当前位置:文档之家› 第六讲 无源网络综合

第六讲 无源网络综合

第六讲 无源网络综合
第六讲 无源网络综合

第六讲 无源网络综合

一、基本概念

1.电路综合是电路分析的逆过程——已知数学模型建立电路模型 数学模型:端口的VCR 、网络函数、状态—输出方程

电路模型:??

?(含有源元件)、运放、电流模放大器

、有源网络,、变压器、、无源网络,C R C L R 2.电路设计步骤

(1) 按给定要求,确定一个可实现的逼近函数(数学模型) ①给定技术要求

时域: 时延,超调,速度,峰值,持续时间,周期

频域:通频带,截止频率,谐振频率,通、阻带衰减,品质因数,相移 ②理想函数 理想特性许多无法实现,无过渡带

δ

p

s

p1p2s1s2

p 1p 2

s1s2

③可实现的逼近函数

网络函数必须是物理可实现的,因而要满足因果性和稳定性。 因为实际器件:X C =

C

ω1

, X L =ωL ,它们是连续、随频率渐变的,所以用R 、L 、C 无法实现频带陡变。可实现的网络函数只能是逼近理想,无法实现理想。

满足条件:??

?

?

?=为有理多项式:可以实现的应具有形如尽量逼近理想

)()

()( s D s N s H 巴特沃思型 N

c

j H 22

)(11

|)(|ωω

ω+=

切比雪夫型Ⅰ、Ⅱ型 )(11

|)(|222

c

n C j H ωωεω+=

其中 ???>

≤=--1|| ),( 1

|| ),cos cos()(1

1x x nch ch x x n x C n 椭圆型 )(ωεω2

22

11

|)(|n

R j H +=

(2)根据网络函数,确定可实现的电路(不唯一)

KVL ∑=k

u

u 串联电路模型、二端网络最简为戴维宁电路

KCL ∑=

k

i

i 并联电路模型、二端网络最简为诺顿电路

例:等效电路、去耦、s 域模型等

今天的任务:给定一个满足某些特性的H (s ),寻找几个可实现的无源电路。 (3)设计:选择一种对某种设计准则来讲是最佳的实现

设计准则:???,简单性电气:可靠性,灵敏度

量经济:成本,尺寸,重

二、给定驱动点函数

???)()(s Y s Z H (s )=

)

())(()

())(()()(2121n n m m p s p s p s b z s z s z s a s D s N ------=

例如:

驱动点导纳

转移导纳

(一) 驱动点函数的一般特性

1、正实函数

当s 是实数时,H (s )是实数(即多项式系数是实的) 当σ≥0时, R e [H (s )] ≥ 0

2、无源网络的驱动点函数一定是正实的,正实函数可以看作无源网络的驱动点函数。

3、正实函数含义:

(1)是具有实系数的s 的有理函数(对应元件参数为R 、L 、C )

(2)极点和零点不能位于s 平面的右半部 (稳定,可利用霍尔维茨判据) (3)在虚轴上的极点和零点不能是重的 (稳定)

(S U s ()

R s 2

()(1)()()

11S S U s RCs I s U s RLCs Ls R R sC sL R sC

+==++++

12

()1

()()S I s RCs H s U s RLCs Ls R

+==++21

()1()()1R S I s sC I s U s RLCs Ls R R

sC ==+++22()1()()R S I s H s U s RLCs Ls R ==++

(4)分子和分母的次数差不大于1,即|m-n|≤1 (驱动点函数特点) (5)对所有s =j ω,只能有非负的实部 (无源性,正弦作用下,

0)Re()Re(>==G

Y R Z )

例: Z 1(s )=)16)(4()

9)(1(2222++++s s s s s =s

s s s s 64209103524++++ 无损,特征根无实部

Z 2(s )=)4)(2(3)

(s 1)(s ++++s s s =s

s s 863)4s (s 2

32++++ 有损 (二) LC (无损)驱动点函数的特性与实现

1、特性

(1)全部极点和零点在s 平面的虚轴上,共轭成对 (2)极零点沿虚轴交错排列

(3)s =0,s =∞是极限频率 (极点或零点) (4)全部留数为正实的

可分解成部分分式,每项共轭复根 2

2

2i

i i s As

j s A j s A ωωω+=++-* A 为正实,故A=A *

2、福斯特实现(Foster ) Ⅰ型(驱动点阻抗) Z LC (s )=

)

)...()(())...()((2

2

2

42

2

22

2

2232212n m s s s s s s s K ωωωωωω++++++

=s C 01 +∑=+n i i i s s K 偶数22ω=s C 01

+∑=+n

i i i

s

L s C 偶数1 注:若分子高一阶,先提出一个电感(为零的零点)L 0s ,成真分式后再分解。

分子提出一个s 后,剩下的分子降2次 第1项或是极点或是零点

0C 2C 4

C n

L 2L 4

L

福斯特Ⅰ型

Ⅱ型(驱动点导纳) Y LC (s )=

)

)...()(())...()((2

2

2

32

2

12

2

2242222n m s s s s s s Ks ωωωω

ωω++++++

σ

=s C ∞ +

=+n

i i

i s s K 奇数

2

2

ω=C s ∞ +

=+

n

i i i s

C s L 奇数

1

注:若分母高一阶,先提出一个电感

s

L 01

,为零的极点

福斯特Ⅱ型

例:Z (s )=16)

( 4)()

9)(1(2222++++s s s s s

解:Ⅰ型 Z (s )= s 649 +41652+s s +166435

2+s s

=s

91

+s s 6415161++s s 1024

135641+

Ⅱ型Y (s )=s +18452

+s s +

98352+s s =s +s s 84514581++s s 72

3513581

+

3、考尔实现(Cauer )

Ⅰ型 分子高出分母一阶(m-n =1) H (s )=

)

)...()(())...()((2

2

2

32

2

12

2

2242222n m s s s s s s Ks ωωωωωω++++++=K 1s +

s

K s K s K n 1

1

1

32+++

①若H (s )=Z (s ) 则K 1=L 1,K 2=C 2,串电感,并电容… ②若H (s )=Y (s ) 则K 1=C 1,K 2=L 2 , 并电容,串电感… Ⅱ型 分母高出分子一阶(n-m=1)

F 16

H (s )=

)

)...()(())...()((2

2

2

42

2

22

2

2232212n m s s s s s s s K ωωωωωω++++++

=

s K 1+

s

K s

s

s

K n 1

11432

++

①若H (s )=Z (s ) 则

11K =C 1 21K =L 2 串电容,并电感… ②若H (s )=Y (s ) 则

11K =L 1 2

1K =C 2 并电感,串电容… 例:Z(s )=16)

(s 4)s(s )

9)(1(2

222++++s s =s s s s s 64209103524++++ Ⅰ型 m-n =1 在s =∞极点展开(多项式按降幂排列)

Y (s )=)(1

s Z =91064202

435++++s s s s s =s +s s s s 91709192011011+

++

245.5s s + s s 20103+

35s 35/5.495.42s s +

5.42s

9 Ⅱ型 n-m =1 在s =0极点展开(多项式按升幂排列)

Z (s )=+=++++s s s s s s 1406.020641095

342s s s s 1

904.81+++

9/70H 1/10H 1F

20/9F 35/9F 7.11F

1.72F

0.11H

0.02H

3.61F

64209103524s s s s s s ++++s s s 91035++ 64

910920641

4

253-++++s s s s s s 4264

9641809s s ++

115

64

16)2064()645516115(142311-?+++s s s s s s s s

s ) 23

17664(2

+

s s 55103

+

10/9

1024s s s ++95.42+s

5.4/1055103

s s

s +

)23

284(3s s s + 4544

2645)64

5516115(1

2-+s s s s s )4544

264516115(2+ )

1136

315(s s 7245

322624)23

284(1

2-+s s s )s 23

284(

s

2

LC 电路在低频时要求大电感,实际有损,体积大,成本高

(三) RC

1、特点

①零极点均为单阶,负实

②零极点在负实轴交替

③Z (

s )=)()

(s D s N D N d d ≤ ?

