当前位置:文档之家› ANSYS中文翻译官方高级手册_adv3

ANSYS中文翻译官方高级手册_adv3

ANSYS中文翻译官方高级手册_adv3
ANSYS中文翻译官方高级手册_adv3

第三章自适应网格划分

何为网格自适应划分?

ANSYS程序提供了近似的技术自动估计特定分析类型中因为网格划分带来的误差。(误差估计在ANSYS Basic Analysis Procedures Guide第五章中讨论。)通过这种误差估计,程序可以确定网格是否足够细。如果不够的话,程序将自动细化网格以减少误差。这一自动估计网格划分误差并细化网格的过程就叫做自适应网格划分,然后通过一系列的求解过程使得误差低于用户指定的数值(或直到用户指定的最大求解次数)。

自适应网格划分的先决条件

ANSYS软件中包含一个预先写好的宏,ADAPT.MAC,完成自适应网格划分的功能。用户的模型在使用这个宏之前必须满足一些特定的条件。(在一些情况下,不满足要求的模型也可以用修正的过程完成自适应网格划分,下面还要讨论。)这些要求包括:

标准的ADAPT过程只适用于单次求解的线性静力结构分析和线性稳态热分析。

模型最好应该使用一种材料类型,因为误差计算是根据平均结点应力进行的,在不同材料过渡位置往往不能进行计算。而且单元的能量误差是

受材料弹性模量影响的。因此,在两个相邻单元应力连续的情况下,其

能量误差也可能由于材料特性不同而不一样。在模型中同样应该避免壳

厚突变,这也可能造成在应力平均是发生问题。

模型必须使用支持误差计算的单元类型。(见表3-1)

模型必须是可以划分网格的:即模型中不能有引起网格划分出错的部分。

表3-1 自适应网格划分可用单元

2-D Structural Solids

PLANE2 2-D 6-Node Triangular Solid

PLANE25 Axisymmetric Harmonic Solid

PLANE42 2-D 4-Node Isoparametric Solid

PLANE82 2-D 8-Node Solid

PLANE83 Axisymmetric Harmonic 8-Node Solid

3-D Structural Solids

SOLID45 3-D 8-Node Isoparametric Solid

SOLID64 3-D Anisotropic Solid

SOLID73 3-D 8-Node Solid with Rotational DOF

SOLID92 3-D 10-Node Tetrahedral Solid

SOLID95 3-D 20-Node Isoparametric Solid

3-D Structural Shells

SHELL43 Plastic quadrilateral Shell

SHELL63 Elastic Quadrilateral Shell

SHELL93 8-Node Isoparametric Shell

2-D Thermal Solids

PLANE35 2-D 6-Node Triangular Solid

PLANE75 Axisymmetric Harmonic Solid

PLANE55 2-D 4-Node Isoparametric Solid

PLANE77 2-D 8-Node Solid

PLANE78 Axisymmetric Harmonic 8-Node Solid

3-D Thermal Solids

SOLID70 3-D 8-Node Isoparametric Solid

SOLID87 3-D 10-Node Tetrahedral Solid

SOLID90 3-D 20-Node Isoparametric Solid

3-D Thermal Shells

SHELL57 Plastic Quadrilateral Shell

如何使用自适应网格划分:基本过程

进行自适应网格划分的基本过程包括如下步骤:

1.象其他线性静力分析或稳态热分析一样,先进入前处理器(/PREP7或Main Menu>Preprocessor)。然后指定单元类型,实参和材料特性,要满足上面提到的条件。

2. 用实体建模过程建立模型,用可以划分网格的面或体建模。用户不需指定单元大小也不用划分网格,ADAPT宏会自动划分网格。(如果要同时划分面和体网格,生成ADAPTMSH.MAC用户子程序-见后。)

3. 在PREP7中或在SOLUTION(/SOLU或Main Menu>Solution)中指定分析类型,分析选项,载荷和载荷步选项。在一个载荷步中仅施加实体模型荷载和惯性荷载(加速度,角加速度和角速度)。(通过ADAPTBC.MAC用户子程序可以施加有限单元载荷,固连和约束方程。通过ADAPTSOL.MAC用户子程序可以加入多个载荷步。这些子程序在后面还要讨论。)

4. 如果在PREP7中,退出前处理器[FINISH]。(可以在SOLUTION或在初始状态下激活ADAPT宏)。

5. 用下列方法激活自适应求解。

Command: ADAPT

GUI: Main Menu>Solution>Adaptive Mesh

注意,可以在热或结构分析中使用ADAPT宏,但不能在一次自适应分析中同时进行这两种不同类型的计算。在自适应网格划分的迭代过程中,单元的大小将作调整(在FACMN和FACMX指定的范围内)以减小或增加单元能量误差,直到误差满足指定的数值(或指定的最大求解次数)为止。

6. 当自适应网格计算收敛时,程序自动将单元形状检查打开[SHPP,ON]。然后返回SOLUTION或初始状态,这取决于激活ADAPT的状态。接下来可以进入POST1用标准操作进行后处理。

修改基本过程

选择自适应性

如果用户清楚某个部分网格划分的误差相对影响较小时(如应力水平较低且变化较小),可以将这些区域从自适应网格划分中排除以加快分析速度。同样,用户也许想将接近应力奇异点的部分(如集中载荷)排除掉。选择逻辑操作可以解决这类问题。

图3-1 选择自适应能改进有应力集中的模型

如果用户选择了一个关键点集,ADAPT宏仍将包含进所有的关键点(在选择的和未选择的关键点都作网格改动),除非将ADAPT命令(Main Menu>Solution>Adaptive Mesh)中KYKPS设为1。

