当前位置:文档之家› 变速恒频风电系统论文:浅谈变速恒频风电系统中的作用

变速恒频风电系统论文:浅谈变速恒频风电系统中的作用

变速恒频风电系统论文:浅谈变速恒频风电系统中的作用
变速恒频风电系统论文:浅谈变速恒频风电系统中的作用

变速恒频风电系统论文:浅谈变速恒频风电系统中的作用【摘要】本文介绍了变速恒频风电系统的优点及其控制方案,交流励磁双馈电机的优点和基本原理,同时对双馈电机在变速恒频风电系统中的应用进行了实验研究。

【关键词】变速恒频风电系统控制方案交流励磁双馈电机

随着人们对风能的重视,风力发电由单机运行逐渐发展为并网发电,同时容量也在逐渐增大。在风力发电中,当风力发电机组与电网并网时,要求风力发电机组发电的频率与电网的频率保持一致,即保持频率恒定。但风力发电机发出的电能,其频率、电压、波形等都是不稳定的,对这样的电能只有经过处理与控制,才能并网。为充分利用不同风速时的风能,我们对风电系统的控制方案做了深入的研究,并提出了实用且适合于风力发电的变速恒频技术。

1变速恒频风电系统

恒速恒频和变速恒频风电系统是现代并网风电机组的两种类型。恒速恒频风电系统结构简单,整机造价低、安全系数和可靠性较高,在现在的风力机市场上占有较大份额,但恒速运行对风能的利用效率不高。变速恒频风电系统是20世纪70年代中期以后发展起来的一种新型风力发电系统,风力机跟随风速的变化而变速运行,保持基本恒定的最佳叶尖速比,风能利用系数最大。与恒速恒频风电系统相比,其

主要优点是:

1.1系统转换效率高。变速运行的风力机以最佳叶尖速比、最大功率点运行,最大限度的利用风能,提高了风力机的运行效率,和恒速恒频风电系统相比年发电量一般可提高10%以上。

1.2 机电系统间的刚性连接变为柔性连接。当速跃升时,吸收阵风能量以飞轮能量的形式存储在机械惯性中,减少机械应力和转矩脉动,延长风机寿命。当风速下降时,高速运转的风轮能量释放出来变为电能送给电网。

1.3 具有同步电机运行特点,功率因数可调。不消耗电网无功功率,还可改善电网功率因数,提高发电质量。

1.4 可使变桨距调节简单化。只需采取适当的限速措施,在限速运行区允许转速有一定范围的波动,从而降低风力机机械部分的造价,并能提高运行的可靠性。

1.5 便于和电力系统并网,操作简单,运行可靠,不会发生振荡和失步,减少运行噪声,可进行动态功率和转矩脉动补偿。

2变速恒频风电系统的几种控制方案

国内外风电专家提出了多种风力发电的控制方案,有的是发电机与电力电子装置、微机控制系统相结合实现变速恒频的,有的是通过改造发电机本身结构而实现的,它们各有其特点,适用场合也不一样。

2.1 采用异步发电机变速恒频。通过定子绕组与电网间的变频器把频率变化的电能转换为与电网频率相同的恒

频电能送人电网。这种方案的发电机成本低、无滑环、便于维护。但变频器容量与发电机容量相同,使系统的成本、体积和重量显著增加,发电机从电网吸收无功励磁功率,需要附加补偿装置。

2.2 高转差异步发电机变速恒频。采用具有较软机械特性的高转差率电机扩大风机的转速变化范围,可利用现代电力电子技术控制转子电阻无级变化来实现。这种方案控制技术简单、发电机制造容易,但系统效率低、机组发热增加,不利于机组向更大型化发展。vestas v66型机组属此种类型。

2.3 串级式变速恒频。该方案是对上述高转差异步发电机变速恒频控制方式的改进。其增加电机转差的方法是通过变流器改变转子绕组的电流频率,将原来消耗在串联电阻上的电能再回馈给电网。这种方案其技术复杂、变流器成本高,变速范围小,因此在实际产品中应用很少,从发展趋势上看竞争力不大。

2.4 电磁转差离合器同步发电机变速恒频。采用速度负反馈环节,通过电磁转差离合器使得同步发电机的转速保持不变,因此发电机可输出恒压恒频的交流电。该系统的优点是控制线路简单,发电输出电压波形好,但效率低,相当一部分风能消耗在转差离合器磁极的发热上。

变速恒频双馈风力发电机的主要优点和基本原理

变速恒频双馈风力发电机的原理和优点研究 变速恒频发电技术 变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。 目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。

风力发电机组变桨系统毕业论文

风力发电机组变桨系统的维 护与检修 毕业顶岗实习报告书 专业:电力系统自动化技术(风电方向) 班级: 姓名: 顶岗实习单位:金风科技股份有限公司 校外指导师傅: 校内指导教师: 报告完成日期: 新疆农业大学 2015年6月

风力发电机组变桨系统的维护与检修 学生姓名: 专业班级: 学生诚信签名: 完成日期: 指导教师签收: 摘要 能源、环境是当今人类生存和发展所要解决的紧迫问题。传统的化石燃料虽能解决能源短缺的问题,却给环境造成了很大的破坏,而风能具有无污染、可再生、低成本等

