当前位置:文档之家› 高阶系统的时域分析

高阶系统的时域分析

高阶系统的时域分析
高阶系统的时域分析

课程设计任务书

学生姓名: 专业班级: 指导教师: 刘志力 工作单位: 自动化学院

题 目: 高阶系统的时域分析 初始条件:设单位系统的开环传递函数为

2

()()(48)()

p K s b G s s s s s a +=

+++

要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等

具体要求)

(1) 当K=10,a=1,b=4时用劳斯判据判断系统的稳定性。

(2) 如稳定,则求取系统的单位阶跃响应、单位斜坡响应和单位加速度响应,用

Matlab 绘制相应的曲线,并计算单位阶跃响应的动态性能指标和稳态性能指标,计算单位斜坡响应和单位加速度响应的稳态性能指标。

(3) 如不稳定,则计算系统稳定时K 、a 和b 的取值范围,在稳定范围内任取一值

重复第2个要求。

(4) 绘制绘制a=1,b=4时系统的根轨迹。

时间安排:

指导教师签名: 年 月 日

系主任(或责任教师)签名: 年 月 日

目录

摘要 (1)

1高阶系统 (2)

1.1高阶系统的定义 (2)

1.2高阶系统的数学模型 (2)

1.3闭环主导极点的概念 (2)

1.4本实验开环传递函数 (2)

2 系统稳定性分析 (3)

2.1稳定性的基本概念 (3)

2.2 劳斯稳定判据 (3)

2.3 本实验稳定性判断 (4)

3 高阶系统的时域分析 (7)

3.1 单位阶跃响应 (7)

3.1.1 单位阶跃响应 (7)

3.1.2 单位阶跃响应动态性能 (9)

3.1.3 单位阶跃响应稳态性能 (9)

3.2 单位斜坡响应 (9)

3.2.1 单位斜坡响应 (9)

3.2.2 单位斜坡响应稳态性能 (11)

3.3 单位加速度响应 (11)

3.3.1 单位加速度响应 (11)

3.3.2 单位加速度响应稳态性能 (13)

4 系统根轨迹 (13)

4.1 根轨迹概念 (13)

4.2 根轨迹法的基本概念 (13)

4.3根轨迹法在本实验中的应用 (13)

5 设计心得体会 (15)

参考文献 (16)

摘要

在控制系统的分析和设计中,首先要建立系统的数学模型。在确定系统的数学模型后,便可以用几种不同的方法去分析控制系统的动态性能和稳态性能。在经典控制理论中,常用时域分析法、根轨迹法或频域分析法来分析线性控制系统的性能。显然,不同的方法有不同的特点和适用范围,但是比较而言,时域分析法是一种直接在时域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。

在控制系统中,几乎所有的控制系统都是高阶系统,即用高阶微分方程描述的系统。对于不能用一、二阶系统近似的高阶系统来说,其动态性能指标的确定是比较复杂的。工程上常采用闭环主导极点的概念对高阶系统进行近似分析,或直接应用MATLAB软件进行高阶系统分析。

关键词:高阶系统时域分析MATLAB

高阶系统的时域分析

1 高阶系统

1.1高阶系统定义

数学模型为三阶或三阶以上的系统。 1.2高阶系统的数学模型

一个高阶系统的闭环传递函数的一般形式为:

10111

011()(),()

m

m m m n n n n

b s b s

b s b C s s m n R s a s a s

a a ----++++Φ=

=

≤++++

对分子、分母进行因式分解,得到零极点形式:

11

()

()()()

()

m

i i n

j j K s z C s s R s s p ==-Φ=

=

-

∏∏ (1)

式(1)中,K=b 0/a 0;z i ,p j 分别为系统闭环零、极点。

1.3闭环主导极点的概念

距离虚轴最近,又远离零点的闭环极点,在系统过渡过程中起主导作用,这个极点称为主导极点。

主导极点若以共轭形式出现,该系统可近似看成二阶系统;若以实数形式出现,该系统可近似看成一阶系统。

1.4本实验开环传递函数

本设计给定的单位反馈系统的开环传递函数为

)

a s )(10s 5s (s b)s ()s (2

++++=

K G P (2)