??=-∞==-∞=可提取一个常数不是零点,可提取一个是零点,,0,1N D N D d d s s d d s

Y (s )=

)

(1

s

Z ④Z (s )全部留数为正实,Y (s )有限极点留数为负实

2、福斯特实现方法举例

例: Z (s )=

)

4)(2()

3)(1(++++s s s s s

Ⅰ型(阻抗

)

Z (s )=3

32381841381483241

83++++=++++s s s s s s

Ⅱ型 (导纳)

Y (s )=s +s

s s s s

s s 62132321321123++++=+++

3、考尔实现方法举例 分子阶高(导纳),Ⅰ型,在s =∞极点展开; 分母阶高(阻抗),Ⅱ型,在s =0极点展开;

σ

σ

ω

j 4F

F s s s s 2773.011136315111363152

==

同阶,Ⅰ型,Ⅱ型均可。

上例: Z (s )=s

s s s s 863

4232++++

Ⅰ型 (按降幂排列)

Y (s )=3486223++++s s s s s =s +s

s 3

11234121

+++

Ⅱ型 (按升幂排列)

Z (s )=3226843s s s s s ++++=s s s 44

1

21968881732183++

++

RC 无源实现)

关键点:把实现转移函数的问题转化为实现驱动点函数的问题 1、传输零点:H (s )=0的s 的作用 (只有电容可以)

①使串联支路的阻抗无穷大

∞→sC 1

开路 则0=K s 考尔Ⅱ型 ②使并联支路的阻抗为零 01

→sC

短路 则∞=K s 考尔Ⅰ型 2、电压转移函数与驱动点函数的关系(无端接)

+1

U +2

H (s )=12U U =212111222121I Z I Z I Z I Z ++=1121Z Z =)()(s B s A =)

(s B Ks m

n 阶

①m =0 全部传输零点在s =∞处 lim H (s )=lim n

m

s

Ks =0 (s ∞→) 对应:Z 11应采用考尔Ⅰ型实现(并电容) 低通滤波

②m=n 全部传输零点在s =0处 lim H (s )=lim 0

b Ks m

=0 (s →0)

Ω3Ω1F 44F 88

F 8

对应:Z 11应采用考尔Ⅱ型实现(串电容) 高通滤波

③0

n-m 个传输零点在s =∞处,用考尔Ⅰ型实现 带通或带阻滤波

3、驱动点函数Z 11特性

1121Z Z =)

()()()

(11112121s d s n s d s n =)()()()(21111121s d s n s d s n ????→?=)()(2111s d s d 令)()(1121s n s n =)

(s B Ks m

①Z 11(s )的分子由B (s )给出,n 11(s )=B (s ),Z 11(s )零点是H (s )极点

②Z 11(s )的极点是单阶,负实,且与B (s )的根相互交错,且离原点最近的是极点 ③Z 11(s )的分母多项式,阶次取为n ,与B (s )同阶(可节省一个元件)

例1:H (s )=12U U =)4)(2(1++s s = )()(11

21s Z s Z 全传输零点为∞,并电容,考尔Ⅰ型

取Z 11(s )=

)3)(1()4)(2(++++s s s s =11

11

d n 原则:同阶,零极点交错,极点小

Z 21(s )=

)3)(1(1

++s s =11

21d n 这里 d 11=d 21

由此得到了转移函数必为H (s ) 用考尔Ⅰ型实现Z 11(s )

Z 11(s )=348622++++s s s s =1+311231

34121+++

s s

例2:H (s )=

12U

=)4)(2(++s s = )

()1121s Z s 全部传输零点为0,串电容, 取Z 11(s )=)3)(1()4)(2(++++s s s s Z 21(s )=)

3)(1(2

++s s s

用考尔Ⅱ型实现Z 11(s)

-

-

+

1

U

+

2

U Ω

1Ω4

Z 11(s )=224368s s s s ++++=4412196888173281

++

+

+

s s

梯形 ?

??

??

?无损有损LC RC

格型 全通滤波器

达林顿型 有端接二端口网络

参考文献:

模拟与数字滤波器设计与实现 人民邮电出版社(美)哈里

思考题与习题

已知驱动点函数s

s s s s s Z 41041

810)(3524++++=,

试用福斯特型Ⅰ、Ⅱ型,考尔Ⅰ型、Ⅱ型实现之。

F

7F 21U 2

U +-

+

-

全光网络介绍-论文型

1 全光网络技术及发展 一、前言 21世纪的到来,人类社会进入了信息化高速发展的时代,随着Internet的迅速发展,信息网络的应用渗透到社会的各个领域。信息通讯量的急剧增加和全业务服务的需要,使得现有的基础网络难以适应。现有通信网络中,各个节点要完成光/电、电/光的转换,而其中的电子器件在适应高速、大容量的需求上,存在着带宽限制、时钟偏移、严重串话、高功耗等缺点,因此产生了通信网中的“信息瓶颈”现象。而光纤通信技术凭借其巨大潜在带宽容量的特点,成为支撑通信业务中最重要的技术之一。为了充分发挥光纤通信的极宽频带、抗电磁干扰、保密性强、传输损耗低等优点,人们提出了全光网的概念。 二、全光网的概念 全光网的含义是指网络中端到端用户节点之间的信号通道保持着光的形式,信号传输与交换全部采用光波技术,即数据从源节点到目的节点的传输过程都在光域内进行,在各网络节点的交换则使用高可靠、大容量和高度灵活的光交叉连接设备。由于网络中不用光电转换器,允许存在各种不同的协议和编码形式,信息传输具有透明性。为区别于现有光通信网络,上述性能的光通信网络我们称为全光网。

三、全光网的主要技术 全光网的主要技术有光纤技术、SDH、光交换技术、OXC、光复用/去复用技术、无源光网技术、光纤放大器技术等。 3.1光纤技术 光纤作为传输光信息的载体,光纤技术的发展直接决定着光网络技术的发展。当光纤的直径减小到一个光波波长时,光在其中无反射地沿直线传播,这种光纤称为单模光纤。单模光纤传输具有内部损耗低、带宽大、易于升级扩容和成本低的优点。下面介绍一下单模光纤传输的特性及对传输速率的影响: 1、频带宽,通信容量大。目前可用的850nm波长区、1310nm波长区和1550nm波长区所对应的固定带宽就有约60THz。巨大的频带带宽是光纤最突出的优点,这对传输各种宽频带信息意义十分重要。 2、损耗低,中继距离长。单模光纤的衰减特性有随波长递增而减小的总趋势,除了靠近1385nm附近由OH根造成的损耗峰外,在1310nm-1600nm间都趋于平坦。现在一般都使用1310nm波长区和1550nm波长区,由于最低衰减常数(0.2dB/km)位于1550nm附近,因此长距离光纤传输系统仍就都采用1550nm波长区。 3、色散。色散是指光脉冲在光纤中传播的过程中会散开的现象。随着传输速率的提高,色散成为传输系统中不可忽视的因素。它会导致脉冲间的干扰,造成不可接受的误码率,其数量和波长有关。 4、非线性效应。系统中使用EDFA,使送进光纤的光功率增强很多,