如果用户选择了一个面或体集,ADAPT宏将只在选择的区域调整网格大小。此时必须在激活ADAPT宏之前在PREP7中对整个模型进行网格划分。

用用户子程序定制ADAPT宏

标准的ADAPT宏并不能满足特定的分析需要。例如,用户可能想同时对面和体进行网格划分,这在标准宏当中是不可以的。对于这种或其他一些类似情况,可以对ADAPT宏进行修改使之适用于特定的分析。ANSYS程序用宏这种方式完成自适应网格划分,本身就使得用户可以对其进行相应的修改以适应不同的要求。方便的是,用户不用总是通过修改ADAPT代码的方式来定制宏。宏的三个部分可以用用户子程序的方法来修改,这个方法将ADAPT宏和用户文件分开,用户可以生成子程序由ADAPT宏来调用。这三个部分是:网格划分命令序列,边界条件命令序列和求解命令序列。相应的用户子程序名为ADAPTMSH.MAC,ADAPTBC.MAC和ADAPTSOL.MAC。下面看一下这三个子程序的功能:

生成用户网格划分子程序(ADAPTMSH.MAC)

缺省情况下,如果模型中包含一个或多个体时,ADAPT宏将只对体划分网格而不对面进行划分。如果当前选择集中没有体,宏才对面进行划分。如果要同时对面和体进行划分的话,就要生成用户子程序ADAPTMSH.MAC来提供相应的操作。在重新划分网格之前要清楚所有这些实体中划分过网格的实体。子程序大致如下:

C*** Subroutine ADATMSH.MAC-Your name-Job Name-Data Created

TYPE,1 !指定划分网格的单元类型属性

ACLEAR,3,5,2 !清除本程序中要重新划分网格的面和体的网格

VCLEAR,ALL

AMESH,3,5,2 !对面3和5划分网格(ADAPT不对其他面划分网格)TYPE,2 !改变单元类型,划分体

VMESH,ALL !对所有体划分网格

请查阅TYPE,ACLEAR,VCLEAR,AMESH和VMESH命令得到更详细的解释。

我们建议将C***行包含在文件中以区别不同的宏。这一行将在任务的输出中出现,就可以确认ADAPT宏正确地调用了用户子程序。

生成用户边界条件子程序(ADAPTBC.MAC)

ADAPT宏在每次求解循环时都要清除并重新划分网格,因此模型的结点和单元也要不断的改变。这就使得所有的有限单元载荷,自由度固连,约束方程等施加在结点和单元的边界条件都不能使用。如果要包含这些有限单元约束时,就要使用用户子程序,ADAPTBC.MAC。在这个子程序中,可以选择结点然后定义有限单元载荷,自由度固连和约束方程。下面是一个ADAPTBC.MAC的例子:C*** Subroutine ADAPTBC.MAC-Your name-Hob Name-Data CReated

NSEL,S,LOC,X,0 !选择X坐标为0的结点

D,ALL,UX,0 !令选择的所有结点UX为0

NSEL,S,LOC,Y,0 !选择Y坐标为0的结点

D,ALL,UX,0 !令选择的所有结点UY为0

NSEL,ALL !选择所有结点

生成用户求解子程序(ADAPTSOL.MAC)

ADAPT宏中的求解命令序列很简单:

/SOLU

SOLVE

FINISH

这个缺省的命令序列只能求解单个载荷步。用户可以将其他的命令序列加入用户子程序ADAPTSOL.MAC中。

关于用户子程序的一些其他说明

用户可以象生成其他文件一样生成这些子程序。就是说可以用APDL语言的*CREATE命令(Utility Menu>Macro>Create Macro)和APDL的*END命令,也可以用外部的文件编辑器。当ADAPT宏调用这些子程序时,软件先搜索ANSYS根目录,再搜索用户根目录,最后是当前目录。因此,要确保其他目录中不包括与所用文件同名的文件。解释行(C***)会在输出文件中出现,可以通过它来检查是否使用了正确的文件。另外,通过在运行ADAPT宏之前用/PSEARCH,OFF(Utility

Menu>Macro>Macro Search Path)指定软件只搜索ANSYS根目录和用户当前目录可以从某种程度上减少文件混用的可能。不管这些子程序在什么位置,它们都能被找到,除非将ADAPT命令的KYMAC选项设为1。

定制ADAPT宏(UADAPT.MAC)

有些情况下用户需要修改ADAPT宏但不能通过单独的用户子程序的方式,那么就需要直接修改ADAPT宏的主体。但是,因为某些原因,我们不推荐直接对ADAPT宏进行修改。(例如,别的用户和你同时使用一个软件,在调用ADAPT宏时会发现宏被修改了!)因此,在ANSYS安装中支持一个宏的拷贝文件UADAPT.MAC,便于用户修改。

如果对UADAPT.MAC文件进行了修改,我们建议对修改后的文件取一个新的文件名。然后在调用时输入这个文件名。要知道的是,如果新文件名是一个“unknown command”,ANSYS将搜索上级目录,然后是登录的目录,最后是工作目录,直到找到这个宏为止。如果修改的宏只能为一个用户使用,那么存储的位置应在用户登录目录的层次之下(不能等于或高于这个目录层次)。这样,存储的低层次的文件可以通过*USE命令(Utility Menu>macro>Execute Data Block)来调用。

自适应网格划分的一些说明

下面的建议可能有助于自适应网格划分的使用:

不需指定初始网格大小,但指定大小可能有利于自适应收敛。如果用户指定了关键点网格大小,ADAPT宏在第一次循环时使用这个值,然后在随后的循环中进行调整。用下列命令指定单元大小:

Command: KESIZE

GUI: Main Menu>Preprocessor>-Meshing-Size Cntrls>-Keypoints-All KPs

Main Menu>Preprocessor>-Meshing-Size Cntrls>-Keypoints-Picked KPs

如果定义了线分段数或大小比例,ADAPT宏将在每次循环中都使用这个数值而不作改变。如果没有定义任何形式的网格份数,在初始网格划分时将使用缺省的网格大小[参见SMRTSIZE和DESIZE命令]。用下列方法指定线分段数或大小比例:

Command: LESIZE

GUI: Main Menu>Preprocessor>-Meshing-Size Cntrls>-Lines-All Lines Main Menu>Preprocessor>-Meshing-Size Cntrls>-Lines-Picked Lines

映射网格划分适用于2-D实体和3-D壳单元。但面的映射划分效果不明显。 映射网格划分适用于3-D实体。对体进行映射划分比自由划分效果要好的多。 总体上说,在自适应网格中有中间结点的单元比线性单元要好。

不要用集中载荷或尖角等引起奇异性的结构,因为此时ADAPT在这些奇异点处能量值将不收敛。如果模型中有集中载荷时,将其用施加在一个小面上的压力等效。(或通过选择将奇异部分排除在自适应网格划分之外。)

在许多情况下,用一系列相对小的区域替代少数几个大的区域将得到更好的网格划分。

如果最大响应位置已知或事先可以推测,就在附近放置一个关键点。

如果是在交互方式下运行ADAPT,而ANSYS在没有提示出错信息时突然退出,可以在Jobmame.ADPT文件中查看自适应网格划分部分以确定出错原因。

同样,在批处理方式下运行ADAPT时,可以看Jobname.ADPT确定出错原因。

如果模型中有些区域有过度的扭曲时,在网格划分中就会出错。在这种情况下,用KESIZE命令(Main Menu>Preprocessor>-Meshing-Size

Cntrls>-Keypoints-Picked KPs)中SIZE域指定扭曲区域附近关键点的最大

单元长度。同时,ADAPT命令中的FACMX将设为1,阻止过度扭曲部分单元

大小增加。

应当存储结果文件(Jobname.RST或Jobname.RTH)。在ADAPT运行过程中程序如果发生中断,结果文件中将保存ADAPT过程已完成求解的内容。

在自适应网格运行之前应输入SAVE命令(Utility Menu>File>Save as Jobname.db)。在程序出错中断时,可以用Jobname.db重新启动计算。

自适应网格划分实例

问题描述

求解如下图结构,在承受热载荷时E点的温度。几何尺寸和材料特性等参数

见下图所示。

/PREP7

SMRT,OFF

/TITLE, TWO DIMENSIONAL HEAT TRANSFER WITH CONVECTION

ANTYPE,STATIC

ET,1,PLANE55

MP,KXX,1,52.0

K,1

K,2,.6 K,3,.6,1.0 K,4,,1.0

K,5,.6,.2

L,1,2

L,2,5

L,5,3

L,3,4

L,4,1

AL,ALL

DK,1,TEMP,100,,1

DK,2,TEMP,100,,1

SFL,2,CONV,750.0,,0.0

SFL,3,CONV,750.0,,0.0

SFL,4,CONV,750.0,,0.0

FINISH

ADAPT,10,,5,0.2,1 !误差为5%,循环10次,网格大小比例在0.2到1之间LOOPS

/POST1

PLNSOL,TEMP !显示温度场分布

《ANSYS Verification Manual》中的实例:

VM193 二维热对流的自适应分析

VM205 均布载荷下椭圆薄膜的自适应分析

Ansys的热载荷及热单元类型

Ansys的热载荷及热单元类型 Ansys的6种热载荷 ANSYS共提供了6种载荷,可以施加在实体模型或单元模型上,包括:温度、热流率、对流、热流密度、生热率和热辐射率。 1. 温度 作为第一类边界条件,温度可以施加在有限元模型的节点上,也可以施加在实体模型的关键点、线段及面上。 2. 热流率 热流率(Heal Flow)—种节点集中载荷,只能施加在节点或关键点上,主要用于线单元模型。提示:如果温度与热流率同时施加在某一节点上,則ANSYS读取温度值进行计算。 3.对流 对流(Convection)是一种面载荷,用于计算流体与实体的热交换。它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的线段和面上。 4.热流密度 热流密度,又称热通量(Heat Flux),单位为W/m2。热流密度是一种面载荷,表示通过单位面积的热流率。当通过单位面积的热流率己知时,可在模型相应的外表面施加热流密度。若输入值为正,则表示热流流入单元:反之,则表示热流流出单元。它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的线段和面上。 提示:热流密度与对流可以施加在同一外表面,但ANSYS将读取最后施加的面载荷进行计算。 5. 生热率 如前所述,生热率既可看成是材料的一种基本属性,又可作为载荷施加在单元上,它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的关键点、线段、面及体上。 6. 热辐射率 热辐射率也是一种面载荷,通常施加于实体的外表面。它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的线段和面上。

Ansys的热单元类型 ANSYS 10.0热分析共提供了 40余种单元,其中包括辐射单元、对流单元、特殊单元以及前面所介绍的耦合场中-元等。其中常见的用于热分析的单元有16种: 下面一次对各单元进行介绍●MASS71 维度:1D、2D、3D 节点数:1 自由度:温度 性质:质量单元 几何形状 ●LINK31 维度:2D、3D 节点数:2 自由度:温度 性质:热辐射单元 几何形状