则其闭环传递函数为(假设为负反馈):

)

3()10()510()5()

()

())(105()

()(2

3

4

2

Kb

s K a s a s a s b s K b s K a s s s s b s K s ++++++++=

++++++=

φ

2 系统稳定性分析

2.1稳定性的基本概念

任何系统在扰动作用下都会偏离原平衡状态,产生初始偏差。所谓稳定性,是指系统在扰动消失之后,由初始偏差状态恢复到原平衡状态的性能。若线性控制系统在初始扰动的影响下,其动态过程随时间的推移逐渐衰减并趋于零(原平衡工作点),则称系统渐进稳定,简称稳定;反之,若在初始扰动影响下,系统的动态过程随时间的推移而发散,则称系统不稳定。上述稳定性定义表明,线性系统的稳定性仅取决于系统自身的固有特性,而与外界条件无关。

线性系统稳定的充分必要条件是:闭环系统特征方程的所有根均具有负实部;或者说,闭环传递函数的极点均位于S 左半平面。

2.2 劳斯稳定判据

若求出闭环系统特征方程的所有根,就可判定系统的稳定性。但对于高阶系统来说,求特征方程根很困难,并且不易对参数进行分析。现使用一种不用求解特征根来判别系统稳定性的方法—劳斯稳定判据。

设系统的特征方程为10110()0,0n n n n D s a s a s a s a a --=++++=> ,则可列出劳斯表如表2-1所示。

表2-1 劳斯表

按照劳斯稳定判据,系统稳定的充分必要条件为:劳斯表中第一列各值均为正。否则系统不稳定,且第一列各系数符号改变次数即为特征方程正实部根的数目。

2.3 本实验稳定性判断

当K=10,a=1,b=4时,代入式(3)得到系统闭环传递函数

40

1812540

10)(2

3

4

+++++=

s s s s s s φ

则系统的闭环特征方程为:D(s)=s 4+5s 3+12s 2+18s+40=0. 按劳斯判据可列出如下劳斯表:

表2-2 本实验函数劳斯表

由于劳斯表第一列数值符号有两次变化,故系统不稳定,且存在2个正实部根。用MATLAB求出全部特征根如下:

>> y=roots([1 5 12 18 40])

y =

-2.6823 + 1.6526i ;

-2.6823 - 1.6526i ;

0.1823 + 1.9992i ;

0.1823 - 1.9992i ;

现继续用劳斯稳定判据求原给定系统稳定时K,a,b的取值范围。

原给定系统的闭环特征方程为:D(s)=s4+(4+a)s3+(8+4a)s2+(8a+K)s+Kb=0,按劳斯判据可列出2-3系统稳定劳斯表:

表2-3 系统稳定劳斯表

根据劳斯稳定判据,令劳斯表中第一列各元素为正,即:

?

????

??

??>>+-+++-++-++>++-++>+0

0)8()48)(4()4()8)](8()48)(4[(0

4)8()48)(4(042

Kb K a a a a Kb K a K a a a a K a a a a (4) 即K 、a 和b 必须满足:

???

????>>--+-++-++>-++->00

1632)88256()4128(3203216442

2

32

Kb K Kb K a Kb K a Kb K a K a a a (5)

系统才稳定。

3 高阶系统的时域分析

取K=8,a=b=3时,此时系统由四阶变为三阶,系统开环传递函数为

)

8s 4s (s 8)

a s )(8s 4s (s b)s ()s (2

2

++=

++++=

K G P (6)

系统闭环传递函数为

8

848

)

())(84()

()(2

3

2

+++=

++++++=

s s s b s K a s s s s b s K s φ (7)

经分析可知,此时 K 、a 、b 的值满足要求,系统稳定。

3.1 单位阶跃响应

3.1.1 单位阶跃响应

单位阶跃响指的是系统在单位阶跃信号 r(t)=1(t)作用下的响应。取其拉氏变换即 R(s)=1/s 。此时,系统输出为:

8

848

1

)

())(84()