第5章 无源网络综合(一端口综合)

第五章 无源网络综合 §5.1 网络分析与网络综合 网络分析 网络综合 (a ) (b) 图5.1 网络分析与网络综合 网络综合:研究科学的数学的设计方法。 网络分析与网络综合的区别: 1 “分析”问题一般总是有解的(对实际问题的分析则一定是有解的)。而“设计”问题的解答可能根本不存在。 -V 5.0+ 图5.2 网络综合解答不存在情况一 W 5.21 .05.0W 125.0412 L 2max ==<=?=P P (a) (b) 图5.3 网络综合解答不存在情况二 2“分析”问题一般具有唯一解,而“设计”问题通常有几个等效的解。 -+-V 4 + V 4+- - -V 4+ (a) (b) (c) 图5.4 网络综合存在多解情况 3“分析”的方法较少,“综合”的方法较多。 网络综合的主要步骤: (1) 按照给定的要求确定一个和实现的逼近函数。

(2) 寻找一个具有上述逼近函数的电路。 §5.2 网络的有源性和无源性 输入一端口网络N 的功率 ()()()p t v t i t = 从任何初始时刻0t 到t ,该网络的总能量 0()()()()d t t W t W t v i τττ=+? 式中0()W t 为在初始时刻0t 时该一端口储存的能量。 若对所有0t 以及所有时间0t t ≥,有 ()0,(),()W t v t i t ≥? (1) 则此一端口N 为无源的。如果一端口不是无源的,达就是有源的。就是说,当且仅当对某个激励和某一初始值0t 以及某一时间0t t ≥,有()0W t <,则此一端口就是有源的。换句话说,如果一个一端口是有源的,就一定能找到某一激励以 及至少某一时间t ,式(1)对这个一端口不能成立。 在以上有关无源性的定义中必须计及初始储存能量0()W t 。例如,对时不变的线性电容,设它的电容值为C ,则有 0() 00() 22200()()()()()111 ()()()() 222 t v t t v t W t W t v i d W t C vdv W t Cv t Cv t Cv t τττ=+=+=+-=?? 式中2 001()()2 W t Cv t =。所以0C >时,电容元件为无源的,而当0C <时(线 性负电容),则为有源的。但是,如不计及式中的初始能量项,则 22011 ()()()22 W t Cv t Cv t =- ()W t 为从0t 到t 输入网络的能量。这样即使0C >,()W t 在某些时间将小于零。 事实上充电的电容有可能向外释放储存的能量,但是计及初始能量,它不可能释 放多余原先储存的能量。 为了考虑这种情况,引入了有关“无损性”的概念。设一端口的所有(),()v t i t 从0t →∞为“平方可积”,即有:

无源光网络(PON)和有源光网络(AON)技术比较

无源光网络(PON)和有源光网络(AON)技术比较 深圳市首迈通信技术有限公司 摘要:本文对无源光网络(PON)和有源光网络(AON)在网络结构和技术性能进行比较,分析两者在我国FTTH市场的适应性,阐述我国对FTTH接入技术的选择。 光纤到户(Fiber To The Home——FTTH)接入技术作为未来最终的、一劳永逸的宽带接入解决方案,在日本和美国已得到广泛应用(共有用户约500万)。在我国FTTH尚处于明芽阶段,尚未有商用的FTTH接入网络,但FTTH在我国已得到了越来越多的关注。现有的FTTH技术主要包括无源光网络(Passive Optical Network——PON)和有源光网络(Active Optical Network——AON),AON 接入技术又称小区交换有源光网络接入技术(Remote Office AON——RAON),它们各有优势,适合于不同的应用环境。本文在对它们的网络结构和技术性能进行比较,并结合我国住宅小区的特点,比较上述两种FTTH技术在我国住宅小区应用的优劣,浅析我国住宅小区对FTTH接入技术的选择。 1. 几种FTTH接入技术 最早的FTTH技术是光纤从电信运营商中心机房拉至用户家里以点对点(P2P)的方式组网,如图1.1所示。其能轻易提供100M或1G带宽,网络结构简单,运营维护成本低,支持数据、话音和视频等多种业务,支持目前和未来各种宽带应用的能力。但这种接入方式显然有其明显缺点:过分依赖光缆资源,光纤链路过长过多;由于中心机房离用户较远(一般平均距离在4—5km),这种大芯数远距离光缆铺设成本非常高,尤其在国内城市几乎不可能;一般中心机房覆盖区域大,用户众多,设备和光缆配线集中在中心机房需要大量空间。目前,这种P2P的FTTH技术只应用在大客户(如大型企业、重点单位等),在FTTH接入中将很少使用。 目前谈论最多的FTTH接入技术是基于一点对多点(P2MP)网络拓扑结构的无源光网络(Passive Optical Network—PON)的FTTH接入网,如图1.2所示,在靠近用户时使用光分配器(Splitter)实现一点对多点(P2MP)的网络结构。PON根据其传输协议的不同又分为基于ATM的APON、基于Ethernet的EPON、和基于General Frame Protocol的GPON三种技术标准。下行采用广播方式,而上行采用TDMA方式。PON从中心机房至用户的整个接入网为无源网络,具有易于维护、节约大量光缆资源、减少中心机房设备与配线等技术优势,同样具有支持数据、话音和视频等多种业务的能力。但PON自身存在的缺陷也制约了它的发展。首先,多种技术标准的存在,何种将成为未来主流标准尚无法确定;其次,系统的光发射模块要求高功率激光器和突发性收发能力,要求系统具有测距、带宽动态分配和信号加密等复杂功能,使设备成本高昂;再次,多用户共享有限带宽(一般16或32个用户共享622M或1.25G),带宽升级技术复杂。迄今为止,PON在世界范围内尚未能得到大规模应

部分分式法综合无源网络

部分分式法综合无源网络 摘要对于一个比较复杂的网络函数,不能通过直接法进行综合,需要采用其他的方法进行综合。其中一种常用的方法就是部分分式法。用部分分式法综合无源网络的思路是:将网络的阻抗函数由通常的多项式表达形式分解为部分分式,而部分分式中的每一个因式可以通过直接综合法用一个电阻、电容、电感或它们的简单组合来实现,从而完成整个网络的综合。利用部分分式法综合实现的网络称为福斯特网络。其中,只包含电感和电容元件的福斯特网络称为LC福斯特网络。根据阻抗表示式实现的福新特网络称为福斯特1型网络。 关键词部分分式法;综合无源网络 引言 滤波器广泛应用于我们的生活,随着网络函数越来越复杂,我们可以把复杂的函数简单化去解决。 2.2 网络的结构的确定也可以根据下面的方法,首先确定网络元件的数目,从而确定网络的结构 (1)元件总数的确定 LC福斯特1型网络元件数目由网络阻抗函数Z(s)的极点总数目(包括无穷大处极点的数目)确定。其中,电容和电感的数目要么相等,要么差值为1。 (2)串联电感和串联电容的确定 如果网络的极点数目为奇数,则网络所需元件数目为奇数,就需要一个串联电感串联电容。具体可以根据Z(0)的值是零还是无穷大来确定网络的第一个串联元件是电感还是电容。如果Z(0)=0,则网络中的第一个串联元件是电感。如果Z(0)=∞,则网络中第一个串联元件是电容。 如果网络的极点数目为偶数,则串联电感和串联电容要么都需要,要么都不需要。如果z(0)=∞或z(∞)=0,则串联电感和串联电容都需要。如果Z(0)=0或Z(∞)=0,则串联电感和串联电容都不需要[2]。 (3)LC并联电路的个数的确定 网络中LC并联电路的个数由阻抗函数共轭复数极点的数目来确定。 3 网络元件值的确定 網络元件的数值由Z(s)的表达式或根据各元件的表达式确定。