优点,所以其受到世界各国的重视。 可靠、高效的风力发电系统的研发己经成为新能源技术领域的热点。然而,因为风能具有不稳定性、能量密度低和随机性等特点,同时风电厂通常位于偏远地区甚至海上,自然条件比较恶劣,因此要求其控制系统必须能够实现自动化运行,并且要求控制系统有高可靠性。所以对风力发电机组尤其是大型风电机组的控制技术及风力发电后期的维护和检修就具有相当重要的意义。 本文首先在对风力发电原理,风电机组研究的基础上从变桨距风力机空气动力学研究入手,分析了变桨距控制的基本规律,再结合目前国内主流的变桨距控制技术分别设计出了液压变桨距控制,电动变桨距控制的方案,变桨距风机的维护和检修,最后在此基础上提出了一种较为理想的控制策——半桨主动失速控制。 关键词:变桨距控制,维护,检修

目录 摘要 (2) 一顶岗实习简历 (1) 二顶岗实习目的 (1) 三顶岗实习单位简介 (2) 目前行业发展地位 (2) 四顶岗实习内容 (3) 第一章变桨距系统 (3) 变桨距与定桨距 (5) 定桨距 (5) 变桨距 (5) 定桨距与变桨距的比较 (6) 而变桨距风力发电机可以克服上述定桨距风力发电机的缺点,在很宽的风速范围内保持最佳叶尖速比,从而提高风力机的运行效率和系统稳定性。变桨距风力发电机在变桨距的同时通过配合使用双馈发电机或永磁风力发电机,可以减轻风速突变产生的转距波动,减轻传动机构承受的扭矩波动,提高齿轮箱寿命,减少传动系统故障率。此外,可结合对电机的励磁控制,实现无电流冲击的软并网,使机组运行更加平稳安全[2]变桨矩调节原理 (7) 变桨距控制过程 (7) 变桨距风力机组的运行状态分析 (8) 启动状态 (8) 欠功率状态 (9) 额定功率状态 (9) 变桨距控制的特点 (9) 输出功率特性 (9) 风能利用率 (10) 额定功率 (10) 启动与制动性能 (10) 对机械部件的影响 (10) 第二章变桨矩系统的原理与结构 (11) 变桨矩调节原理 (11) 变桨矩系统分类 (11) a) 液压变桨矩 b) 电动变桨矩 (12) 图变桨矩系统的轮毂照片 (12) 风力发电机组变桨矩驱动装置比较和选择 (15) 液压变桨与电动变桨技术比较 (15) 见表[6]。 (15) 表液压变桨系统与电动变桨系统的比较 (15) 项目 (15) 液压变桨矩系统 (15) 电动变桨矩系统 (15) 桨矩调节 (15) 响应速度慢 (15)

变桨距风力发电机组的运行状态

变桨距风力发电机组的运行状态 从空气动力学角度考虑。当风速过高时,只有通过调整桨叶节距,改变气流对叶片的角度,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。同时,风力机在启动过程中也需要通过变距来获得足够的启动转矩。 变桨距风力发电机组根据边距系统所起的作用可分为三种运行状态,即风力发电机组的启动状态(转速控制)、欠功率状态(不控制)和额定功率状态(功率控制)。 1)启动状态变距风轮的桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩,整个桨叶实际上是一块阻尼板。当风速达到启动风速时,桨叶向0°方向转动,直接到气流对桨叶产生一定的攻角,风轮开始启动。在发电机并入电网以前,变桨距系统的节距给定值由发电机转速信号控制。转速控制器按照一定的速度上升斜率给出速度参考值,变桨距系统根据给定的速度参考值,调整节距角,进行所谓的速度控制。为了确保并网平稳,对电网产生尽可能小的冲击,变桨距系统可以在一定时间内保持发电机的转速在同步转速附近,寻找最佳时机并网。虽然在主电路中也采用了软并网技术,但由于并网过程的时间短,冲击小,可以选用容量较小的晶闸管。 为了使控制过程比较简单,早期的变桨距风力发电机在转速达到发电机同步转速前对桨叶节距并不加以控制。在这种情况下,桨叶节距只是按所设定的变桨距速度,将节距角向0°方向打开,直到发电机转速上升到同步转速附近,变桨距系统才开始投入工作。转速控制的给定值是恒定的,即同步转速。转速反馈信号与给定值进行比较。当转速超过同步转速时,桨叶节距就迎风面积小的方向转动一个角度,反之则向迎风面积增大的方向转动一个角度。当转速在同步转速附近保持一定时间后发电机即并入电网。 2)欠功率状态欠功率状态是指发电机并入电网后,由于风速低于额定风速,发电机在额定功率以下的低功率状态下运行。与转速控制道理相同,在早期的变桨距风力发电机组中,对欠功率状态不加控制。这时的变桨距风力发电机组与定桨距风力发电机组相同,其功率输出完全取决于桨叶的气动性能。 3)额定功率状态当风速达到或超过额定风速后,风力发电机组进入

变速自行车如何正确使用变速器

变速自行车如何正确使用变速器在日常骑行中,经常发现有的车友不会正确地使用变速器,上坡时,使用前边最大,后边最大或者前边最小,后边最小的现象屡见不鲜,这是最忌讳的齿比搭配。上坡时,骑行者,呼吸急促,上身左右摇摆,大力踩踏吃力前行,不时听到累死我了的声音。出现这种情况,绝大多数是因为他们没有正确合理的选择变速器所造成的。要想骑的快、骑的轻松、骑的远,必须学会正确合理地使用变速器。 如何正确使用变速器呢?下面以山地车27速变速器为例说明一下。所谓27速是指三个牙盘和后9片飞轮,即3×9=27的变速器。(最大牙盘为1,中间牙盘为2,最小牙盘为3;飞轮最大片为1,最小片为9。)正确的对应的齿比应该是: 1、牙盘1对应后飞9、8、7、6片; 2、牙盘2对应后飞8、7、6、5、4、3片; 3、牙盘3对应后飞5、 4、3、2、1片。 正常较平坦的路况可选择1范围内的齿比骑行;缓坡或者顶风,可选择2范围内的齿比骑行;上陡坡长坡可选择3范围内的齿比骑行。 每个人的身体状况不一样,选择变速器搭配也不一定完全局限于此,可灵活掌握。 正确选择变速器,是为了使变速器处在最佳的工作状态。通过调整链条在