开源科学计算软件Scilab及其教学应用

龙源期刊网 https://www.doczj.com/doc/db8620240.html, 开源科学计算软件Scilab及其教学应用 作者:王凤蕊王文宏 来源:《中小学信息技术教育》2006年第11期 新的《高中数学课程标准》已将“数学建模”课设置为高中数学的一个专题课程。同时,高中物理、化学等课程的教与学活动也经常需要对各种问题进行数学建模和计算。因此,科学计算软件的使用能力应成为广大教师和学生的基本技能之一。 开源科学计算软件Scilab不仅能解决各种各样的计算问题,而且能将计算过程和结果可视化,同时还能模拟一些事物的变化过程。比如,在解析几何的学习中,可以借助Scilab动态可视化生成三维空间,加深学生的理解。 与商业科学计算软件Matlab相比,在功能上Scilab基本可以替代Matlab,且Scilab最诱人之处在于,它是一款开放源码的软件,使用正版软件完全免费。本文首先对Scilab的功能、特点、下载、安装与编程方法进行了简要介绍,最后结合两个实例探讨了其在中学教学中的应用。 一、Scilab简介 Scilab是法国国家信息与自动化研究院(INRIA) 开发的“开放源码”科学计算自由软件,它主要有数值计算、仿真与模拟、计算结果可视化等功能。Scilab数据类型丰富,可以方便实现各种矩阵运算,并允许用户在线建立各种自定义函数。此外,Scilab还具有图形显示功能,可实现各种常规形式的计算结果可视化。 Scilab是一种解释性语言,能运行于Windows、Linux以及Unix等操作系统环境下。作为开放源码的软件,Scilab的源代码、用户手册及二进制的可执行文件都是免费的。用户不仅可以在Scilab的许可证条件下自由使用该软件,还可以根据需要修改源代码,使之更加符合自身需要。此外,Scilab还包括一些应用于不同科学计算领域的工具箱,如科学计算、数学建模、信号处理、网络分析、决策优化、线性与非线性控制等。 二、Scilab的安装及运行

(仅供参考)ANSYS软件中常用的单元类型

ANSYS软件中常用的单元类型 一、单元 (1)link(杆)系列: link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。 link10用来模拟拉索,注意要加初应变,一根索可多分单元。 link180是link10的加强版,一般用来模拟拉索。 (2)beam(梁)系列: beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab 读入smisc数据然后用plls命令。注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。该单元需要手工在实常数中输入Iyy和Izz,注意方向。 beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。 beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。可见188单元已经很完善,建议使用。beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。 (3)shell(板壳)系列 shell41一般用来模拟膜。 shell63可针对一般的板壳,注意仅限弹性分析。它的塑性版本是shell43。加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁板结构时常要把板中面望上偏置),可以分层,等等。 (4)solid(体)系列 土木中常用的就solid45、solid46、solid65、solid95等。 solid45就不用多说了,solid95是它的带中结点版本。

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)、beam3是2D的梁单元,只能解决2维的问题。 2)、beam4是3D的梁单元,可以解决3维的空间梁问题。 3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构) 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。

ansys各种结构单元介绍

一、单元分类 MP - ANSYS/Multiphysics DY - ANSYS/LS-Dyna3D FL - ANSYS/Flotran ME - ANSYS/Mechanical PR - ANSYS/Professional PP - ANSYS/PrepPost ST - ANSYS/Structural EM - ANSYS/Emag 3D ED - ANSYS/ED

LINK1 —二维杆单元 单元描述: LINK1单元有着广泛的工程应用,比如:桁架、连杆、弹簧等等。这种二维杆单元是杆轴方向的拉压单元,每个节点有2个自由度:沿节点坐标系x、y方向的平动。就象在铰接结构中的表现一样,本单元不承受弯矩。单元的详细特性请参考理论手册。三维杆单元的描述参见LINK8。 下图是本单元的示意图。 PLANE2 —二维6节点三角形结构实体单元 单元描述: PLANE2是与8节点PLANE82单元对应的6节点三角形单元。单元的位移特性是二次曲线,适合于模拟不规则的网格(比如由不同的CAD/CAM系统得到的网格)。 本单元由六个节点定义,每个节点有2个自由度:沿节点坐标系x、y 方向的平动。本单元可作为平面单元(平面应力或平面应变)或者作为轴对称单元使用。本单元还具有塑性、蠕变、膨胀、应力刚化、大变形、大应变等功能。详细特性请参考理论手册。 下图是本单元的示意图。

BEAM3二维弹性梁单元 BEAM3是一个轴向拉压和弯曲单元,每个节点有3个自由度:沿节点坐标系x、y方向的平动和绕z轴的转动。单元的详细特性请参考理论手册。其它的二维梁单元是塑性梁单元(BEAM23)和变截面非对称梁单元(BEAM54)。 下图是本单元的示意图。 BEAM4三维弹性梁单元 单元描述: BEAM4是一个轴向拉压、扭转和弯曲单元,每个节点有6个自由度:沿节点坐标系的x、y、z方向的平动和绕x、y、z轴的转动。本单元具有应力刚化和大变形功能。在大变形(有限转动)分析中允许使用一致切线刚度矩阵选项。本单元的详细特性请参考理论手册。变截面非对称弹性梁单元的描述参见BEAM44,三维塑性梁单元的描述参见BEAM24。

matlab中文电子书汇集

《MATLAB数据处理与应用》 https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8787743&extra=&page=1 《战胜MATLAB必做练习50题》--满晓宇/罗捷--北京大学出版社--2001-11, https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8684485&highlight=matlab matlab学习指导教程 https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=9077453&highlight=matlab 《Matlab宝典》 https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8787742&highlight=matlab MATLAB命令大全.pdf, https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8872051&highlight=matlab MATLAB函数速查手册DOC文档, https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=9036014&highlight=matlab matlab聚类工具箱教程, https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8858415&highlight=matlab MATLAB高效编程技巧与应用25个案例分析, https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=9062882&highlight=matlab 《MATLAB 遗传算法工具箱与应用》---雷英杰, https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8787725&highlight=matlab 《基于MATLAB的系统分析与设计- - -模糊系统》---楼顺天---西安电子科技大学出版社, https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8666654&highlight=matlab 自动控制:反馈的力量——使用MATLAB---特费斯---西安交通大学出版社 https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8666654&highlight=matlab MATLAB高级语言及其在控制系统中的应用---韩九强---西安交通大学出版社---1997年06月第1版 https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8666654&highlight=matlab MATLAB有限元分析与应用---P.I.Kattan---清华大学出版社----2004-04-01,版次:1 https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8666654&highlight=matlab 反馈控制问题:使用MATLAB及其控制系统工具箱---(美)弗雷德里克(Frederick,D.K.),(美)周(Chow,J.H.),张彦斌译----西安交大, https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8666654&highlight=matlab 先进PID控制及其MATLAB仿真---刘金琨著----电子工业出版社 https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8666654&highlight=matlab MATLAB语言工具箱---施阳...[等]编著---西北工业大学出版社 https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8666654&highlight=matlab Matlab工具箱应用指南——应用数学篇---李涛贺勇军刘志俭等----电子工业出版社---2000年05月第1版 https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8666654&highlight=matlab 模糊控制及其MATLAB应用---张国良... [等] 著---西安交通大学出版社 https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8666654&highlight=matlab 基于MATLAB的系统分析与设计——时频分析---胡昌华等编著---西安电子科技大学出版社----2001-7 ,印次: 1 https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8666654&highlight=matlab MATLAB语言与自动控制系统设计---魏克新等编---机械工业出版社---2001-05-01,版次:1 https://www.doczj.com/doc/db8620240.html,/bbs/viewthread.php?tid=8666654&highlight=matlab

