数乘累加运算。 该运算,频域的补偿值预先存储在ROM中,在运算的过程中调用。 ●波束域的频域积分、时间积分; 频域积分在频域波束形成输出时同时完成,完成后的波束积分放在缓存中,用于时间积分时。积分区间考虑做一个表,可以通过外部指令输入,也可以用内部的预先存储的值。 时间积分在频域积分的同时进行,它会把前几个周期的频域积分调出来进行积分运算。 3.系统实现的难点: 目前利用现有平台上实现信号处理的主要问题是RAM资源不足。目前硬件平台上FPGA内部有200KB的缓存和1MB的外部缓存。由于实现频域波束形成,32个通道同时操作,因此把中间数据放在外部缓存,调用时不方便。而内部资源比较有限,只有尽量减少中间结果的存储。 4.其他: 关于原始数据存储,由于该项目时间进度比较紧,建议采用目前的测试软件进行数据存储。目前的测试软件经过测试,不存在着数据丢包的问题。建议采用该软件在工业计算机上进行数据存储。 关于测向等后续算法,暂时还没有考虑。等把波束形成的算法完成后再把这部分功能加上去。

水声换能器与基阵的测量

水声换能器与基阵的测量 1. 阻抗 水声换能器的阻抗通常是指在水声换能器电端测得的电阻抗,具体是指在某一固定频率下加到换能器输入端的瞬时电压与流入换能器的瞬时电流的复数比,单位为欧姆,用符号Z表示。 水声换能器的电导纳则是电阻抗的倒数,即指在某一固定频率下流入换能器的瞬时电流与加到换能器输入端的瞬时电压的复数比,单位为西门子,用符号Y表示。 利用阻抗分析仪可直接测出换能器在串联模式下的电阻抗和并联模式下的电导纳,但该方法通常只用于换能器在小信号状态下的阻抗或导纳测量。 2. 发送响应及声源级 水声发射换能器的发送响应按参考电学量的不同分为发送电压响应、发送电流响应和发送功率响应。 在水下电声测量中,人们通常习惯用分贝来表示某一参量在某一空间点、某一时刻的幅度,相对于一个参考幅度的大小,即所谓级的概念,如声压级、声源级、发送电压响应级、发送电流响应级和发送功率响应级等等。 (1)发送电压响应 换能器发送电压响应是指,在指定方向上,离发射换能器有效声中心1m处的表观声压与加到换能器输入端的电压之比。 (2)发送电流响应 换能器发送电流响应是指,在指定方向上,离发射换能器有效声中心1m处的表观声压与流入换能器的电流之比。 (3)发送功率响应 换能器发送功率响应是指,在指定方向上,离发射换能器有效声中心1m处的表观声压的平方与输入换能器的电功率之比。 (4)声源级 发射换能器的发射声源级是指,在指定方向上,离发射换能器有效声中心1m处的表观声压级。 3. 指向性 指向性是指换能器的发送响应或自由场灵敏度随发送或入射声波方向变化的特性,一般用指向性图、指向性因数和指向性指数来表示。 指向性是一个方向的函数,通常用D(θ,φ)来表示,其中φ是水平角,θ是垂直角。因此指向性图是个空间立体图,而且它又是频率的函数,所以指向性图通常要标明测量的频率和测量平面。在实际测量中,指向性图是二维的,通常是指水平指向性图或垂直指向性图。 如果换能器是互易的,则它的发射指向性图和接收指向性图是相同的,但在高功率状态下,由于非线性的影响,发射指向性图和接收指向性图稍有差异。 指向性图通常要作归一化处理,因为它是任一方向上发送响应或接收灵敏度相对于参考方向(通常为声轴方向)上发送响应或接收灵敏度的变化曲线,即将轴向发送响应或接收灵敏度设为0dB,再将任意方向上的发送响应或接收灵敏度与轴向发送响应或接收灵敏度的比值随方向的变化用极坐标或直角坐标下的图形表示出来。 指向性图的特征参量通常用波束宽度和最大旁瓣级来表示。 波束宽度指从主轴的最大响应下降3dB(或6dB、10dB)时左右两个方向的角度,通常称之为下降3dB(或6dB、10dB)的波束宽度。 最大旁瓣级是指最大旁瓣比主轴的最大响应下降的分贝数。 4. 电声线性范围