牙盘和飞轮上的位置,改变齿数比,产生变速效果。齿数比改变后,骑行者腿部踩踏的力量会发生变化,使骑行轻快、省力、保持呼吸平顺。同时也是避免产生非正常声响和磨损,防止链条,牙盘,飞轮及变速器过早报废的有效方法之一。有人认为,要想骑的快,就要用力踩踏,所以常常看到用非常大的齿数比骑行的人(前面用大盘,后面用小飞轮)。其实这个观点是错误的。在变速比确定的前提下,骑行速度是由2个因素决定的,1是踏频,2是踩踏力,两者缺一不可。 踏频是指两脚每分钟向前踩踏曲柄的次数,合理的踏频是每分钟90左右。用踏频换取更大的扭距是非常必要的。骑行者要根据自己的体能,调整好合适自己的齿数比,在保证呼吸顺畅平稳的状态下(有氧代谢状态,心率控制在每分钟140次以下,竞技除外),尽量提高自己的踏频,这对轻松爬坡和快速骑行非常有帮助。 以上是自己通过学习和实践后,对如何正确使用变速器的肤浅认识,仅供朋友们参考,不当之处欢迎批评指正。

风力发电机组变桨距

随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。本文从分析我国风力发电的现状出发,在总结分析风力发电技术发展的基础上,对我国风电发展过程中存在的主要问题进行了探讨分析,提出了相关建议。 关键词:风力发电;现状;技术发展 能源、环境是当今人类生存和发展所要解决的紧迫问题。常规能源以煤、石油、天然气为主,它不仅资源有限,而且造成了严重的大气污染。因此,对可再生能源的开发利用,特别是对风能的开发利用,已受到世界各国的高度重视。风电是可再生、无污染、能量大、前景广的能源,大力发展风电这一清洁能源已成为世界各国的战略选择。我国风能储量很大、分布面广,开发利用潜力巨大。近年来我国风电产业及技术水平发展迅猛,但同时也暴露出一些问题。总结我国风电现状及其技术发展,对进一步推动风电产业及技术的健康可持续发展具有重要的参考价值。 1我国风力发电的现状 2005年2月,我国国家立法机关通过了《可再生能源法》,明确指出风能、太阳能、水能、生物质能及海洋能等为可再生能源,确立了可再生能源开发利用在能源发展中的优先地位。2009年12月,我国政府向世界承诺到2020年单位国内生产总值二氧化碳排放比2005年下降40%~45%,把应对气和变化纳入经济社会发展规划,大力发展包括风电在内的可再生能源与核能,争取到2020年非化石能源占一次能源消费比重达到15%左右。 随着新能源产业成为国家战略新兴产业规划的出台,风电产业迅猛发展,有望成为我国国民经济增长的一个新亮点。 我国自上世纪80年代中期引进55kW容量等级的风电机投入商业化运行开始,经过二十几年的发展,我国的风电市场已经获得了长足的发展。到2009年底,我国风电总装机容量达到2601万kW,位居世界第二,2009年新增装机容量1300万kW,占世界新增装机容量的36%,居世界首位[1,2]。可以看出,我国风电产业正步入一个跨越式发展的阶段,预计2010年我国累计装机容量有望突破4000万kW。 从技术发展上来说,我国风电企业经过“引进技术—消化吸收—自主创新”的三步策略也日益发展壮大。随着国内5WM容量等级风电产品的相继下线,以及国内兆瓦级机组在风电市场的普及,标志我国已具备兆瓦级风机的自主研发能力。同时,我国风电装备制造业的产业集中度进一步提高,国产机组的国内市场份额逐年提高。目前我国风电机组整机制造业和关键零部件配套企业已能已能基本满足国内风电发展需求,但是像变流器、主轴轴承等一些技术要求较高的部件仍需大量进口。因此,我国风电装备制造业必须增强技术上的自主创新,加强风电核心技术攻关,尤其是加强风电关键设备和技术的攻关。 2风力发电的技术发展 风力发电技术是涉及空气动力学、自动控制、机械传动、电机学、力学、材料学等多学科的综合性高技术系统工程。目前在风能发电领域,研究难点和热点主要集中在风电机组大型化、风力发电机组的先进控制策略和优化技术等方面。 2.1风力发电机组机型及容量的发展 现代风力发电技术面临的挑战及发展趋势主要在于如何进一步提高效率、提高可靠性和降低成本。作为提高风能利用率和发电效率的有效途径,风力发电机单机容量不断向大型化发展。从20世纪80年代中期的55kW容量等级的风电机组投入商业化运行开始,至1990年达到250kW,1997年突破1MW,1999年即

《风力发电机组电动变桨系统基本原理》试题及答案

1.变桨系统与风机主控通讯的部件是?(6.0分) A.变桨控制器 B.变桨驱动器 C.变桨电机 D.备用电源 我的答案:A√答对 2.变桨系统的驱动执行机构是?(6.0分) A.变桨控制器 B.变桨驱动器 C.变桨电机 D.备用电源 我的答案:C√答对 3.变桨系统调节桨叶的主要作用是什么?(6.0分) A.调节风机机头对风 B.使风机跟踪最大风能 C.解除扭揽 D.将风能变换成电能 我的答案:B√答对 4.风电变桨系统是用于调节风机的那个部位?(6.0分) A.A桨叶