(1

)()()(2

3

2

+++=

++++++=

=s s s s b s K a s s s s b s K s s s R s C φ

对上式进行部分分式展开:

4

222

11)(2

++-

+-

=

s s s s s C

对部分分式进行拉普拉斯反变换,并设初始条件全部为零,得系统的单位阶跃响 应:

)7321.1sin(1547.11)]([)(21

t e

e

s C L t c t

t

-----== (8)

对于一般的高阶系统来说,用这种方法来求取单位阶跃响应都比较麻烦,有时候甚至很难完成。但利用 MATLAB 软件则可以很方便的得到响应,并绘制出响应曲线。MATLAB 中tf2zp()函数能将传递函数模型转化为零极点模型,residue()函数可以直接求出传递函数部

分分式展开,由这些结果可以直接写出系统的输出解析解。另外,利用step()函数还能准确绘制系统单位阶跃响应曲线。

式(7)所表示系统可以用下面的MATLAB语句求解系统单位阶跃响应。

>> num=[8];

den=[1 4 8 8 ] ;

t=0:0.01:10;

step(num,den,t);

grid

绘制的单位阶跃响应曲线如图3-1所示。

图3-1 单位阶跃响应曲线

由(8)式单位阶跃响应时域表达式可知系统闭环稳定时,单位阶跃响应的指数项和阻尼正弦项均趋近于零,稳态输出为常数项1,这与用MATLAB绘制的响应曲线相符。

3.1.2 单位阶跃响应动态性能

动态性能指标是指稳定的系统在单位阶跃函数作用下,动态过程随时间t 的变化状况的指标,体现系统动态过程特征。用解析法求解高阶系统的动态性能指标很困难。用MATLAB 绘制的曲线(如图1)上可以直接读出系统的一些动态性能参数。延迟时间

t d=1.08s ;峰值时间t p=2.28s ;超调量 ?%=8%;上升时间 t r=1.65s ;调节时间t s=4.97s 。 3.1.3 单位阶跃响应稳态性能

稳态性能是系统在典型输入作用下,当时间t 趋于无穷大时,系统输出量的最终复现输入量的程度。稳态性能分析主要是指稳态误差的计算。稳态误差是系统控制精度或抗干扰能力的一种度量。现采用静态误差系数法计算单位阶跃响应稳态误差。

将K=8,a=3,b=3代入(2)式,得待分析系统的开环传递函数为:

)

84(8)(2

++=

s s s s G p

其静态位置误差系数为:

∞=++==→→)

84(8lim

)(lim 2

s s s s G K s p s p

所以单位阶跃输入作用下系统的稳态误差为: 1()01ss p

e K ∞=

=+

3.2 单位斜坡响应

3.2.1 单位斜坡响应

单位斜坡输入2

1(),()r t t R s s

==

,此时

)

42)(2(8

)()()(2

2

+++=

Φ?=s s s s s s R s C

展开为部分分式:

4

215.02

5.011)(2

2

++++

++

-

=

s s s s s

s

s C

对部分分式进行拉普拉斯反变换,并设初始条件全部为零,得系统的单位斜坡响应:

)7321.1sin(2887.0)7321.1cos(5.05.01)(2t e

t e

e

t t c t

t

t

---+++-= (9)

利用 MATLAB 软件绘制该系统在单位斜坡响应曲线。由于 MATLAB 没有专用的单位斜坡响应函数,故使用任意输入响应函数 lsim ()。当取 lsim (sys,t,t,0)时,即表示单位斜坡响应。程序如下:

>> sys=tf([8],conv([1 2],[1 2 4])) %系统建模 t=0:0.01:10;

%响应时间

u=t; %单位斜坡输入 lsim(sys,u,t) %单位斜坡响应

grid

xlabel (‘t ’); ylabel (‘c(t )’) %标注横、纵坐标轴 title (‘单位斜坡响应’); %标注标题

xlabel (‘t ’); ylabel (‘c (t )’) %标注横、纵坐标轴 程序运行后得到系统单位斜坡响应曲线如图3-2所示。

图3-2 单位斜坡响应曲线

由(9)式单位斜坡响应时域表达式分析可知,本系统的单位斜坡响应的稳态分量为(t-1),系统稳态输出速度恰好与单位斜坡输入速度相同,即系统能跟踪斜坡输入,在位置上存在稳态跟踪误差,这与图3-2所示曲线相符合。