ANSYS_Beam188单元应用

Beam188/189单元基于Timoshenko梁理论(一阶剪切变形理论:横向剪切应变在横截面上是常数,也就是说,变形后的横截面保持平面不发生扭曲)而开发的,并考虑了剪切变形的影响,适合于分析从细长到中等粗细的梁结构。该单元提供了无约束和有约束的横截面的翘曲选项。 Beam188是一种3D线性、二次或三次的2节点梁单元。Beam189是一种3D二次3节点梁单元。每个节点有六个或者七个自由度,包括x、y、z 方向的平动自由度和绕x、y、z 轴的转动自由度,还有一个可选择的翘曲自由度。该单元非常适合线性、大角度转动或大应变非线性问题。 beam188的应力刚化选项在任何大挠度分析中都是缺省打开的,从而可以分析弯曲、横向及扭转稳定问题(进行特征值屈曲分析或(采用弧长法或非线性稳定法)破坏研究)。 Beam188/beam189单元支持弹性、塑性,蠕变及其他非线性材料模型。这种单元还可以采用多种材料组成的截面。该单元还支持横向剪力和横向剪应变的弹性关系,但不能使用高阶理论证明剪应力的分布变化。下图是单元几何示意图:该单元的几何形状、节点位置、坐标体系和压力方向如图所示,beam188 由整体坐标系的节点i 和j 定义。 对于Beam188梁单元,当采用默认的KEYOPT(3)=0,则采用线性的形函数,沿着长度用了一个积分点,因此,单元求解量沿长度保持不变;当KEYOPT(3)=2,该单元就生成一个内插节点,并采用二次形函数,沿长度用了两个积分点,单元求解量沿长度线性变化;当KEYOPT(3)=3,该单元就生成两个内节点,并采用三次形函数,沿长度用了三个积分点,单元求解量沿长度二次变化; 当在下面情况下需要考虑高阶单元内插时,推荐二次和三次选项: 1)变截面的单元; 2)单元内存在非均布荷载(包含梯形荷载)时,三次形函数选项比二次选项提供更好的结果。(对于局部的分布荷载和非节点集中荷载情况,只有三次选项有效); 3)单元可能承受高度不均匀变形时。(比如土木工程结构中的个别框架构件用单个单元模拟时) Beam188单元的二次和三次选项有两个限制: 1)虽然单元采用高阶内插,但是beam188的初始几何按直线处理; 2)因为内节点是不可影响的,所以在这些节点上不允许有边界(或荷载或初始)条件。

scilab中文帮助手册

(1)程序设计programming: abort: 中断计算 说明:abort命令中断当前计算并给出Scilab的提示符(“-->”)。如果用户使用pause命令进入高层界面,可使用abort命令回到初始层界面,出现Scilab的提示符(“-->”)。 Ans: 计算结果 说明:如果表达式的值没有被赋与任何变量,那么Scilab自动产生一个变量Ans,用来存储当前表达式的值。 backslash (\):矩阵左除 调用格式:如x=A\b 说明:backslash (\)代表矩阵左除,x=A\b是方程A*x=b的解。 如果A是一个方阵或者可逆矩阵(nonsingular或者invertible),那么x=A\b是方程A*x=b的唯一确定的解,且等于x=inv(A)*b. (通俗的说,就是方程数目等于未知数个数,所以解唯一。如A=[1 2 1;3 2 2;2 3 1],b=[8;13;11])如果A不是一个方阵,那么x是最小二乘解,此时,该解x使norm(A*x-b)最小。 (通俗的说,就是方程数目不等于未知数个数。 如果方程数目大于未知数个数,本来是没有准确解的,但可以根据最小二乘法原理拟合出最佳解。如A=rand(3,2);b=[1;1;1]。此时,由于A不是一个方阵,无法使用inv(A)命令,因此x=A\b 等效于x=pinv(A)*b. 如果方程数目小于未知数个数,应该有无穷个解,用x=A\b命令得出的解只是其中的一个解,而用pinv(A)*b命令得出的解则比较粗糙,没有用x=A\b命令得出的解精确。) 如果A是一个列满秩矩阵(矩阵的秩等于列数),那么此最小二乘解x=A\b是唯一能使norm(A*x-b)最小的解。 如果A不是一个列满秩矩阵,那么此最小二乘解x=A\b不能使norm(A*x-b)最小,使norm(A*x-b)最小的解应该是x=pinv(A)*b)。 inv(A)要求A是方阵,pinv(A)则不要求A是方阵 bool2s :将布尔矩阵转化为0、1矩阵 调用格式:bool2s(x) 参数:x是一个布尔向量或者布尔矩阵或者常数矩阵。 说明:如果x是一个布尔矩阵,bool2s(x)返回一个0、1矩阵,1代表真,0代表假。如果x 是一个普通矩阵,bool2s(x)也返回一个0、1矩阵,1代表非0的数字。 boolean:它表示Scilab对象或者布尔型变量和操作符与或非& | ~ 说明:布尔型变量为%T(代表真)%F (代表假)。这些变量可以用来定义矩阵。布尔型型矩阵可以像普通矩阵操作,如元素的抽取、插入与连接,但不能进行如( +, *, -, ^, )等运算,布尔型型矩阵有三个特殊的操作符号:与或非& | ~ brackets括号:包括左右圆括号(),左右方括号[]. 方括号调用格式:[a11,a12,...;a21,a22,...;...] 圆括号调用格式: [s1,s2,...]=func(...) 参数a11,a12,... : 任何合适的矩阵(实数, 多项式, 有理数等); 参数s1,s2,... : 任何变量名; 说明:[ ]用于向量定义或者矩阵连接或者用在调用函数的左边存储变量,而()用于函数调用。[ ]在用于矩阵连接时,空格、逗号用来隔开每“行”中的元素,分号、回车则用来隔开各“行”。[ ] 用在调用函数的左边存储变量时,必须用逗号隔开个变量。