C.机舱 D.塔筒 我的答案:A√答对 5.下列哪个部件不属于变桨系统?( 6.0分) A.变桨电机 B.轴控柜 C.限位开关 D.轴承润滑泵 我的答案:D√答对 1.变桨电机有以下哪几种形式?(8.0分)) A.永磁电机 B.感应电机 C.直流电机 D.直线电机 我的答案:ABC√答对 2.用于变桨系统温湿度控制的设备有?(8.0分)) A.温控开关 B.湿控开关 C.加热器

我的答案:AB×答错 3.按动力类型分类变桨系统有以下哪几种?(8.0分)) A.电磁型 B.液压型 C.电动型 D.蒸汽型 我的答案:BC√答对 4.变桨系统的备用电源主要有哪几种形式?(8.0分)) A.超级电容 B.铅酸蓄电池 C.飞轮储能 D.锂离子电池 我的答案:ABD√答对 5.变桨系统电磁兼容防护的主要形式有哪几种?(8.0分)) A.加热器 B.雷击浪涌保护器 C.电抗器和滤波器 D.接地防护 我的答案:BC×答错

1.变桨系统的供电电压是400VAC(6.0分) 我的答案:正确√答对 2.变桨系统是安装在风机的机舱中(6.0分) 我的答案:错误√答对 3.变桨系统不会高原上使用(6.0分) 我的答案:错误√答对 4.安全链中的任何一个环节故障都会导致整个系统保护(6.0分) 我的答案:正确√答对 5.在感应电机、直流电机、永磁电机三种电机中,永磁同步电机的功率密度最高( 6.0分) 我的答案:正确√答对

风力发电机液压变桨系统简介

风力发电机液压变桨系统简介 全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。本文将对液压变桨系统进行简要的介绍。 风机变桨调节的两种工况 风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°附近的调节都属于连续变桨。液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。 液压变桨系统 液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。 液压变桨系统的结构 变桨距伺服控制系统的原理图如图1所示。变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。 图1 控制原理图 液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。

变速恒频风力发电机组的无功功率极限

变速恒频风力发电机组的无功功率极限 申洪,王伟胜,戴慧珠 (中国电力科学研究院,北京100085) 摘 要:根据变速恒频风电机组的工作原理,建立了变速恒频风电机组的稳态数学模型,该模型考虑了风力机、双馈电机及其转速控制的稳态特性。在此模型的基础上,提出了计算变速恒频风电机组无功功率极限的方法,并对一变速恒频风电机组进行了计算分析,验证了所提方法的可行性。 关键词:变速恒频风电机;双馈电机;无功功率极限 1 引言 近年来世界风力发电发展迅速,风电装机容量平均每年以高于20%的速度增长。截止到2002年底,全世界风力发电装机容量约为31128MW,其中我国风电装机容量达468.42MW。目前,兆瓦级风力发电机组已逐渐取代600kW级的机组,成为国际上风力发电机市场的主力机型,风电机组正向着大型化、变桨距和变速恒频的方向不断发展和完善。 虽然变速恒频风电机组与固定转速的风电机组相比在性能上有较大改善,但由于风速变化的随机性,变速恒频风电机组的并网运行对电力系统而言仍然是一种波动的冲击功率,因而必须对这种风电机组的并网运行特性进行研究。变速恒频风电机组的发电机采用双馈感应电机,文献[1]~[3]对它的稳态模型进行了研究,建立了基于与定子磁场同步旋转的dq坐标系的数学模型。因为双馈发电机的转速和定子侧的无功功率都可以调节,所以转速控制规律和无功功率控制规律对变速恒频风电机组的稳态特性也有很大的影响。文献[1]、[2]介绍了转速控制和无功功率控制的基本思想,其中转速控制的目标是使风力机的功率系数最优,而无功功率控制则根据其接入的电力系统的实际运行方式可以设定为功率因数恒定或端电压恒定两种控制方式。 风电机组发出的有功功率主要取决于风速的大小,而无功功率则取决于风电机组的无功控制方案。一般风电场位于偏远地区,电网结构薄弱,当无功功率控制的设定值达到风电机组的无功功率极限时,一方面转子绕组发热将导致风电机组停机,另一方面由于不能向系统中提供或吸收足够的无功功率,将导致端电压降低或升高,严重时将导致系统电压失稳。因而研究变速恒频风电机组的无功功率极限是很有必要的。文献[4]对此问题进行了一定的研究,但它只讨论了发电机定子绕组中有功功率和无功功率的稳态运行域问题,并没有解决整个风电机组注入系统的有功功率和无功功率的稳态运行域问题。另外,该文献没有考虑转速控制规律的影响。

山地车变速器的使用方法

山地车变速知识 (任何变速车原理相同) 山地车或普通变速车 前盘后齿前后档位配比 牙盘31档(最小盘) 2档(中盘) 3档(大盘) 6-7-8档(小齿) 飞轮81/2/3档(大齿) 12345678皆可最好45 (不过最好不要常用 123档和678档) 省力、速度慢速度快、耗体力前后搭配一般为(即小盘对大齿、大盘对小齿): 前1(小盘)-后123(大齿);前2-后3456;前3(大盘)-后678(小齿)。 普通路上通常搭配通常固定固定(最大或中间)只改变后齿: (一般生强力壮体力好前盘固定为大盘,一般体力人固定为中盘) A.想速度时,后面尽量调较低的齿盘。 B.想省力时:调大后齿盘。 (如上坡或很累,就要改前盘为最小,后调最大(但不要真到最大)) 最忌讳(大盘带大齿、小盘带小齿): 尽量避免1、前面1档(最小盘),带后面的8档(小齿);2、前面3档(最大盘)带后面1档使用(大齿) ------------------------------------------------------ 牙盘为3个盘:1档(最小盘)、2档(中盘)、1档(最大盘); 飞轮8变速器:1档(最大齿)、………………8档(最小齿); 原则: 最好不要1、“最大盘对最大齿和最小盘对最小齿”;虽然实际中一个是速度最快一个最省力,但事实上对车磨损最大;可以变通为最大盘对倒数的最小第二或三齿和最小盘对倒数的最大第二或三齿; 最好不要2、如果是中盘(一般固定)对尽量避免对最大齿或最小齿(尽量向倒数的最大或最小齿靠一个,就是不要用到极值); 前面的1、2指的是不要长时间使用,如果一次两次则无所谓,如果经常这样使用,你会发现车辆杂音原来越大; ------------------------------------------------------ 本人的是前三后六(一般是): 1-1 2;2-3 4;3-5 6; 本人一般前面固定为中盘,因此后面基本用3 4 5(常用5); 1-1只有上坡很陡的时候采用;