3.2.2 单位斜坡响应稳态性能

由系统的开环传递函数可知,υ=1,该系统为Ⅰ型系统,待分析系统的开环传递函数为)

84(8)(2

++=

s s s s G p ,其静态速度误差系数为

0.1)

84(8lim

)(lim 2

=++==→→s s s sG K s p s v

所以系统在单位斜坡输入作用下的稳态误差为

.10

.111)(===

∞v

ss K e

3.3 单位加速度响应

3.3.1 单位加速度响应

单位加速度输入2

3

11(),()2

r t t R s s

=

=

,此时

)

42)(2(8

)()()(2

3

+++=

Φ?=s s s s s s R s C

展开为部分分式形式:

4

25.025.02

25.05.011)(2

2

3

+++-

+-

+

-

=

s s s s s

s

s

s C

对部分分式进行拉普拉斯反变换,并设初始条件全部为零,得系统的单位加速度响应:

)

7321.1sin(1443.0)7321.1cos(25.025.05.05.0)(22

t e

t e

e

t t t c t

t

t

------+-= (10)

利用 MATLAB 软件绘制该系统在单位加速度响应曲线。由于 MATLAB 没有专用的单位加速度响应函数,故使用任意输入响应函数 lsim ()。在MATLAB 工作空间中输入如下程序代码:

num=[8]; den=conv([1 2],[1 2 4]);

sys=tf(num,den); %系统建模

t=0:0.01:10; %响应时间序列

u=0.5*t.^2; %单位加速度输入

lsim(sys,u,t) %绘制单位加速度响应曲线grid

xlabel('t'); ylabel('c(t)');

title('单位加速度响应');

程序运行后,得到系统单位加速度响应曲线如图3-3所示。

图3-3 单位加速度响应曲线

由(10)式单位加速度响应时域表达式分析可知,系统单位加速度响应的稳态输出为(25.05.0t t +-),稳定时系统不能跟踪加速度输入,随响应时间t 的增大,稳态位置误差将越来越大,从图3-3所示单位加速度响应曲线也可以看出。

3.3.2 单位加速度响应稳态性能

待分析系统的开环传递函数为)

84(8)(2

++=

s s s s G p ,其静态速度误差系数为:

8

48lim

)(lim 2

2

=++==→→s s s

s G s K s p s a

所以在单位加速度输入作用下的系统稳态误差为:

1()ss a

e K ∞=

=∞

4 系统根轨迹

4.1 根轨迹概念

根轨迹简称根迹,它是开环系统某一参数从零变到无穷时,闭环系统特征方程式的根在 s 平面变化的轨迹。

4.2 根轨迹法的基本概念

根轨迹法是分析和设计线性定常控制系统的图解方法,使用十分简便,特别在进行多回路系统的分析时,应用根轨迹法比其他方法更为方便,因此在工程实践中获得了广泛应用。

根轨迹与系统性能之间有着密切的关系。

4.3根轨迹法在本实验中的应用

当 a=1,b=4 时,系统开环传递函数:

)

a s )(8s 4s (s b)s ()s (2

++++=

K G P

MATLAB 提供有专门绘制根轨迹的函数rlocus(),该函数是针对开环传递函数的,因此可以直接用 rlocus(Gp)绘制出系统的根轨迹。

程序运行后,得到系统根轨迹图如图4-1所示。

图4-1 根轨迹

程序如下:>> num=[1 4]; %开环零点

den=conv([1 0],conv([1 4 8],[1 1])); %开环极点

sys=tf(num,den); %建立开环传递函数 rlocus(sys); %绘制根轨迹 title('根轨迹'); %添加标题 xlabel('实轴'); ylabel('虚轴'); %添加坐轴标注

title('根轨迹'); %添加标题

5设计心得体会

在本学期学习自动控制原理的时间里,很少涉及到高阶系统分析与设计,只在根轨迹、稳定性判定等方面对高阶系统有一些了解。本次课程设计要求对高阶系统的根轨迹、稳定性、单位阶跃响应、单位斜坡响应与单位加速度响应等作出分析,在分析过程中需要一个专门的工具MATLAB帮助解决问题。