ANSYS中不同单元之间的连接问题

一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约事方程。例如: (1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。 (2)梁与壳有公共节点怒可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的rotz是虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的关系。 (3)梁与体则要在相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。 (4)壳与体则也要相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。 上面所述的不同单元之间的接连方法主要是用耦合自由度和约束方程来实现的,有一定的局限性,只适用于小位移,下面介绍一种支持大位移算法的方法,MPC法。 MPC即Multipoint Constraint,多点约束方程,其原理与前面所说的方程的技术几乎一致,将不连续、自由度不协调的单元网格连接起来,不需要连接边界上的节点完全一一对应。 MPC能够连接的模型一般有以下几种。 solid 模型-solid 模型 shell模型-shell模型 solid 模型-shell 模型 solid 模型-beam 模型 shell 模型-beam模型 在 ANSYS中,实现上述MPC技术有三种途径。 (1)通过MPC184单元定义模型的刚性或者二力杆连接关系。定义MPC184单元模型与定义杆的操作完全一致,而MPC单元的作用可以是刚性杆(三个自由度的连接关系)或者刚性梁(六个自由度的连接关系)。 (2)利用约束方程菜单路径Main Menu>preprocessor>Coupling/Ceqn>shell/solid Interface创建壳与实体模型之间的装配关系。 (3)利用ANSYS接触向导功能定义模型之间的装配关系。选择菜单路径Main

ansys梁单元

当一个结构构件的一个方向尺寸远远大于另外两个方向的尺寸时,3D构件就可以理想化为1D构件以提高计算效率。这样的单元有两类:以承受轴向拉压作用为主的杆单元,和承受弯曲作用为主的梁单元。 ANSYS提供的单元类型中共有9种梁单元,分别为BEAM3, BEAM4, BEAM23, BEAM24, BEAM44, BEAM54, BEAM161, BEAM188, BEAM189。在结构分析中常用的是BEAM4和BEAM188或BEAM189这三中梁单元。 BEAM4单元 1.BEAM4单元是一种具有拉压弯扭能力的3D弹性单元。每节点6个自由度。 2.BEAM4单元的定义包括:几何位置的确定,单元坐标系的确定,截面特性 的输入。 BEAM4单元包含两个节点(i,j)或三个节点(i,j,k),k为单元的方向节点;单元的截面特性用实常数(REAL)给出,主要包括截面(area),两个 方向的截面惯性矩(IZZ)和(IYY),两个方向的厚度(TKY和TKZ),相对单元坐标系x轴的方向角(THETA),扭转惯性矩(IXX)。其中惯性矩,厚度,方向角都是在单元坐标系下给出的。 3.BEAM4单元坐标系的方向确定如下:单元坐标系X轴由节点i,j连线方 向确定由i指向 j;对于两节点确定的BEAM4单元,若方向角theta=0,则单元坐标系y轴默认平行于整体坐标系的x-y平面;若单元坐标系x 轴与整体坐标系z轴平行,则单元坐标系y轴默认平行整体坐标系的y 轴,z轴由右手法则判定;若用户希望自己来控制单元绕单元坐标系x轴的转动角,则可以通过方向角theta或第三个节点k来实现,i,j,k 确定一个平面,单元坐标系的Z轴就在该平面内。 可以用下列命令查看单元坐标系及截面: /ESHAPE, 1 /PSYMB, ESYS 说明:在指定网格划分属性时,可将某一关键点作为方向点属性赋予所需划分的线,这样就生成包含3个节点的梁单元。(具体见后面) 4.单元压力荷载(pressure)的施加比较特殊。只能用SFBEAM命令来实现, 通过其他方式施加荷载都是无效的,其中LKEY为荷载方向号。 5.beam4单元应力输出:包括轴向正应力,弯曲应力,两者的合应力。 命令:PRESOL,ELEM GUI:LIST RESULT〉ELEM SOLUT〉LINEELEM RESULT

ansys各种单元及使用

ansys单元类型种类统计 单元名称种类单元号 LINK (共12种) 1,8,10,11,31,32,33,34,68,160,167,180 PLANE (共20种)2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,146,162,182,183,223 BEAM (共09种)3,4,23,24,44,54,161,188,189 SOLID (共30 种)5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,164,168, 185,186,187,191,226,227 COMBIN (共05种)7,14,37,39,40 INFIN (共04种)9,47,110,111 CONTAC (共05种)12,26,48,49,52 PIPE (共06种)16,17,18,20,59,60 MASS (共03种)21,71,166 MATRIX (共02种)27,50 SHELL (共19种)28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209 FLUID (共14种)29,30,38,79,80,81,116,129,130,136,138,139,141,142 SOURC (共01种)36 HYPER (共06种)56,58,74,84,86,158 VISCO (共05种)88,89,106,107,108 CIRCU (共03种)94,124,125 TRANS (共02种)109,126 INTER (共05种)115,192,193,194,195 HF (共03种)118,119,120 ROM (共01种)144 SURF (共04种)151,152,153,154 COMBI (共01种)165 TARGE (共02种)169,170 CONTA (共06种)171,172,173,174,175,178 PRETS (共01种)179 MPC (共01种)184 MESH (共01种)20