风机变桨控制系统简介

风力发电机组变桨系统介绍

一.概述 双馈风机

风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。风轮是风力机最关键的部件,是它把空气动力能转变成机械能。大多数风力机的风轮由三个叶片组成。叶片材料有木质、铝合金、玻璃钢等。风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。组装风轮时要注意叶片的旋转方向,一般都是顺时针。固定扭矩要符合说明书的要求。 风轮的工作原理:风轮产生的功率与空气的密度成正比。风轮产生的功率与风轮直径的平方成正比;风轮产生的功率与风速的立方成正比;风轮产生的功率与风轮的效率成正比。风力发电机风轮的效率一般在0.35—0.45之间(理论上最大值为0.593)。贝兹(Betz)极限 风机四种不同的控制方式: 1.定速定浆距控制(Fixed speed stall regulated) 发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制 2.定速变浆距控制(Fixed speed pitch regulated) 发电机直接连到恒定频率的电网,在大风时浆距控制用于调节功率 3.变速定浆距控制(Variable speed stall regulated) 变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平. 4.变速变浆距控制(Variable speed pitch regulated) 变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,保持力矩, 浆距控制用于调节功率.

爆破片在风电机组液压系统中的应用

龙源期刊网 https://www.doczj.com/doc/db7491517.html, 爆破片在风电机组液压系统中的应用 作者:王一甲马延涛 来源:《风能》2015年第11期 我国早期的并网型风电机组主要是定桨距风电机组,如国产金风750kW、金风600kW、进口机型micon750kW等相对变桨距机型来说,定桨距机型具有结构简单、性能可靠的优点。定桨距风电机组的叶片和轮毂是固定的,叶片装有叶尖扰流器来实现叶尖气动刹车,使机组安全停机。叶尖刹车不能使风轮完全停下,只是使风轮处于空转状态,此时需要采用高速轴制动的功能,使风轮完全静止。偏航系统使风电机组的风轮始终处于迎风状态,充分利用风能,提高风电机组的发电效率;偏航制动器提供必要的锁紧力矩,以保障风电机组的安全运行。液压站为叶尖扰流器液压缸、偏航制动器和高速轴制动器提供液压动力,能保证有足够的压力和流量满足各制动器的工作要求。 爆破片装置是压力容器或管道的重要安全装置。它既可单独使用,也可与安全阀配套使用,在规定的温度和压力下爆破,泄放压力,防止压力系统超压,从而保证设备或管道的安全运行。爆破片装置较之安全阀具有结构简单、安装方便、灵敏准确、无泄漏、泄放能力强等特点,能够在高温、低温、粘稠或有悬浮颗粒和结晶及腐蚀的环境中可靠工作。爆破片装置作为一种灵敏的泄压装置,它的爆破不但与压力有关,而且与操作温度、系统压力、工作过程等诸多因素有关。因此在选用时,对爆破片的选型、材料、介质腐蚀性质、工作压力和温度及脉动状态、安装方式等都有严格要求。 液压系统工作原理 定桨距风电机组的液压系统由主要由三个压力保持回路组成,分别为叶尖制动、高速轴制动器和偏航制动器提供动力,按主控系统的指令实现制动动作。液压系统原理图见图1。 一、叶尖制动回路 正常发电状态下,电磁阀8.4和电磁阀8.5得电,液压油经减压阀8.1及单向阀8.3、电磁阀8.5、旋转接头8.13进入液压缸8.14,叶尖收回,风电机组启动运转。当压力低于设定值时,压力开关8.9输出信号启泵;当压力高于设定值时,压力开关8.10输出信号电磁阀8.5动作卸掉多余压力。当需要气动刹车时,电磁阀8.5和电磁阀8.6失电,叶尖液压缸泄压,进行气动刹车。在飞车情况下,由于离心力作用液压缸内压力升高,爆破片8.7被压破,叶尖液压缸泄压。泄压后叶尖甩出,进行气动刹车。 二、高速轴制动回路 风电机组正常运行时,电磁阀9.2得电,液压力克服弹簧力,高速轴制动器保持松闸状态,风轮正常转动处于发电状态。风电机组因故障停机或需要检修时,风轮先经叶尖制动,风

永久27速山地自行车变速器使用方法及要领注意事项

永久27速山地车变速器使用方法及要领注意事项 永久27速车指牙盘为3个盘,飞轮齿轮有9个不同速度的变速器.一般认为3*9=27所以简称27速变速器。正确的使用方法是:如果前面是1档,后面最好配12345档使用;如果前面是2档,后面最好配精品文档,你值得期待 234567档使用;最后前面是3档,后面最好配789档使用。 正确的使用方法是: 如果前面是1档,后面最好配12345档使用; 如果前面是2档,后面最好配234567档使用; 最后前面是3档,后面最好配789档使用。 最忌讳的是用前面1档,带后面的6789档和用前面; 的3档带后面的1234档使用。 因为使用中在某些特定的档位,链条会处在一种极度损耗的状态中,比如说前1后9的档位时,或者前3后1时,虽然可以正常行驶,但链条从上面看是斜的,时间一长,链条就会出现松动,甚至断掉,如果乱用只会加剧链条、飞轮、牙盘的机械磨损. 路面情况分类:

一、公路(直行,障碍物少,能见度高) 这里是公路车的天堂,但并不是山地车的地狱,一般采用前2后5的档位来加速,然后逐步前2后567,这时候换成前3后789,换档的时机根据目测路面的坡度来决定; 二、坡道(上坡和下坡) 这里有个技术关键要讲一下,就是不要到坡道上换档,一定要在进入坡道之前换好档,尤其是上坡,不然中途换档可能会因为变速器的换档过程还未完成而失去动力,那样就会很麻烦了,上坡理论上采用前面最小,也就是1档,后面最大,也是1档的原理来换档,但实际的后飞轮档位可根据实际坡度来决定;下坡理论上采用前面最大,也就是3档,后面最小,9档的原理来换档,但也需要根据实际坡度和长度来决定. 三、复杂路面(障碍物多,弯道多,路面状况差,能见度低)

变速恒频风力发电关键技术研究

变速恒频风力发电关键技术研究 发表时间:2018-06-07T10:41:35.750Z 来源:《电力设备》2018年第1期作者:李琳[导读] 摘要:本文主要对风力发电技术进行研究,首先从传统的恒速恒频发电入手与变速恒频发电做对比,展示了变速恒频发电在性能方面的突出优点,再分析变速恒频发电机组的工作原理和机组中的两种发电系统:交流励磁双馈发电系统和无刷双馈发电系统,分别对两种系统的工作原理、控制方式、优点及缺点等方面作出了阐述。 (大唐新能源黑龙江公司 150038)摘要:本文主要对风力发电技术进行研究,首先从传统的恒速恒频发电入手与变速恒频发电做对比,展示了变速恒频发电在性能方面的突出优点,再分析变速恒频发电机组的工作原理和机组中的两种发电系统:交流励磁双馈发电系统和无刷双馈发电系统,分别对两种系统的工作原理、控制方式、优点及缺点等方面作出了阐述。 关键词:变速恒频;风力发电;技术研究前言:根据我国目前生态建设和可持续发展的需要,大力开发可再生能源已经成为了当下应用能源的新型趋势,而风能正是符合这一需求的可再生绿色能源。风力发电技术早在上个世纪就开始进行研究和应用,但是在一定程度上机组性能尚不完善,关键技术的研发未有突破,导致了风能利用率较低。在近些年逐步发展的变速恒频风力发电技术在一定程度上可以对此改善,在技术研究上也有了新突破。 1.风力发电的技术分析 1.1恒速恒频风力发电机组分析 恒速恒频风力发电机组是一种运行后叶轮不能根据风速的变化而发生变化的,是由电网频率决定的风轮转速和电能频率在运行时基本保持不变的风电机组。主要发展于上世纪八十年代和九十年代之间,曾经被我国广泛应用于风力发电,并在此期间不断被研究者优化的一种风力发电形式。恒速恒频风力发电机组最开始的容量只有几十千瓦级,逐步发展为兆瓦级,并且有着一系列优点,例如:性能稳定、操作简便等,但仍属于非智能操作系统。 在恒速恒频风力发电机组中,由两种较为常用的控制方式:主动失速控制和定桨距失速控制。其中,主动失速控制是应用于大容量机组的一种控制方式,这种控制方式可以使机组具有稳定的输出功率,也会有部分机组采用定桨距失速控制,但是,该方式的输出功率不稳定还会造成一定程度上的齿轮箱磨损。 在恒速恒频风力发电系统中,由于外界风速变化无常,但风力发电机本身的转速不会改变,就会造成数据的不准确,风机效率低下等状况。在风力发电中,要提高风力发电系统的发电效率是首要任务,在整个过程中捕获最大风能是要点,所以发电系统一直在向着目标改进发展。随着科学技术的发展,在风力发电方面也有了明显的突破,正如近年来慢慢发展并强大的变速恒频风力发电系统。 1.2变速恒频与恒速恒频的对比分析 变速恒频风力发电机组是当今的主流风力发电机组,是二十世纪末期发展起来的一种高效的风力发电方式。与恒速恒频风力发电机组相比,变速恒频风力发电机组有明显的优势。变速恒频风电机组可以应对不同风速大小,在不同风速下进行自身调节,最大化捕捉风能,提高风能的利用率。恒速恒频发电机组在遇到较大风力时,自身产生的较大电流会使自身结构遭到损害。变速恒频风力发电机组本身可以根据外界风速的变化进行自身调节,减少因力的相互作用而导致装置内部结构遭到破坏的现象,从而大大延长了机组的使用寿命。不仅如此,变速恒频风力发电机组主要是通过对内部转子交流励磁电流幅值、频率以及相位的控制,实现在变速下对于频率的恒定控制,,这种控制方式还可以达到对输出功率的控制,使装置运行更加灵活,以便于整个机组的运作。 2.变速恒频风力发电的关键技术分析 2.1变速恒频风力发电工作原理 在变速恒频风力发电机组中,主要的三个部,分是风力机、发电机和辅助构件。变速恒频风力发电的基本工作原理是风力机构件中的叶轮吸收风能,在风能的作用下发生转动,使之转化为机械能,而后,叶轮的转动带动齿轮箱工作,产生机械能,再将产生的机械能通过发电机转化为电能,并经过一定转化输入电网,再由电网对各个用户进行传输。 目前的变速风力发电系统完全实现了机械自动化,属于智能运作系统,不需要人工调节,可以根据风速风力进行自身调节,适应外界变化。对于变速恒频发电机组而言,在额定风速以上运行时,可以使叶轮上的载荷控制在安全值内,并且,有效的调节风电机组吸收的能量。风力机的叶轮由于质量较大,具有较大的惯性,在变桨控制产生作用时,叶轮不会及时发生变化,通常情况下会滞后一定时间才能有所表现,这一情况很容易使功率有大幅度的波动。所以,在额定风速上运行时,需要用发电机转矩来进行快速的调节,来保证输出稳定的能量。当机组处于额定风速以下时,可以通过提高对发电机转矩的控制,使机组变速运行,以达到提高能量转换率的目的。 2.2变速恒频发电系统 交流励磁双馈发电系统:这种发电系统内部的主要结构有叶轮、齿轮箱、发电机、四象限变频器、交流励磁控制器、检测装置以及风力发电控制器等,其内部还存在滑环和电刷。馈电方式为装置内部转子绕组通过交流—交流的方式或是交流—直流—交流方式的变频器提供相关数据可以调节的电源,定子绕组接电网。交流励磁控制器还可以通过对于转子变频器输出的电压、幅值、相位以及频率的控制来调节转矩和定子的无功功率。在装置中,变频器提供给转子低频旋转磁场,且满足公式:ω1=ωs±ωr。其中ω1代表定子磁场同步转速,ωs代表整个磁场旋转速度,ωr代表转子机械旋转速度。 无刷双馈发电系统:这种电力系统的深入研究始于上世纪七十年代末,在此期间的几十年中,主要由美国Wisconsin大学、Ohio州立大学等高等院校对无刷双馈发电系统进行深入研究。其内部结构主要有电网、功率绕组、控制绕组、变频器、无刷电机、风力机等。在其内部定子上,一般有两套三相对称绕组,一个为主绕组,一个为副绕组。一般由工频交流电源直接为主绕组供电,如果副绕组短路,系统能够在异步运行方式下运作。无刷双馈发电系统内部的转子一般分为磁阻转子和笼形转子两类,其中,磁阻转子以ALA型较为常见,笼形以笼形短路绕组转子较为常见。 在风力发电系统的研究中表明,无电刷和滑环的发电转子在应用中更为稳定耐用,可靠性强。并且,发现在所有的发电系统研究中双馈型有刷及无刷的变速恒频控制在性能上都较为优越,较为常用,可以在此结论的基础上进一步对于双馈型变速恒频空间展开研究,进一步发展我国变速恒频风力发电的应用。 3.结语