MATLAB计算功能强大、图形功能丰富方便、编程效率高且易学易用,很多的问题都能迎刃而解。本次课设任务书中要求画图的地方较多,直接调用MATLAB的相应函数就可以轻松实现相关要求。另外,在求解高次方程中遇到的困难,MATLAB也能方便地解决。

通过本次课设,我不但对所学的自动控制原理的相关知识有了更深入的认识和更牢固的掌握,而且学会了运用MATLAB来解决高阶系统的分析和设计的相关问题。特别是对于有关绘图和校正等人工解决较困难的问题,学会运用有效的工具能够起到事半功倍的效果。在以后的学习和生活中,我不断要加强理论的学习,也要加强这些使用工具的学习,从理论和实际操作两方面提高自己的能力。

课设的这段日子真的是给我留下了很深的印象。我总结出,在每次课设中,遇到问题最好的办法就是请教别人,因为每个人掌握的情况都不一样,一个人不可能做到处处都懂,必须发挥群众的力量,复杂的事情才能够简单化。这一点我深有体会,在很多时候,我遇到的困难或许别人之前就遇到过,向他们请教远比自己在那边摸索来得简单,来得快。

课设的这段时间我确实受益匪浅,不仅是因为它发生在特别的实践,更重要的是我的专业知识又有了很大的进步,因为进步总是让人快乐的。

参考文献

[1] 胡寿松,自动控制原理(第五版). 北京:科学出版社,2007

[2] 胡寿松,自动控制原理同步辅导及习题全解(第四版).中国矿业大学出版社,2002

[3] 王正林,王胜开等. MATLAB/Simulink与控制系统仿真(第2版). 北京:电子工业出版社,2008

[4] 王万良,自动控制原理.高等教育出版社,2008

[5] 邹伯敏,自动控制理论.机械工业出版社,2007

本科生课程设计成绩评定表

指导教师签字:

年月日

二阶系统时域分析

1.有一位置随动系统,其结构图如下图所示,其中K = 4。求该系统的:1)自然 k 振荡角频率;2)系统的阻尼比;3)超调量和调节时间;4)如果要求 <0.707 , 值。 应怎样改变系统参数 K k 2.已知受控对象的开环传递函数为

(1)单位反馈时,计算单位脉冲响应的输出。 (2)试采用速度反馈方法,使得系统的阻尼比ζ=05.,确定速度反馈系数τ的值,并计算性能改善后的动态性能。 解 (1)单位反馈时,闭环传递函数为 其单位脉冲响应为 响应曲线为等幅振荡的,所以该系统仅作单位反馈,不能实现调节作用。 (2)增加速度反馈如图所示。 闭环传递函数为 ζωτ=,所以 阻尼比ζ=05.,则有2 n τ=?= 20.50.95 此时,系统阶跃响应的超调量为 调节时间为 3.已知速度反馈控制系统如图所示,要求系统的超调量为20%,峰值时间为1秒,试计算相应的前向增益K与速度反馈系数K 的值。如果保持K值不变,Kf为零时,计算超调量增大值。

解上述系统的闭环传递函数为 比较二阶系统的标准式有 给定的性能指标为 上述指标与系统特征参数ζ和ωn的关系为: 解得 所以: 当K=125.,Kf=0时,也就是没有速度反馈时,闭环传递函数成为: 阻尼比:

超调量增大为: 4.对下图所示系统,试求K为何值时,阻尼比ζ=0.5。并求此时系统单位阶跃响应的最大超调量和调整时间。 解:系统开环传函为: 系统闭环传函为: 最大超调量: 调整时间