浅谈无源光网络技术在电力系统中的应用

浅谈无源光网络技术在电力系统中的应用 发表时间:2018-06-25T15:39:02.747Z 来源:《电力设备》2018年第5期作者:钟建锋陈杰[导读] 摘要:随着我国智能电网的不断发展,配网自动化建设显得更加紧迫,而无源光网络在配网自动化建设中显得十分重要,且具有可靠性高、成本低等优点。 (国网浙江瑞安市供电有限责任公司 325200) 摘要:随着我国智能电网的不断发展,配网自动化建设显得更加紧迫,而无源光网络在配网自动化建设中显得十分重要,且具有可靠性高、成本低等优点。本文根据以往工作经验,对无源光网络结构及各部分功能进行总结,并从网络架构和组网方式、配电主站至变电站 通信网络建设、变电站至配电终端通信网建设、安全防护方案设计四方面,论述了无源光网络技术在电力系统中的应用。 关键词:无源光网络技术;电力系统;网络架构前言:近年来我,我国电力行业进行了深入改革,促使了该行业迅速发展。为此,我国相关部门提升了对电力行业发展的重视程度,并加大对配单自动化建设的投入。在此环节之中,主要是对通信系统进行建设,使得10kV配电子网与主网之间实现了信息传输,这种网络具有数量大、分布广等优点,但工作环境相对较差。因此,相关部门在保证价格低廉、网络稳定的同时,还需要为维护工作提供方便。 1.无源光网络结构及各部分功能 无源光网络的结构图如图1所示,从图中也可以看出,,无源光网络属于一种树型网络结构,各种模块的功能如下:首先是OLT,该结构可以为光接入网提供网络与业务之间的连接点,并通过ODN与用户侧实现通信。整体来看,OLT与ONU之间的关系以主从关系为主,在实际运行过程中,OLT可以存在于交换局内部,也可以位于较远端,可实现数字交叉功能和传输复用功能等。其次是ODN,它可以在OLT 和ONU之间提供合理的传输手段,帮助整个系统完成信号功率分配和合成任务。在制作过程中,ODN主要由无源光器件、配网线等组成,主要以树型分支结构为主,可发挥出业务复用等功能。最后是ONU,它主要是为接入网提供用户侧接口,位于ODN用户侧,主要功能是将ODN信号进行终结,并为用户提供合理的业务接口。 图 1 无源光网络结构图 2.无源光网络技术在电力系统中的应用 2.1网络架构和组网方式 在整个电力通信系统之中,主要包括以下两个部分:骨干通信网和通信接入网,其中通信接入网又分为10kV通信接入和0.4kV通信接入网。从以往应用过程来看,第一层为电力主网架骨干通信网,该网络在应用过程中将会覆盖所有35kV以上的全部变电所、个人用户等组织,可以涉及到变电站的所有业务。该层次在通信网络中处于核心地位,具有极高的应用可靠性。例如,在某项工程建设之中,所使用的SDH设备传输容量为622M,基本上与应用带宽的需求相符,但为了保证带宽的稳定运行,可进一步提升太网板和路由器设备数量,最终实现纯IP接入的接入方式。第二层为通信接入网,主要由变电所低压出线侧传导至各级储能装置之中。该层在通信网络之中始终处于中间位置,为馈线的自动化发展提供主要的通信支撑条件。整体来看,该层对业务可靠性、运行环境等具有较高需求,可提供的接入方式也有很多,如IP、RS232等[1]。 2.2配电主站至变电站通信网络建设 例如,在朔州市城区配电自动化主站建设过程中,距通信机房地点仅有200米,为了满足信息的交互性和安全性,同时对枢纽节点进行容灾备份,在本次建设过程中,工作人员应用了一套ZXMPS385Aa设备,对城区自动化主站进行合理调配,调配的对象包括南门变电站、城西变电站等6条光缆,从而实现配电站信息点的全面建设。另外,还可以通过GPRS通信网络,利用各大运营商与配网主站进行相应连接。在此过程中,终端设备只有一个固定的接入点,与相对应的GPRS网络进行连接,在完成远程数据参数设置的同时,实现远程操作等功能。 2.3变电站至配电终端通信网建设 首先是接入层的技术比较,在配电通信网之中,无源光网络技术可以利用已经建成的SDH骨干层光纤进行网络通信,而在变电站和配电终端解决方案过程中,必须采取多种通信方式。另外,无源光网络主要以太网无源光网络技术为基础,并采用多点结构、无源光纤传输等提供多种业务,该方式在应用过程中具有成本低、扩展性强等优势,与现有的太网可以完全的兼容在一起,实现配电自动化的有效应用。而在有源光纤专用网通信技术应用过程中,如工业以太网、SDH技术等,具有资源浪费大、无法抗多点失效等缺点,一般在电力系统中不会被采用。最后是无线公网技术的应用,目前,无线公网通信主要包括GPRS、CDMA等,该技术既有优点,也有明显的缺点,不能对配电自动化的整体需求进行满足,只能在过渡期的分遥控站点中进行使用。 2.4安全防护方案设计 在主站安全防护之中,配电网调度自动化系统与其他系统连接之中会采用逻辑隔离防护措施,但无论是对哪一种通信进行应用,自动化主站在建设过程都应该与国家规定的标准相符。而在专用的传输通道建设过程中,可选取串联配网安全网关等安全模块,并对控制指令和参数指令进行相关签名操作,从而实现对主站身份的鉴别性保护。而在重要子站和终端通信过程中可以实施双向认证加密,并实现身份的双向鉴别,确保文件的机密性和完整性。除此之外,在无源光网络技术在电力系统应用过程中,需要使用专用的正反隔离装置,实现自动化系统的有效隔离[2]。

光无源器件浅析

摘要:主要介绍了应用于光纤通信中的各种光无源器件的种类、作用、原理和技术指标,并对部分主要的光无源器件有较深入的分析和工艺考虑,如光纤光缆活动连接器、光衰减器、光开关、波分复用器等,较为详细地介绍了这些光无源器件的特点及用途。 关键字:光纤通信光无源器件种类作用原理技术指标 光无源器件是光纤通信设备的重要组成部分,也是其它光纤应用领域不可缺少的元器件。具有高回波损耗、低插入损耗、高可靠性、稳定性、机械耐磨性和抗腐蚀性、易于操作等特点,广泛应用于长距离通信、区域网络及光纤到户、视频传输、光纤感测等等。相对于光电器件,如半导体激光器、发光二极管、光电二极管以及光纤放大器等光“有源器件”而言,这一类本身不发光、不放大、不产生光电转换的光学器件,常被称之为光“无源器件”。 一、光无源器件原理、作用及指标 它是一种光学元器件,其工艺原理遵守光学的基本规律及光线理论和电磁波理论、各项技术指标、多种计算公式和各种测试方法,与纤维光学、集成光学息息相关;因此它与电无源器件有本质的区别。光无源器件的种类繁多,功能及形式各异,但在光纤通信网络里是一种使用性很强的不可缺少的器件。主要的无源器件有光纤连接器、光缆连接器、光纤耦合器、光开关、光复用器(合波器和分波器)、光分路器、光隔离器、光衰耗器、光滤波器,等等。