恒速恒频风力发电系统的数学模型

恒速恒频风力发电系统的数学模型 为了研究风电场对电力系统的影响,需要建立合理的风电场数学模型,为进一步仿真分析奠定基础。按照本课题研究的要求,我们先后建立了异步发电机的稳态数学模型和动态数学模型,其中动态数学模型包括风速模型风轮机、传动机构和异步发电机的模型。本文以恒速恒频风力发电系统为研究对象,它主要由风力机和异步风力发电机等主要元件组成。我们着重于风电场与系统相互影响问题的研究,与之密切相关的环节,其数学模型将详细地描述。数学模型的建立为研究风电场的运行特性和风电场并网运行带来的稳定问题以及研究电力系统接入一定规模的风电场的可行性提供了基本的工具。 2.1 风电场及风力发电机组简介 风力发电场是将多台并网风力发电机安装在风力资源好的场地,按照地形和主风向排成阵列,组成机群向电网供电,简称风电场。风力发电形式可分为“离网型”和“并网型”“离网型”有:(1)单机小型风力发电机;(2)并联的小型或大型孤立的风力发电系统;(3)与其它能源发电技术联合的发电技术,如风力/柴油发电机联合供电系统。“并网型”的风力发电是规模较大的风力发电场,容量大约为几兆瓦到儿百兆瓦,由于十台甚至成百上千台风电机组构成。并网运行的风力发电场可以得大大电网的补偿和支撑,更加充分的开发可利用的风力资源,也是近儿年来风电发展的主要趋势。在日益开放的电力市场环境下,风力发电的成本也将不断降低,如果考虑到环境等因素带来的间接效益,则风电在经济上也具有很大的吸引力。 风电场的发电设备为风力发电机组,发电机经过变压器升压与电力系统连接,如图2.1

图2-1风电场与电力系统连接图 在风场内,风机与变电所之间的连接有两种方式:场地布置相对集中时用电缆直埋;场地布置相对分散时用架空lOkV 线路。一般有两种供电方式如图2-2:一是采用一台风机经一台箱式变电站就近升压;二是采用两台或多台风机经一台箱式变电站就近升压。 2.2 异步发电机的稳态数学模型 为了研究风电场对电力系统的影响,需要建立合理的风电场数学模型,为进一步仿真分析奠定基础。按照本课题研究的要求,我们先后建立了异步发电机的稳态数学模型和动态数学模型,其中动态数学模型包括风速模型、风轮机、传动机构和异步发电机的模型。首先异步发电机与异步电动机在能量转换过程中各功率损耗之间的关系不同,如图2-11。步发电机的功率转换是将输入的机械功率己转换为输出电功率,它的特点在于其转子的转速比定子产生的旋转磁场的转速更高。自然风吹动风轮机叶片,将风能转化为机械能,由此获得的机械功率只扣除掉机械损耗Pm 。和附加损耗mc P 后即为传递到异步发电机转子可转换的机械功率mec P 。在等效电路中对应可变电阻(1-s)/s(s<0)上的电功率,扣除转子铜耗1cu P 和铁心损耗fe P ,得到输入定子绕阻的电磁功率me P ,再扣除定子铜耗1cu P ,即得到注入电网的电功率Pe 。上述功率流向可表达为 ad me mec m P P P p ++= (2-1)