5. 系统结构如图,欲使超调量бp =0. 2, 过渡过程时间t s =1秒(Δ=0.02), 试确定K 和τ的值。 答案: ()2222(2)2n n n K s s K s K s ωτζωωΦ==+++++ 0.456ζ= 8.77 n ω= 277n K ω== 0.078τ= 6. 题图所示机械系统,当受到 F =40N 力的作用时,位移量xt ()的阶跃响应如图所示,试确定机械系统的参数m ,k, f 的值。 解: 图示机械系统的传递函数为 由图所示稳态值()1c ∞=,由终值定理 得到 K=40N/m 由超调量: 峰值时间:

第二章 连续系统的时域分析

第二章连续系统的时域分析 求响应:经典法:已知f(t)、x{0} 全响应y(t)= y f(t)+y x(t) 卷积积分法:先求n(t),已知f(t) y f(t)=h(t) f(t) 主要内容: 一经典法求LTI系统的响应: 齐次解自由响应瞬态零输入 特解强迫响应稳态(阶跃、周期)零状态二冲击响应与阶跃响应:(定义、求解方法仍为经典法)三卷积积分:(定义、图示法求卷积) 四卷积积分的性质:

§2.1 LTI 系统的响应(经典法) 一 常系数线性微分方程的经典解 n 阶:y )(n (t)+ a n-1y )1(-n (t)+…+ a 1y )1((t)+ a 0y(t) = b m f )(m (t)+ b m-1 f )1(-m (t)+……+ b 1 f )1((t)+ b 0f(t) 全解:y(t)=齐次解y h (t)+ 特解y p (t) 1 齐次解:y h (t)=∑=n i t e i C i 1 λ(形式取决于特征根) 特征方程: λ)(n (t)+ a n-1λ)1(-n (t)+… + a 1 λ(t)+ a 0=0 特征根:决定齐次解的函数形式,表2-1 如为2个单实根λ1、λ2, y h (t )=e C t 11 λ +e C t 22 λ 如为2重根(λ+1)2=0,λ= - 1,y h (t)=C 1te -t +C 0e -t 系数C i :求得全解后,由初始条件确定 2 特解: 函数形式:由激励的函数形式决定,与特征根有关系,表2-2 如:f(t)为常数 )(t ε, y p (t)=P 0 f(t)=t 2, y p (t)= P 2t 2+ P 1t+ P 0 f(t)=e -t ,λ= - 2,不等 y p (t)=P e -t f(t)= e -t ,λ= - 1,相等 y p (t)=P 1te -t +P 0e -t 系数P i :由原微分方程求出 3 全解:y(t)= y h (t)+ y p (t)=∑=n i t e i C i 1 λ+ y p (t) 此时利用y(0),y ‘(0),求出系数C i

大作业1(机电控制系统时域频域分析)

《机电系统控制基础》大作业一 基于MATLAB的机电控制系统响应分析 哈尔滨工业大学 2013年11月4日

1 作业题目 1. 用MATLAB 绘制系统2 ()25()() 425 C s s R s s s Φ== ++的单位阶跃响应曲线、单位斜坡响应曲线。 2. 用MATLAB 求系统2 ()25 ()()425 C s s R s s s Φ==++的单位阶跃响应性能指标:上升时间、峰值时间、调节时间和超调量。 3. 数控直线运动工作平台位置控制示意图如下: X i 伺服电机原理图如下: L R (1)假定电动机转子轴上的转动惯量为J 1,减速器输出轴上的转动惯量为J 2,减速器减速比为i ,滚珠丝杠的螺距为P ,试计算折算到电机主轴上的总的转动惯量J ; (2)假定工作台质量m ,给定环节的传递函数为K a ,放大环节的传递函数为K b ,包括检测装置在内的反馈环节传递函数为K c ,电动机的反电势常数为K d ,电动机的电磁力矩常数为K m ,试建立该数控直线工作平台的数学模型,画出其控制系统框图; (3)忽略电感L 时,令参数K a =K c =K d =R=J=1,K m =10,P/i =4π,利用MATLAB 分析kb 的取值对于系统的性能的影响。