水声通信技术

水声通信技术 水声通信是海洋中无线信息传输的主要技术手段。水声通信技术在海洋环境监测、水下航行器/载人潜水器作业等方面有着广泛应用。水声通信及网络可灵活地用于不同的速率载荷、覆盖距离、水体深度、网络结构的情景,可广泛地应用于海洋环境观测,实现水下不同空间位置多个观测设备之间的信息交互。同时,水声信道传输状态多变、海洋作业环境恶劣,对通信算法和设备可靠性有较高要求,水声通信及组网成为目前的研究热点。水声通信网络在国外已有20a发展历史,开展较早且具有代表性的是美国的Seaweb网络。美国的Seaweb网络经过多年的试验,实现了多固定节点的组网、自适应节点路由初始化、潜艇和AUV的数据接入、利用固定节点对AUV定位、分簇网络等多种功能,在基于卫星浮标的远海观测网、港口近岸的水下侦查网络及军用水下航行器指令传输及定位等应用中展示了很好的应用效果和技术先进性。欧洲也开展了试验研究。 近年来,在国家“863”计划、军方、国家自然科学基金等支持下,我国水声通信领域在通信算法、通信机研制、网络协议仿真、组网应用试验、协议规范制定等方面取得长足进步。本文主要介绍面向海洋环境监测的水声通信网技术,并对未来的技术趋势进行展望。

水声通信信道是复杂的信道,信道带宽窄、传播速度慢、时变性强、频率选择性衰落、噪声严重等不利因素在水声通信信道中都很明显。如何针对水声信道特点,采取高性能、可实现的通信算法,是水声通信领域的关键问题。物理层主要解决利用信道进行点对点的可靠通信的问题,物理层技术方案主要包括调制解调和纠错码两部分内容。对于水声通信中的调制解调技术,一般根据接收端是否恢复原始载波相位可划分为相干通信和非相干通信。