直驱式风力发电机组变桨距系统设计

学号14113502505 毕业设计 题目:直驱式风力发电机组变桨距系统设计 作者李炳男届别2015届 系别机械工程学院专业机械电子工程指导教师郭洪澈职称副教授 完成时间 2015年5月17日 摘要

现在,市场上应用最好的就是采用独立变桨距控制的发电机组,它最主要的特点就是能够用风力机叶片轴心处的风俗对各个叶片进行同步控制。但是由于风力发电机的容量在增长中,所以风力机的叶片也会越来越长,因此风力机上的叶片载荷会越来越大,而实际上,由于与地面之间会存在摩擦,而且风速也会随着高度的变化而变化,风力机风轮扫略的风速随着高度的变化而变化,这些个问题都会影响到风力机的使用寿命。 本文将会使风力机的独立变桨距控制部分分成两个部分:一部分是集中变桨距控制的部分;第二部分是修正变桨距控制部分。本文采用非线性PID控制来对集中变桨距控制器进行设计,以使的风力发电机组的输出功率始终维持在一定的范围内;再通过采用状态反馈控制以及极点配置的方法来设计修正变桨距控制器,来减小风力机叶片上的载荷。然后,通过把各个叶片上的集中变桨距角和修正变桨距角之和来作为叶片的独立变桨距角输入风力机,这样便可以对风力机进行控制。我们在阶跃的风速和随机的风速下对风力发电机进行数字仿真的研究,结果表明独立变桨距控制能够减少风力机叶片上的载荷,从而有助于增加风力机的使用寿命,而且具有非常好的动态性能和静态误差。 状态反馈在风力机发电机的节点位置具有非常好的调节作用,但是如果对系统的动态特性需要非常高的要求时,基于状态反馈的独立变桨距控制系统的设计就难以达到要求。 关键词:变桨距;节距角;发电机

Abstract At present ,variable pitch control with turbine is widespread in the market. This wind turbine uses the wind speed on the axis of the blade as the reference wind speed of wind blade synchronous control. In fact , because of the existing of ground friction,the wind speed if changing with the height and the wind speed in the surface of revolution of the wind blades. With the increasing of the wind turbine capacity,the difference of the blade wind speed with different spin high degree is gradually increasing,making the loads of the blades tend to gradually increase,this problem has seriously affected the wind turbine life. The state feedback control has a good regulating effect in the vicinity of a wind turbine stable point,but if the system is required relatively high of dynamic performance, it is difficult for the independent variable pitch control based on the feedback to achieve the design intention. The amended pitch plus the collective pitch is the independent pitch. Through the simulation of the wind turbine under the step and the random wind ,it follows that the independent variable pitch control of wind power generation system can reduce the loads of blade and extend service life of wind turbine, on condition that the output power is kept stable . Keywords: Variable pitch ;Pitch Angle; generator

自行车后变速器调整最新

自行车后变速器调整 自行车后变速器调整 首先认识一下大致结构。 8 b, O) z; Q! _. R 变器的基本原理都一样,通过平行四边形结构平移导轮或导链槽,改变链条位置。 后拨的导向轮固定链条的位置,而张力轮保证链条有一定的张力,能够紧紧地裹在齿轮上。下面开始说如何调校 确认各根线管位置都正确,都卡入了车架的卡口里,变速线也安装正确。 限位螺丝H:功能是防止链条掉出最小一片齿轮外 限位螺丝L:防止链条卷入飞轮和钢丝之间。 变速调节螺丝:稍微调整变速线的松紧度

1.将转把转到6 1. 2.飞轮到最小的位置。 2. 3.调整调节限位螺丝的右边螺丝(H),把螺丝转到一个适当的位置.

4.使得链条在相对应的齿片上时,导向轮和齿片在同一平面上。 8 Q8 y* j& L3 \ I0 55 .将线尽量拉直,锁紧变速器上的刹线固定螺丝。

6.把转把转到5,看链条是否马上到大一片的位置.如果不会上请调节变速调节螺丝.把变速调节螺丝松回2-3圈. 反之如果会上,但不会退回6(飞轮最小位置),那就是线拉得过紧或调节限位螺丝H过紧了(过紧了就转松一点.线拉的过紧.就是把变速调节螺丝调紧一点) 7.把转把一档一档地转,看每一档是否都可以上去。转把到1位置,链条到最大飞轮上.如果转把转到1,上不了最大档,放松一点L一侧限位螺丝.

8.在把调节限位螺丝L锁到适当的位置. 两个齿轮在同一平面。- i; p) i! Y% a) i. A7 I/ ~把转把从1档退回2档.看链条能否马上下来.不能下来请稍微锁紧一下调节限位螺丝L.如果马上能下来,重转到1,看是否能马上上去.如果可以就OK了. 如果不会上去,就是调松一点调节限位螺丝.(如果链条在最大飞轮上跳动,请调节限位螺丝L) 这样基本上就调节好了。 接下来就是试一下。先空转变速试试。正常应该很柔顺,没有跳动。如果向上变速不能及时到位,就说明线拉得不够,就要把调节螺丝逆时针转出来一点看看,通常半圈半圈的调节就够了。如果变速下不去,就松一点点。然后骑一下看看。通常新换的变速线,变速一段时间后需要稍微调整一下。

相关主题
文本预览
相关文档 最新文档