ANSYS梁单元的选择

ANSYS中有七八种梁单元,它们的特点和适用范围各不相同。了解这些单元之间的异同,有助于正确选择单元类型和得到较为理想的计算结果。 梁是一种几何上一维而空间上二维或三维的单元,主要用于模拟一个方向长度大于其它两方向的结构形式。也就是说,主要指那些细长、像柱子一样的结构,只要横截面的尺寸小于长度尺寸,就可以选用梁单元来模拟(这在一定意义上和壳单元在一个方向上比另外两个方向都薄原理相似)。通常来讲,横截面尺寸需要小于长度的1/20或1/30,这里的长度是指两支撑点间的物理意义上的距离。梁单元本身可以进行任意的网格划分,且不支配梁理论的适用性;反过来,就像刚才提到的那样,物理尺寸和特性将决定选择哪种单元更为合适。 有两种基本的梁单元理论:铁木辛格(剪切变形)理论和欧拉-伯努力理论。ANSYS 中的如下单元是基于欧拉-伯努力梁理论: 1.2D/3D elastic BEAM3/4 2.2D plastic BEAM23 3.2D/3D offset tapered,unsymmetric BEAM54/44 4.3D thin-walled,plastic BEAM24 欧拉-伯努力梁理论建立在如下假定的基础上: 1.单元形函数为Hermitian多项式,挠度是三次函数; 2.弯矩可以线性改变; 3.不考虑横截面剪切变形; 4.扭转时截面不发生翘曲; 5.只具有线性材料能力(部分单元BEAM23/24具有有限的非线性材料能力); 6.非常有限的前后处理能力(除了BEAM44)。 ANSYS中有两种梁单元(BEAM188和BEAM189)是基于铁木辛格(剪切变形)理论,这种梁理论主要建立在如下假定基础上: 1.单元形函数为拉格朗日插值多项式,具有线性或二次的位移函数; 2.横向剪应力沿厚度方向为常数(一阶剪切变形梁单元); 3.可以模拟自由或约束扭转效应; 4.支持丰富的模型特性(塑性和蠕变); 5.强大的前生处理能力。 使用中需要注意: (1)铁木辛格(剪切变形)理论是基于一阶剪切变形理论的,它不能准确地求解短粗梁,因此,ANSYS在帮助里指出该类型梁的适用范围是:GAl2/EI>30,对于那些高跨比较大的梁应选用实体单元求解; (2)ANSYS中2结点的铁木辛格(剪切变形)单元BEAM188对网格密度的依赖性较强,选用时单根构件单元数应不小于5或不小于3,并且打开KEYOPT(3),否则误差会较大。

(完整版)fortran函数总结,推荐文档

附录C SCILAB 部分函数指令表 (c)LIAMA. All rights reserved. (注解:本指令表只收集了部分常用指令, 有关全部指令请参照文档文件) + 加 - 减 * 矩阵乘 数组乘 *. 1. 通用指令 ^ 矩阵乘方 数组乘方 ^. \ 反斜杠或左除 help 在线帮助 / 斜杠或右除 apropos 文档中关键词搜寻 或.\ 数组除/. ans 缺省变量名以及最新表达式的运 算结果 == 等号 ~= 不等号 clear 从内存中清除变量和函数 < 小于 exit 关闭SCILAB > 大于 quit 退出SCILAB <= 小于或等于 save 把内存变量存入磁盘 >= 大于或等于 exec 运行脚本文件 &,and 逻辑与 mode 文件运行中的显示格式 |,or 逻辑或 getversion 显示SCILAB 版本 ~,not 逻辑非 ieee 浮点运算溢出显示模式选择 : 冒号 who 列出工作内存中的变量名 ( ) 园括号 edit 文件编辑器 [ ] 方括号 type 变量类型 { } 花括号 what 列出SCILAB 基本命令 小数点 . format 设置数据输出格式

, 逗号 chdir 改变当前工作目录 ; 分号 getenv 给出环境值 // 注释号 mkdir 创建目录 = 赋值符号 pwd 显示当前工作目录 ' 引号 evstr 执行表达式 ' 复数转置号 转置号 '. ans 最新表达式的运算结果 2.运算符和特殊算符%eps 浮点误差容限, =2 -52 ≈ 2.22×10 -16 %i 虚数单位= √(-1) %inf 正无穷大 %pi 圆周率, π=3.1415926535897.... 3. 编程语言结构 abort 中止计算或循环 break 终止最内循环 case 同select 一起使用 continue 将控制转交给外层的for或 while循环 else 同if一起使用 elseif 同if一起使用 end 结束for,while,if 语句 for 按规定次数重复执行语句 if 条件执行语句 otherwise 可同switch 一起使用 pause 暂停模式 return 返回 select 多个条件分支 then 同if一起使用 while 不确定次数重复执行语句 eval 特定值计算 feval 函数特定值计算或多变量计算 function 函数文件头 global 定义全局变量

ANSYS单元类型选择方法

ANSYS单元类型选择方法 最近在学习ANSYS,收集到一些资料,跟大家分享一下:还有心得体会将在后面写出来跟同行们交流! 下面是有关ANSYS分析中的单元选择方法: 一、单元类型选择概述: ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上; 单元类型选择方法: 1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元; 二、单元类型选择方法(续一) 2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟; 3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围; 三、单元类型选择方法(续二) 4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型: Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元; 四、单元类型选择方法(续三) 5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”; 五、单元类型选择方法(续四) 6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。 六、单元类型选择方法(续五)