水声通信网络浅析

水声通信网络浅析 摘要:随着现代信息技术的飞速发展,覆盖了地面、空中、太空、水面的立体信息网已经形成并为各国的通讯、交通、资源调查、国防等各项业务服务。近年来,随着世界各国海洋开发步伐的加快,发达国家开始对水下声通信网进行研究。水声通信网络(UWN)承担着探测、数据通信的重要使命。它通常由海底传感器、自主式水下运载器(AUV)和水面站组成,水面站可进一步与Internet等主干网连接,在这种环境中人们可以从多个水下远程设备提取实时数据,并把控制信息传递给各个设备。本文将介绍水声通信网络的发展现状、关键技术、具体应用及发展前景。 关键词:水声通信网络发展现状 AUV 1.发展现状 目前陆上与空中的有线及无线通信已经很成熟,但是水下无线通信仍处于研究与试用阶段。随着人类对海洋探索、开发的不断深入,无论是军用领域还是民用领域,都对水下通信有着极大的需求。 尽管在水下可以使用电缆、光缆等有线方式进行通信,但是这些方式中节点无法移动,适用对象极其有限。电磁波在水下的衰减很大,要想在水中传播很远的距离就必须采用很低的频率,这就要求很高的传输能量和很长的天线,通常是难以实现的。目前水下通信方式主要有长波通信、水下激光通信、中微子通信、水声通信等。长波通信所需设备体积庞大,价格昂贵,通信效率低,目前主要用于基地与潜艇之间的远程通信;水下激光通信目前主要研究蓝绿激光水下通信系统,其穿透海水能力强,可实现基地与下潜400米以上的潜艇的通信,通信频带宽,数据传输能力强,但是灵活性不够;中微子通信是近年来新兴的技术,比较复杂,目前还仅仅停留在实验室阶段[2]。声波是惟一一种能在水介质中进行长距离传输的能量形式。水声通信是目前水下最合适的通信方式,得到了各发达国家研究机构和军方的高度重视。最早的水声通信可以追溯到20世纪50年代针对模拟数据的幅度调制(AM)和单边带(SSB)水下电话。随着VLSI(very large scale intergration,超大规模集成电路)技术的发展,在80年代早期水下数字频移键控(FSK)技术得到应用,它对信道的时间、频率扩散有一定的鲁棒性。80年代后期出现了水声相干通信,与非相干通信相比,水声相干通信技术可以提高有限带宽水声信道的带宽效率,但是由于水声信道的传播特性恶劣,水声相干通信刚开始并不被接受。90年代DSP(digital signal processing,数字信号处理)芯片技术和数字通信理论的发展使许多复杂信道均衡技术均可以实现,带动了水声相干通信技术的发展,并促使其开始转向对水平信道通信的研究。水下通信发展的一个里程碑式的关键环节是水下声学调制解调器的出现。最早的水下声学网络应用概念是1993年美国提出的自主海洋采样网(AOSN)。美国自1998 年起开始了称为“海网(SeaWeb)”的年度实验,意在验证水下声学网络的概念与实际使用效果。 2. 水声通信网络的特点与拓扑 水声通信网络的节点有以下几个特点:第一,移动性,因此必须是能够自组织的自主网络,遵循一定的网络路由方式;第二,由于采用水下无线通信方式,因此必须能够自适应海洋环境特性,能够解决物理层的技术挑战;第三,由于采用电池供电,所以能量受到限制;第四,具有数据传播功能,可把监测数据传达到岸上。 参照陆上无线传感器网络,水声通信网络的拓扑可分为两大类: 中心化的网络(centralized network)和分布式的对等网络(distributed peer-to-peer network)。 在中心化网络中,节点之间的通信是经过中心节点实现的,并且网络通过这个中心节点接入骨干网。这种配置的主要缺点就是存在单一故障点,即这个节点的失效将导致整个网络的失效。同时由于单个调制解调器的作用距离有限,整个网络的覆盖范围也就有限。

基于有限元法的水声换能器设计与分析

基于有限元法的水声换能器设计与分析 李道江,陈航,倪云鹿 基金项目:高等学校博士学科点专项科研基金(20070699018) 作者简介:李道江(1982-),男,博士研究生,主要研究方向:水声换能器及基阵的优化设计. (西北工业大学航海学院,西安 710072) 摘要:本文阐述了利用有限元法研究换能器的原理,利用有限元法对Tonpliz 型换能器进行 了模态分析和谐响应分析,根据分析结果制作出换能器实物并进行了消声水池试验测试。测 试结果表明:在一定误差范围内,有限元法能够有效地对换能器的工作状态进行仿真模拟, 并能准确地解算其工作参数,能为换能器的设计和优化提供可靠的技术指导。 关键词: 有限元法;水声换能器;模态分析;谐响应分析;试验测试 The Design and Analysis of Underwater Transducer based on the Finite Element Method LI Daojiang, Chen Hang, NI Yunlu (School of Marine Technology, Northwestern Polytechnical University, Xi'an 710072, China) Abstract: The theory of the Finite Elements Method is expatiated, the modal analysis and harmonious analysis is done by the Finite Elements Method, the transducer is made according to the analytic results and the experiments are carried out. The experiment result shows that: the working state of transducer can be simulated and the working parameters can be calculated by the Finite Elements Method in a certain error range, and dependable technique can be supplied for transducer’s design and optimization. Key words: the Finite Element Method; modal analysis ;underwater transducer ; harmonious analysis; experiment test 0 引言 Tonpliz 型换能器也称为喇叭型换能器,由于在几何尺寸、性能参数和安装等方面具有 的优点,目前在各型声纳中得到广泛的应用[1]。 目前水声换能器的研究方法有:等效网络法、瑞利法以及有限差分法和有限元法[2]。前两种方法都是通过等效网络分析换能器的工作特 性,其特点是结果精确但计算繁复。而有限元法将换能器复杂的结构化整为零,进行离散化, 建立局部矩阵,然后在集零为整,通过计算机对其进行数值计算,具有建模简单、运算速度 快、结果直观等特点[3]-[6]。本文利用有限元法研究了Tonpliz 型换能器,制作出实物并进行 了消声水池测试。 1 理论分析 有限元法处理结构问题的有限元方程为[7]: [][][]M u C u K u F ++= (1) 式中[]M 是质量矩阵,[]C 是阻尼矩阵,[]K 是刚度矩阵,u 是节点位移,F 是载荷矢 量。 式(1)中当F =0时,分析类型为模态分析,主要用于计算结构体的固有频率和振型,