它的作用概括起来主要是:连接光波导或光路;控制光的传播方向;控制光功率的分配;控制光波导之间、器件之间和光波导与器件之间的光耦合;以及合波和分波等作用。评价光无源器件的主要技术指标包括:插入损耗、反射损耗、工作带宽、带内起伏、功率分配误差、波长隔离度、信道隔离度、信道宽度、消光比、开关速度、调制速度等等。不同的器件要求有不同性质的技术指标。但是,绝大多数的光无源器件都要求插入损耗低、反射损耗高、工作带宽宽等。 二、光无源器件种类 (一)光纤光缆活动连接器 1.含义即原理应用 光纤光缆活动连接器是连接两根光纤光缆形成连续光通路且可以重复装拆的无源器件;它还具有将光纤光缆与有源器件,光纤光缆与其他无源器件,光纤光缆与系统和仪表进行活动连接的功能。活动连接器伴随着光通信的发展而发展,现在已形成门类齐全、品种繁多的系统产品,是光纤应用领域中不可缺少的、应用最广泛的基础元件之一。 2.光纤光缆活动连接器类型 按其功能可以分成如下几部分:连接器插头、光纤跳线、转换器、变换器等。这些部件可以单独作为器件使用,也可以合在一起成为组件使用。实际上,一个活动连接器习惯上是指两个连接器插头加一个转换器。 连接器插头:使光纤在转换器或变换器中完成插拔功能的部件称为插头,连接器插头由插针体和若干外部机械结构零件组成。两个插头在插入转换器或变换器后可以实现光纤(缆)之间的对接;插头的机械结构用于对光纤进行有效的保护。插针是一个带有微孔的精密圆柱体。 光纤跳线:将一根光纤的两头都装上插头,称为跳线。连接器插头是跳线的特殊情况,即只在光纤的一头装有插头。在工程及仪表应用中,大量使用着各种型号、规格的跳线,跳线中光纤两头的插头可以是同一型号,也可以是不同的型号。跳线可以是单芯的,也可以是多芯的。跳线的价格主要由接头的质量决定。因而价格也相差较大。在选用跳线时,本着质优价廉去选是不错,但一定不要买质次价低的产品。 转换器:把光纤接头连接在一起,从而使光纤接通的器件称为转换器,转换器俗称法兰盘。在CATV系统中用得最多的是FC型连接器;SC型连接器因使用方便、价格低廉,可以密集安装等优点,应用前景也不错,除此地外,ST型连接器也有一定数量的应用。 变换器:将某一种型号的插头变换成另一型号插头的器件叫做变换器,该器件由两部分组成,其中一半为某一型号的转换器,另一半为其它型号的插头。使用时将某一型号

以太网无源光网络介绍

以太网无源光网络介绍(EPON) 原理: EPON是一种光纤接入网技术,它采用点到多点结构、无源光纤传输,在以太网之上提供多种业务。它在物理层采用了PON技术,在链路层使用以太网协议,利用PON的拓扑结构实现了以太网的接入。因此,他有低成本;高带宽;扩展性强,灵活快速的服务重组;与现有以太网的兼容性;方便的管理 以下是网络拓扑图:. 接入系统的特点 系统由局端机房设备﹙OLT﹚、用户终端设备(ONU)、光配线网(ODN)三个部分组成。 局端(OLT)与用户(ONU)之间仅有光纤、光分路器等光无源器件,无需租用机房、无需配备电源、无需有源设备维护人员,因此,可有效节省建设和运营维护成本; 采用单纤波分复用技术(下行1490nm,上行1310nm),仅需一根主干光纤和一个OLT,传输距离可达20公里。因此可大大降低OLT和主干光纤的成本压力;

设备介绍 华为 SmartAX MA5680T(OLT) 华为 SmartAX MA5680T-EPON/GPON系统OLT光接入设备是华为EPON/GPON系统中OLT (Optical LineTerminal)设备,和终端ONU(Optical NetworkUnit)设备配合使用,可以提供EPON/GPON接入业务,满足FTTH(Fiber To The Home)光纤到户、FTTB(FiberTo The Building)光纤到楼、基站传输、IP专线互联、批发等组网需求。MA5680T拥有海量的交换容量达到400G,每槽位带宽高达10G,并且支持20G的上行带宽。MA5680T是目前业界第一款T比特(1000G)的宽带接入产品。 MA5680T支持目前所有的光接入方式,包括:EPON、GPON、千兆光以太网、百兆光以太网,只需插入不同的接口板就可以支持不同的光接入方式,各种光接口板可以随意的混插,为运营商提供了一个极其灵活的光接入平台:可以提供EPON和GPON的接入方式,实现FTTX,并且可以避免技术选择的风险;可以提供千兆光以太网接口,作为DSLAM或交换机的光汇聚设备;可以提供百兆光以太网接口,作为大客户的高速接入;MA5680T作为接入层光纤接入的汇聚平台,可以为运营商提供丰富的光纤接入手段,满足接入层多样化的接入需求和多元的光接入手段相配套的,是多样化的远端ONU,根据光纤延伸的位置不同,MA5680T可以提供不同类型的ONU,包括家庭型、楼道型、户外型等,为运营商提供完整的FTTX解决方案。特别是MDU设备,上行支持EPON/GPON/GE接口,下行支持ADSL2+/VDSL2双绞线接入,与MA5680T配合,实现光进铜退,在现有的铜缆网上提供高速的宽带接入。 光分路器(ODN):光网络系统也需要将光信号进行耦合、分支、分配,这就需要光分路器来实现。光分路器又称分光器,是光纤链路中最重要的无源器件之一,是具有多个输入端和多个输出端的光纤汇接器件,常用M×N来表示一个分路器

pon 无源光网络总结

OLT提供网络侧接口并连至一个或多个ODN,完成下行电到光、上行光到电的转换,以及分配和控制各信道的连接,并对各个光电接口实施监控,提供OAM功能。ODN为OLT和ONU提供光传输手段,主要功能是完成光信号功率的分配,完全出光纤无源器件组成,这也是PON名称的由来。ONU提供用户侧接口并和ODN相连,完成下行光到电和上行电到光的转换,还要完成对语音信号的数/模和模/数转换、复用、信令处理和维护管理功能,实现各类业务的接入。AF(Adaption Facility适配设施)为ONU和用户设备提供适配功能,它可以包含在ONU内,也可以完全独立。 无源光网络中采用的接入方式主要有:光纤到家(FTTH:Fiber to the Home)、光纤到 大楼(FTTB:Fiber to the Building)、光纤到路J,2/(FTTC:Fiber to the Curb)、光纤到办公室 (F’兀O:Fiber to the Office)、光纤到小区(FTTZ:Fiber to the Zone)及光纤到节点(FTTN:Fiber to the Node)等等。各种接入方式的主要区别在于ONU放置的位置不同,其中最典型的方 式是FTTB、FTTC和FTTH。 PON在下行方向(从OLT到ONU)是点对多点网络,OLT始终拥有整个下行带宽。在上行方向(ONU到OLT),PON是多点对一点的网络,多个ONU都向一个OLT发送数据,共享干路光纤带宽资源。因此,在上行方向应该采用信道分割机制来避免发生碰撞,公平 有效地利用主干光纤的传输资源。根据信道分割机制的不同,实用的PON技术大致分为两类:一是基于时分复用技术的无源光接入网(TDM.PON);二是基于波分复用技术的无源光接入网(WDM—PON)。 PON网络的突出优点是消除了户外的有源设备,所有的信号处理功能均在交换机和用户宅内设备完成,避免了外部设备的电磁干扰和雷电影响,减少了线路和外部设备的故障率,提高了系统可靠性,同时节省了维护成本。而且这种接入方式的前期投资小,大部分资会可以等到用户真J下接入时才投入。它的传输距离比有源光纤接入系统的短,覆盖的范围较小,但它造价低,无需另设机房,维