2 题目1 单位脉冲响应曲线 单位阶跃响应曲线

源代码 t=[0:0.01:1.6]; %仿真时间区段和输入 nC=[25]; dR=[1,4,25]; fi=tf(nC,dR); %求系统模型 [y1,T]=impulse(fi,t); [y2,T]=step(fi,t); %系统响应 plot(T,y1); xlabel('t(sec)'),ylabel('x(t)'); grid on; plot(T,y2); xlabel('t(sec)'),ylabel('x(t)'); grid on; %生成图形 3 题目2 借助Matlab,可得: ans = 0.4330 0.6860 25.3826 1.0000 即

第三章控制系统的时域分析法知识点

第三章 控制系统的时域分析法 一、知识点总结 1.掌握典型输入信号(单位脉冲、单位阶跃、单位速度、单位加速度、正弦信号)的拉氏变换表达式。 2.掌握系统动态响应的概念,能够从系统的响应中分离出稳态响应分量和瞬态响应分量;掌握系统动态响应的性能评价指标的概念及计算方法(对于典型二阶系统可以直接应用公式求解,非典型二阶系统则应按定义求解)。 解释:若将系统的响应表达成拉普拉氏变换结果(即S 域表达式),将响应表达式进行部分分式展开,与系统输入信号极点相同的分式对应稳态响应;与传递函数极点相同的分式对应系统的瞬态响应。将稳态响应和瞬态响应分式分别进行拉氏逆变换即获得各自的时域表达式。 性能指标:延迟时间、上升时间、峰值时间、调节时间、超调量 3.掌握一阶系统的传递函数形式,在典型输入信号下的时域响应及其响应特征;掌握典型二阶系统的传递函数形式,掌握欠阻尼系统的阶跃响应时域表达及其性能指标的计算公式和计算方法;了解高阶系统的性能分析方法,熟悉主导极点的概念,定性了解高阶系统非主导极点和零点对系统性能的影响。 tr tp ts td

4.熟悉两种改善二阶系统性能的方法和结构形式(比例微分和测速反馈),了解两种方法改善系统性能的特点。 5.掌握系统稳定性分析方法:劳斯判据的判断系统稳定性的判据及劳斯判据表特殊情况的构建方法(首列元素出现0,首列出现无穷大,某一行全为0);掌握应用劳斯判据解决系统稳定裕度问题的方法。了解赫尔维茨稳定性判据。 6.掌握稳态误差的概念和计算方法;掌握根据系统型别和静态误差系数计算典型输入下的稳态误差的方法(可直接应用公式);了解消除稳态误差和干扰误差的方法;了解动态误差系数法。 二、相关知识点例题 例1. 已知某系统的方块图如下图1所示,若要求系统的性能指标为: δδ%=2222%,tt pp=1111,试确定K和τ的值,并计算系统单位阶跃输入下的特征响应量:tt,tt。 图1 解:系统闭环传递函数为:Φ(s)=CC(ss)RR(ss)=KK ss2+(1+KKKK)ss+KK 因此,ωnn=√KK,ζζ=1+KKKK2√KK, δ%=e?ππππ?1?ππ2?ζζ=0.46, t pp=ππωωdd=1ss?ωdd=ωnn?1?ζζ2=3.14 ?ωnn=3.54 K=ωnn2=12.53,τ=2ζζωnn?1KK=0.18 t ss=3ζζωωnn=1.84ss

一阶系统时域分析

1.已知一单位负反馈系统的单位阶跃响应曲线如下图所示,求系统的闭环传递函数。 解答: ①max ()100100()X X %%e %X δ-∞=?=?∞ 由 2.1820.090.6082e ξ-==?= ②0.8 4.946m n t ω==?= ③2222224.4648.9222 6.01424.46 6.01424.46 n B n n W K s s s s s s ωωω=?=?=++++++ 2.已知系统如下图所示,求系统的单位阶跃响应,并判断系统的稳定性。 解答: ()() ()210 1101061010.511B s s W s s s s s +==+++++ 3.16n ω==, 260.95n ξωξ=?