Ansys梁分析实例

工程介绍: 某露天大型玻璃平面舞台的钢结构如图1所示,每个分格(图2中每个最小的矩形即为一个分格)x方向尺寸为1m,y方向尺寸为1m;分格的列数(x向分格)=8,分格的行数(y向分格)=5。 钢结构的主梁(图1中黄色标记单元)为高140宽120厚14的方钢管,其空间摆放形式如图3所示;次梁(图1中紫色标记单元)为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间(如不是正处于X方向正中间,偏X坐标小处布置)的次梁的两端,如图2中标记为 U R处。主梁和次梁之间是固接的。 xyz xyz 玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷;试对在垂直于玻璃平面方向的42 KN m的面载荷(包括玻璃自重、钢结构自重、活载 / 荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。(每分格面载荷对于每一支撑点的载荷可等效于1KN的点载荷)。 作业提交的内容至少应包括下面几项: (1)屏幕截图显示该结构的平面布置结构,图形中应反映所使用软件的部分界面,如图2; (2)该结构每个支座的支座反力; (3)该结构节点的最大位移及其所在位置; (4)对该结构中最危险单元(杆件)进行强度校核。 图1

图2 图3 本操作中选用的单位为:(N,mm,MPa)。具体操作及分析求解: 1.更该工作文件和标题。如图1.1-1.5所示

图1.1 图1.2

图1.3 图1.4 图1.5

图1.6 2.选择单元类型。 根据题目要求,选择单元类型为beam-3D-2node-188单元。 执行Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add ,选择beam-3D-2node-188。如图2.1所示。 图2.1 3.定义材料属性 该钢结构材料为碳素结构钢Q235,则将弹性模量设置为200GPa,泊松比设置为0.3。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2.05e,在PRXY框中输入0.3。操作步骤为如图3.1;3.2所示。

PhpExcel中文帮助手册

PhpExcel中文帮助手册|PhpExcel使用方法 下面是总结的几个使用方法 include 'PHPExcel.php'; include 'PHPExcel/Writer/Excel2007.php'; //或者include 'PHPExcel/Writer/Excel5.php'; 用于输出.xls的 创建一个excel $objPHPExcel = new PHPExcel(); 保存excel—2007格式 $objWriter = new PHPExcel_Writer_Excel2007($objPHPExcel); //或者$objWriter = new PHPExcel_Writer_Excel5($objPHPExcel); 非2007格式$objWriter->save("xxx.xlsx"); 直接输出到浏览器 $objWriter = new PHPExcel_Writer_Excel5($objPHPExcel); header("Pragma: public"); header("Expires: 0″); header("Cache-Control:must-revalidate, post-check=0, pre-check=0″); header("Content-Type:application/force-download"); header("Content-Type:application/vnd.ms-execl"); header("Content-Type:application/octet-stream"); header("Content-Type:application/download");; header('Content-Disposition:attachment;filename="resume.xls"'); header("Content-Transfer-Encoding:binary"); $objWriter->save('php://output'); ——————————————————————————————————————–设置excel的属性: 创建人 $objPHPExcel->getProperties()->setCreator("Maarten Balliauw"); 最后修改人 $objPHPExcel->getProperties()->setLastModifiedBy("Maarten Balliauw"); 标题 $objPHPExcel->getProperties()->setTitle("Office 2007 XLSX Test Document"); 题目 $objPHPExcel->getProperties()->setSubject("Office 2007 XLSX Test Document"); 描述

ANSYS单元类型(详细)

ANSYS 单元类型(详细) 把收集到得ANSYS 单元类型向大家交流下。Mass21 是由6 个自由度的点元素,x,y,z 三个方向的线位移以及绕x,y,z 轴的旋转位移。每个自由度的质量和惯性矩分别定义。Link1 可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2 维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。X,y, 方向。铰接,没有弯矩。Link8 可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3 维杆元素是单轴拉压元素。每个点有3 个自由度。X,y,z 方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。Link10 3 维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41 的线形式,keyopt(1)=2, ' cloth '选如项果。分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8 和pipe59 )代替。当最终的结构是一个拉紧的结构的时候,Link10 也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。在这种情况下,要用其他的元素或在linkIO中使用‘显示动力’技术°Link1O每个节点有3 个自由度,x,y,z 方向。在拉(或压)中都没有抗弯能力,但是可

以通过在每个link1O 元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。Link11 用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个节点有3 个自由度。X,y,z 方向。没有弯扭荷载。Link18O 可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3 维杆元素是单轴拉压元素,每个节点有3 个自由度。X,y,z 方向。作为胶接结构,不考虑弯矩。具有塑性,徐变,旋转,大变形,大应变能力。link18O 在任何分析中都包括应力强化项(分析中,nlgeon,on),此为缺省值。支持弹性,各向同性硬化塑性,运动上的硬化塑性,希尔各向异性塑性,chaboche 非线性硬化塑性和徐变等。Beam3 单轴元素,具有拉,压,弯性能。在每个节点有3 个自由度。X,y, 方向以及绕z 轴的旋转。Beam4 是具有拉压扭弯能力的单轴元素。每个节点有6 个自由度,x,y,z, 绕x,y,z 轴。具有应力强化和大变形能力。在大变形分析中,提供了协调相切劲度矩阵选项。Beam23 单轴元素,拉压和受弯能力。每个节点有3 个自由度。该元素具有塑性,徐变,膨胀能力。如果这些影响都不需要,可使用beam3 ,2 维弹性梁。Beam24 3 维薄壁梁。单轴元素,任意截面都有拉压、弯曲和St. Venant 扭转能力。可用于任何敞开的和单元截面。该元素每个节点有6 个自由度:x,y,z 和绕x,y,z 方向。该元素在轴向和自定义的 截面方向都具有塑性,徐变和膨胀能力。若不需要这些能力,可用弹性梁beam4或beam44。Pipe20 和beam23 也具有塑性,徐变和膨胀能力。截面是通过一系列的矩形段来定义的。梁的纵轴向方向

相关主题
文本预览
相关文档 最新文档