光无源器件

光无源器件 光无源器件是光纤通信设备的重要组成部分,也是其它光纤应用领域不可缺少的元器件。具有高回波损耗、低插入损耗、高可靠性、稳定性、机械耐磨性和抗腐蚀性、易于操作等特点,广泛应用于长距离通信、区域网络及光纤到户、视频传输、光纤感测等等。 目录

光无源器件的测试方法 光无源器件测试是光无源器件生产工艺的重要组成部分,无论是测试设备的选型还是测试平台的搭建其实都反映了器件厂商的测试理念,或者说是器件厂商对精密仪器以及精密测试的认识。不同测试设备、不同测试系统搭建方法都会对测试的精度、可靠性和可操作性产生影响。本文简要介绍光无源器件的测试,并讨论不同测试系统对精确性、可靠性和重复性的影响。 在图一所示的测试系统中,测试光首先通过偏振控制器,然后经过回波损耗仪,回波损耗仪的输出端相当于测试的光输出口。这里需要强调一点,由于偏振控制器有1~2dB插入损耗,回波损耗仪约有5dB插入损耗,所以此时输出光与直接光源输出光相比要小6~7dB。可以用两根单端跳线分别接在回损仪和功率计上,采用熔接方式做测试参考,同样可采用熔接方法将被测器件接入光路以测试器件的插损、偏振相关损耗(PDL)和回波损耗(ORL)。 该方法是很多器件生产厂商常用的,优点是非常方便,如果功率计端采用裸光纤适配器,则只需5次切纤、2次熔纤(回损采用比较法测试*)便可完成插损、回损及偏振相关损耗的测试。但是这种测试方法却有严重的缺点:由于偏振控制器采用随机扫描Poincare球面方法测试偏振相关损耗,无需做测试参考,所以系统测得的PDL实际上是偏振控制器输出端到光功率计输入端之间链路上的综合PDL值。由于回损仪中的耦合器等无源器件以及回损仪APC的光口自身都有不小的PDL,仅APC光口PDL值就有约0.007dB,且PDL相加并不成立,所以PDL测试值系统误差较大,测试的重复性和可靠性都不理想,所以这种方法不是值得推荐的方法。改进测试方法见图2所示。 在图2测试系统中,由于测试光先通过回损仪再通过偏振控制器,所以光源输出端与偏振控制器输入端之间的光偏振状态不会发生大的变化,也就是说系统可测得较准确的DUT PDL值。然而问题还没有解决,PDL是可以了,但回波损耗测试却受到影响。我们知道,测试DUT回波损耗需要先测出测试系统本身的回光功率,然后测出系统与DUT共同的回光功率,相减得出DUT回光功率。从数学上容易理解,系统回光功率相对越小,DUT回损值的精确度、可靠性以及动态范围就会越好,反之则越差。在第二种系统中,系统回光功率包含了偏振控制器回光功率,所以比较大,进而限制了DUT回损测试的可靠性和动态范围。但一般而言,只要不是测试-60dB以外的回损值,这种配置的问题还不大,因此它在回损要求不高的场合是一种还算过得去的测试方法。除了上述两种测试方案以外,还有一种基于Mueller矩阵法的测试系统(图3)。 这种测试系统采用基于掺铒光纤环的可调谐激光器(EDF TLS)而并非普通外腔式激光器,这点很重要,后文还有论述,此外它还加上Mueller矩阵分析法专用的偏振控制器、回损仪和光功率计。由于采用Mueller矩阵法测试PDL时要求测试光有稳定的偏振状态,所以可调谐光源与偏振控制器之间以及偏振控制器与回损仪之间要用硬跳线连接,这样可以排除光纤摆动对测试的影响。用Mueller 矩阵法测试PDL需要做参考,所以在一定程度上可以排除测试链路对PDL测试的影响,因此这个系统可以得到较高的PDL测试精度以及回损与插损精度,测试的

无源光网络分析

无源光网络[浏览次数:约272次] ?无源光网络(PON)技术是为了支持点到多点应用而发展起来的光接入技术。 由于采用光纤作为传输媒质,并使用无源光分配网,P ON避免了外部设备的电磁干 扰和环境影响,减少了线路和外部设备的故障率,提高了系统的可靠性,同时节约了维护成本。窄带PON几乎没有怎么实际应用就被宽带PON(BPON)取代了,BPON目 前出现了APON、EPON和GPON这3种技术。 目录 ?无源光网络优势与核心构成 ?无源光网络原理 ?无源光网络(PON)需要FPGA设计的支持 ?无源光网络发展趋势 无源光网络优势与核心构成 目前,作为新一代接人技术的PON已经成为当前实现丌Tx的首选方案,下属BPON、EPON、GPON和WPON等多种技术,其应用范围也包含了宽带接人、TDM专线和基站回传等多个领域。与传统的网络结构相比,PON技术具有以下优点: (1)PON是无源的,因此会节省更多的网络建设费和网络运营维护费。 (2)PON可以实现多用户分担成本。PON协议所固有的安全性和带宽共享机制,可以确保用户共用线路的安全和透明。 (3)为相同数量客户提供业务的PON设备的体积更小,占用中心局的空间更少。 (4)PON同时支持传统语音业务和宽带业务,具备良好的业务扩展性,能平地滑向NGN 网络演进,还能轻松加载各种增值业务。 (5)PON支持所有住宅用户和许多商业用户共享一个接入网(包括物理层和协议层),因而减少了分散的接入网的数量。 PON中最主要的三个部分,包括位于局端的OLT(OpticalLineTerminal,光线路终端)、终端ONU(OpticalNetwork Unit,光网络单元)以及ODN(Optical Distribution Network,光配线网)。PON“无源”是指ODN全部由光分路器(Splitter)等无源器件组成,不含有任何电子器件及电源。如图1所示。