第三讲让声纳系统耳目一新_新型水声换能器与换能器新技术

第三讲 让声纳系统耳目一新:新型 水声换能器与换能器新技术 3 莫 喜 平 (中国科学院声学研究所 北京 100080) 摘 要 文章综述了新型水声换能器设计与换能器新技术的重要进展.主要涉及:稀土超磁致伸缩材料、弛豫铁电材料、压电聚合物薄膜等新材料的发展及其水声换能器的新设计,基于新结构的新型水声换能器,利用不同能量转换机理的新型水声换能器,宽带换能器新技术等等;对于接收型换能器着重介绍了光纤水听器和矢量水听器.关键词 换能器,光纤水听器,矢量水听器 I nnova ti ons for sonar:new technology and desi gns for underwa ter acousti c transducers MO Xi 2Ping (Institute of Acoustics,Chinese Acade m y of Sciences,B eijing 100080,China ) Abstract Recent significant advances in the design and technol ogy of under water acoustic transducers are re 2viewed .These include the devel opment of functional materials for transducers,and new designs based on new ma 2terials such as rare earth giant magnet ostrictive materials,relaxor ferroelectrics and p iezoelectric poly mer fil m s .Novel types of transducers with innovative structures or different energy transfer mechanis m s,and the most recent technology for br oadband transducers are described .In the category of receiver type transducers discussi on is fo 2cused on the fiber op tic hydr ophone and vector hydr ophone . Keywords transducer,fiber op tic hydrophone,vect or hydr ophone 2005-09-30收到初稿,2006-01-19修回  Email:moxp@mail .i oa .ac .cn 1 引言 声波是迄今为止人类所掌握的唯一能在浩瀚大海中远距离传递信息和能量的载体,在陆地上人们利用电磁波研制了雷达,类似地人们利用声波这种信息载体研制了对水下目标实现探测、定位、识别和通信的电子设备———声纳.面对广阔的海洋,声纳肩负着重要的使命:触及浩瀚大海的各个角落、识别其中形色各异的事物、告诉人们海底世界的真面目、协助人们探究海洋的奥秘……成为水下通信导航、水产渔业、海洋资源开发、海洋地质地貌探测、军事武器等领域的重要手段.声波之所以成为水下最佳信 息载体,是由于在水介质中声波与电磁波等其他物 理场相比具有最小的衰减系数,可以获得远距离传播,这个优点使得声纳从最初利用超声波观察水下目标开始而不断发展起来.目前声纳的工作频段已经拓展到很宽的范围,主动声纳从几十赫兹到几十兆赫兹,被动声纳的低频端已经拓展到次声范围,在如此宽的频带内,按规定的信号形式激发产生声波和不失真地感知与接收水中声波信号的重要器件被称为声纳换能器或声纳基阵.这些器件是声纳系统最前端的设备,也是声纳系统与水介质相互作用、交流信息的“窗口”,是声纳系统功能的“实现者”,于

相关主题
文本预览
相关文档 最新文档