光无源器件技术综述

光无源器件技术综述万助军中科院上海微系统与信息技术研究所博士 生上海上诠光纤通信设备有限公司技术顾问光无源器件是光纤通信中不可或缺的部分,本文综合介绍各种光无源器件技术原理、特摘要:光纤准直器设计等°减反射角、点以及部分工 艺考虑,内容包括高斯光束能量耦合、光纤头的8单元技术和光纤连接器、晶体光学器件、波分 复用器、光开关等器件技术,希望对从事光无源器件设计和制造的工程师有参考作用。FBT 关键词:光无源器件,准直器,隔离器、环形器、光开关、言绪一.适应信息社会对通 信容量的要求,光纤通信已经取代电子通信。低损耗光纤、半导体激使光纤通DWDM+EDFA光器和掺铒光纤放大器是使光纤通信成为可能的三个关键因素,而信容量得到空前扩展。在光纤通信系统中,各种光无源器件扮演着不可或缺的角色,本文将[1]综合介绍各种光无源器件技术原理及特点。下文的组织结构是,第二部分介绍光无源器件中用到的基础知识和单元技术;第三部分对光纤连接器的一些特性进行分析;第四部分介绍各种晶体光学器件的结构、原理和发展情况;第五部分介绍波分复用器的原理和结构;第六部分介绍各种光开关的原理、结构和特点;第七部分介绍各种光衰减器的原理、结构和特点;第八部分介绍光纤熔融拉锥器件的基本原理和各种具体器件的实现方式;第九部分为全文总结。需要说明的是,限于本文作者的知识水平和研究经历,对某些技术有较深入的分析,如型波分复用器和光纤熔融拉光纤头、光纤准直器、光纤连接器、光隔离器、光环形器、Filter、光开关和可调光衰减器等,这锥器件等,对某些技术则大致介 绍结构和原理,如Interleaver些都是为了聊补本文的完整性,以顶住光无源器件技术综述这顶帽子。考虑本文的读者对象是从事光无源器件设计和制造的工程师,作者尽量少用复杂的公式,但在某些场合,公式有50个公式。助于理解问题和 说明一些重要结论,因此本文中仍出现多达基础知识和单元技术二. 高斯光束的能量耦合1.在尾纤为单模光纤的光无源器件中,光束可用高斯近似处理,器件的耦合损耗可用高斯光束之间的耦合效率进行分析。两束高斯光束之间的能量耦合效率,取决于二者的光场叠加[2-4]。比率,可用(1)式计算 2*??dxdyE?E21?T(1) 22????dxdyE?dxdyE21 两束高斯光束之间的耦合,可能存在三种失配模式:径向失配X、轴向失配Z 和角向失配θ,如图1所示。耦合失配造成光场重叠误差,从而影响耦合效率,根据(1)式计算得到1 耦合损耗与各种失配量之间的关系如图2所示,其中取光束束腰半径分别为200um和5um作对比,分别对应一般准直器和光纤的模场半径。束腰半径为200um的高斯光束,对角向失配比较敏感,对径向失配次之,对轴向失配则有较大容差;束腰半径为5um的高斯光束,对轴向失配比较敏感,对径向失配次之, 对角向失配则有较大容差。

电网络分析与综合

《电网络分析与综合》 首先电网络理论是研究电网络(即电路)的基本规律及其分析计算方法的科学,是电工和电子科学与技术的重要理论基础。“网络分析”与“网络综合”是电网络理论包含的两大主要部分。本书共十章,第一至六章主要内容为网络分析,第七至十章主要内容为网络综合。网络分析部分在大学本科电路原理课程的基础上,进一步深入研究电路的基本规律和分析计算方法。其中,第一章(网络元件和网络的基本性质)包含电网络理论的基本概念与基本定义,是全书的理论基础。第二、三、四、五章(网络图论和网络方程、网络函数、网络分析的状态变量法、线性网络的信号流图分析法)介绍现代电网络理论中的几类分析电网络的方法。第六章(灵敏度分析)研究评价电路质量的一个重要性能指标——灵敏度的分析计算方法,为电网络的综合与设计提供必要的工具。在网络综合部分,除介绍网络综合的基础知识、无源滤波器和有源滤波器综合的基本步骤外,侧重研究得到广泛应用的无源滤波器和有源滤波器的综合方法。其中,第七、八章(无源网络综合基础、滤波器逼近方法)的内容是进行电网络综合所必须具备的基础知识。第九章(电抗梯形滤波器综合)对无源LC梯形滤波器的综合方法做了详细介绍。因为这种滤波器不仅具有优良性能、得到广泛应用,而且在有源RC滤波器以及SC 滤波器、SI滤波器等现代滤波器设计中,常以其作为原型滤波器。第十章(有源滤波器综合基础)在综述有源滤波器基本知识的基础上,介绍几类常用的高阶有源滤波器综合方法。其中,比较深入地研究了用对无源LC梯形的运算模拟法综合有源滤波器的方法。 第一章主要论述网络的基本元件以及网络和网络与安杰的基本性质。实际的电路有电气装置、器件连接而成。在电网络理论中所研究的电路则是实际电路的数学模型,他的基本构造单元时电路元件。每一个电路元件集中地表征电气装置电磁过程某一方面的性能,用反映这一性能的各变量间关系的方程表示。电网络的基本变量是电流i、电压u、电荷q、磁通Φ,它们分别对应于电磁场的表征量磁场强度H、电场强度E、电位移D和磁感应强度B。用场的观点来考察,实际电路的问题可视为在特定的有限局部空间中的电磁场问题,电路与电磁场的我表征量是一一对应且通过下列方程相互联系的:

吉比特无源光网络(GPON)技术及其标准化

吉比特无源光网络(GPON)技术及其标准化 陈 洁 摘要:本文对GPON的主要技术特征进行了描述,并进一步详细解释了协议分层功能、DBA 机制、ONU激活注册、OMCI等关键技术和原理,同时还介绍了GPON承载TDM业务的二种具体方式,以及GPON技术的标准化情况。 一.GPON技术的提出 GPON(Gigabit-Capable Passive Optical Network,吉比特无源光网络)技术是无源光网络(PON)家族中一个重要的技术分支,其它类似技术包括APON/BPON和EPON技术等。GPON是当前和未来2到3年内最受关注的光接入技术之一。 GPON的概念最早由FSAN(Full Service Access Network,全业务接入网联盟)在2001年提出,在此之前,FSAN/ITU还提出并标准化了APON/BPON技术(ITU-T G.983.x系列标准),IEEE也已经开始EPON技术的标准化工作并很快于2003年正式发布IEEE 802.3ah,这标志着EPON技术标准化工作的完成。FSAN/ITU推出GPON技术的最大原因是由于网络IP化进程加速和ATM技术的逐步萎缩导致之前基于ATM技术的APON/BPON技术在商用化和实用化方面严重受阻,迫切需要一种高传输速率、适宜IP业务承载同时具有综合业务接入能力的光接入技术出现。在这样的背景下,FSAN/ITU以APON标准为基本框架,重新设计了新的物理层传输速率和TC层,推出了新的GPON技术和标准。 二.GPON系统的构成 和其它PON技术类似,GPON也是一种采用点到多点拓扑结构的无源光接入技术,由局侧的OLT(Optical Line Terminal,光线路终端)、用户侧的ONU (Optical Network Unit,光网络单元)以及ODN(Optical Distribution Network,光分配网络)组成,其系统参考配置如图1所示。所谓“无源”,是指ODN中不含有任何有源电子器件及电子电源,全部由光纤和光分/合路器(Splitter)等无源光器件组成,没有昂贵的有源电子设备。 15

光无源器件常见类型

光无源器件就是不含光能源的光功能的器件,是光纤通信设备的重要组成部分,也是其它光纤应用领域不可缺少的元器件。因其具有高回波损耗、低插入损耗、高可靠性、稳定性、机械耐磨性和抗腐蚀性、易于操作等特点,广泛应用于长距离通信、区域网络及光纤到户、视频传输、光纤感测等等领域。 光无源器件在光路中都要消耗能量,插入损耗是其主要性能指标。光无源器件包括光纤连接器、光开关、光衰减器、光纤耦合器、波分复用器、光调制器、光滤波器、光隔离器、光环行器等。它们在光路中分别可实现连接、能量衰减、反向隔离、分路或合路、信号调制、滤波等功能。光无源器件有很多种,本文将讲述常用的几种—光纤衰减器、光纤环形器、光纤准直器、光纤隔离器、光纤传感器、光纤合束器和光纤起偏器。 光纤衰减器 光纤衰减器是一种非常重要的纤维光学无源器件,是光纤CATV 中的一个不可缺少的器件。从市场需求的角度看,一方面光衰减器正向着小型化、系列化、低价格方向发展。另一方面由于普通型光衰减器已相当成熟,光衰减器正向着高性能方向发展,如智能化光衰减器,高回损光衰减器等。到目前为止市场上已经形成了固定式、步进可调式、连续可调式及智能型光衰减器四种系列。 任何光纤系统传输数据的能力取决于接收器的光功率,如下图所示,其显示了接收光功率作用下的数据链路误码率。(误码率是信噪比的倒数,例如误码率越高表示信噪比的信号越低。)无论功率过高或者过低都会导致较高的误码率。光无源器件常见类型

功率过高,接收放大器饱和,功率过低,可能会干扰信号产生噪音等问题。光纤衰减器主要用于调整光功率到所需标准。 光纤环形器 光纤环形器为非互易设备,只能沿单方向环行,反方向是隔离的。 光纤环形器除了有多个端口外,其工作原理与光纤隔离器类似,也是一种单项传输器件,主要用于单纤双向传输系统和光分插复用器中。

无源光网络综述

一、无源光网络的概念 无源光网络(PON),是指在OLT(光线路终端)和ONU(光网络单元)之间的光分配网络(ODN)没有任何有源电子设备. PON(无源光网络)技术是一种点对多点的光纤传输和接入技术,下行采用广播方式、上行采用时分多址方式,可以灵活地组成树型、星型、总线型等拓朴结构,在光分支点不需要节点设备,只需要安装一个简单的光分支器即可,因此具有节省光缆资源、带宽资源共享、节省机房投资、设备安全性高、建网速度快、综合建网成本低等优点。 PON包括ATM-PON(APON,即基于ATM的无源光网络)和Ethernet-PON(EPON,即基于以太网的无源光网络)两种。 二、无源光网络的优势 无源光网络(PON)是一种纯介质网络,避免了外部设备的电磁干扰和雷电影响,减少了线路和外部设备的故障率,提高了系统可靠性,同时节省了维护成本,是电信维护部门长期期待的技术。无源光网络的优势具体体现在以下几方面: (1)无源光网络设备简单,安装维护费用低,投资相对也较小。 (2)无源光设备组网灵活,拓扑结构可支持树型、星型、总线型、混合型、冗余型等网络拓扑结构。 (3)安装方便,它有室内型和室外型。其室外型可直接挂在墙上,或放置于"H"杆上,无须租用或建造机房。而有源系统需进行光电、电光转换,设备制造费用高,要使用专门的场地和机房,远端供电问题不好解决,日常维护工作量大。 (4)无源光网络适用于点对多点通信,仅利用无源分光器实现光功率的分配。 (5)无源光网络是纯介质网络,彻底避免了电磁干扰和雷电影响,极适合在自然条件恶劣的地区使用。 (6)从技术发展角度看,无源光网络扩容比较简单,不涉及设备改造,只需设备软件升级,硬件设备一次购买,长期使用,为光纤入户奠定了基础,使用户投资得到保证。三、基于ATM的无源光网络 1.APON技术简介 近年来,在接入网上使用ATM技术以提供视频广播、远程教育以及数据通信等多种业务的趋势越来越明显。在无源光网络上使用ATM,不仅可以利用光纤的巨大带宽提供宽带服务,也可以利用ATM进行高效的业务管理。自1993年以来,许多国家都竞相开始研究ATM-PON技术及其应用,并认为A TM-PON是最有前途的、能以较低成本提供宽带接入的方案。 APON技术发展得比较早,它还具有综合业务接入、QoS服务质量保证等独有的特点,ITU-T的G.983建议规范了ATM-PON的网络结构、基本组成和物理层接口,我国信息产业部也已制定了完善的APON技术标准。 A TM-PON采用的是点到多点的无源光网络,主要由OLT、ODN、ONU组成,由无源光分路器件将OLT的光信号分到树形网络的各个ONU。其应用包括FTTH、FTTB/C、FTTCab等多种配置结构。FTTB/C和FTTCab网络结构只是在应用上略有区别,可以看成一类。 FTTB/C/Cab可以提供PSTN、ISDN业务以及其它对称或非对称的宽带业务。 FTTH应用提供的业务大致同上,另外,FTTH可以考虑使用户内置ONU,使ONU的工作环境得以改善,再加上网络全部为光纤,使得维护工作量减少、成本降低。对于网络将来可能的带宽或业务升能,ONU可不作改动。 根据G.983规范,ATM无源光网络中,OLT最多可寻址64个ONU,PON所支持的虚通路(VP)数为4096,PON寻址可以使用A TM信元头中的12位VP域。由于OLT具有VP

光无源器件的原理及应用

光无源器件的原理及应用 光无源器件是光纤通信设备的重要组成部分。它是一种光学元器件,其工艺原理遵守光学的基本规律及光线理论和电磁波理论、各项技术指标、多种计算公式和各种测试方法,与纤维光学、集成光学息息相关;因此它与电无源器件有本质的区别。在光纤有线电视中,其起着连接、分配、隔离、滤波等作用。实际上光无源器件有很多种,限于篇幅,此处仅讲述常用的几种—光分路器、光衰减器、光隔离器、连接器、跳线、光开关。 一、光纤活动连接器。 光纤活动连接器是实现光纤之间活动连接的无源光器件,它还有将光纤与有源器件、光纤与其它无源器件、光纤与系统和仪表进行连接的功能。活动连接器伴随着光通信的发展而发展,现在已形成门类齐全、品种繁多的系统产品,是光纤应用领域中不可缺少的、应用最广泛的基础元件之一。 尽管光纤(缆)活动连接器在结构上千差万别,品种上多种多样,但按其功能可以分成如下几部分:连接器插头、光纤跳线、转换器、变换器等。这些部件可以单独作为器件使用,也可以合在一起成为组件使用。实际上,一个活动连接器习惯上是指两个连接器插头加一个转换器。 (1)连接器插头。 使光纤在转换器或变换器中完成插拔功能的部件称为插头,连接器插头由插针体和若干外部机械结构零件组成。两个插头在插入转换器或变换器后可以实现光纤(缆)之间的对接;插头的机械结构用于对光纤进行有效的保护。插针是一个带有微孔的精密圆柱体,其主要尺寸如下: 外径 Ф2.499±0.0005mm 外径不圆度 <0.0005mm 微孔直径 Ф126±0.5μm 微孔偏心量 <1μm 微孔深度 4mm 或10mm 插针外圆柱体光洁度 ▽14 端面曲率半径 20-60mm 插针的材料有不锈钢、全陶瓷、玻璃和塑料几种。现在市场上用得最多的是陶瓷,陶瓷材料具有极好的温度稳定性,耐磨性和抗腐蚀能力,但价格也较贵。塑料插头价格便宜,但不耐用。市场上也有较多插头在采用塑料冒充陶瓷,工程人员在购买时请注意识别。 插针和光纤相结合成为插针体。插针体的制作是将选配好的光纤插入微孔中,用胶固定后,再加工其端面,插头端面的曲率半径对反射损耗影响很大,通常曲率半径越小,反射损耗越大。插头按其端面的形状可分为3类:PC型、SPC型、APC型。PC型插头端面曲率半径最大,近乎平面接触,反射损耗最低;SPC型插头端面的曲率半径为20mm,反射损耗可达45dB,插入损耗可以做到小于0.2dB;反射损耗最高的是APC型,它除了采用球面接触外,还把端面加工成斜面,以使反射光反射出光纤,避免反射回光发射机。斜面的倾角越大,反射损耗越大,但插入损耗也随之增大,一般取倾角为8o—9o,此时插入损耗约0.2dB,反射

相关主题
文本预览
相关文档 最新文档