( )()1sin n t c X t ξωωθ-= ,arctg θ= ()31 3.2sin 0.98718.19t e t -=-+? (5分) 系统根为 1,2632P j -= =-±,在左半平面,所以系统稳定。 3.一阶系统的结构如下图所示。试求该系统单位阶跃响应的调节时间t s ;如果要求t s (5%)≤ 0.1(秒),试问系统的反馈系数应取何值? (1)首先由系统结构图写出闭环传递函数 得 T =0.1(s ) 因此得调节时间 t s =3T =0.3(s),(取5%误差带) (2)求满足t s (5%) ≤0.1(s )的反馈系数值。 假设反馈系数K t (K t >0) ,那么同样可由结构图写出闭环传递函数 由闭环传递函数可得 T = 0.01/K t 100()10()100()0.1110.1c B r X s s W s X s s s ===++?1001/()1000.0111t B t t K s W s K s s K ==+?+

_第二章连续系统的时域分析习题解答

第二章 连续系统的时域分析习题解答 2-1 图题2-1所示各电路中,激励为f (t ),响应为i 0(t )和u 0(t )。试列写各响应关于 激励微分算子方程。 解: . 1)p ( ; )1(1)p ( , 111 , 1 111)( )b (; 105.7)625(3 102 ; )(375)()6253(4) ()()61002.041( )a (0202200 204006000f i p f p u p f p p p u i f p p p p p f t u pf i p pu i t f t u p t f t u p =+++=++?++=+=+++= ++= ?=+??==+?=++-- 2-2 求图题2-1各电路中响应i 0(t )和u 0(t )对激励f (t )的传输算子H (p )。 } 解:. 1 )()()( ; 11)()()( )b (; 625 3105.7)()()( ; 6253375)()()( )a (220 20 40 0 +++==+++==+?==+== -p p p p t f t i p H p p p t f t u p H p p t f t i p H p t f t u p H f i f u f i f u 2-3 给定如下传输算子H (p ),试写出它们对应的微分方程。 . ) 2)(1() 3()( )4( ; 323)( )3(; 3 3)( )2( ; 3)( )1( +++=++=++=+= p p p p p H p p p H p p p H p p p H 解:; 3d d 3d d )2( ; d d 3d d )1( f t f y t y t f y t y +=+=+ . d d 3d d 2d d 3d d )4( ; 3d d 3d d 2 )3( 2222t f t f y t y t y f t f y t y +=+++=+ 2-4 已知连续系统的输入输出算子方程及0– 初始条件为: . 4)(0y ,0)(0y )y(0 ),()2(1 3)( )3(; 0)(0y ,1)(0y ,0)y(0 ),()84() 12()( )2(; 1)(0y ,2)y(0 ),()3)(1(4 2)( )1(---2 ---2 --=''='=++==''='=+++-=='=+++= t f p p p t y t f p p p p t y t f p p p t y 1 f (u 0(t ) (b) @ f (t ) 4k 6k 2F } u 0(t ) (a) 图题2-1

控制系统的时域分析

实验报告 实验名称:实验1:控制系统的时域分析 课程名称:自控控制原理 专业:电气工程及其自动化 班级:130037 学生姓名:施苏伟 班级学号:13003723 指导教师:杨杨 实验日期:2015 年10 月16日

一、实验目的 1.观察控制系统的时域响应; 2.记录单位阶跃响应曲线; 3.掌握时间响应分析的一般方法; 4.初步了解控制系统的调节过程。 二.实验步骤: 1.将‘实验一代码’这个文件夹拷贝到桌面上; 2.开机进入Matlab6.1 运行界面(其他版本亦可); 3.通过下面方法将当前路径设置为‘实验一代码’这个文件夹所在的路径 4.Matlab 指令窗>>后面输入指令:con_sys; 进入本次实验主界面。 5.分别双击上图中的三个按键,依次完成实验内容。

6.本次实验的相关Matlab 函数: 传递函数G=tf([num],[den])可输入一传递函数,其中num、den 分别表示分子、分母按降幂排列的系数。 三、仿真结果: (一)观察一阶系统G=1/(T+s)的时域响应: T=5s T=8s

T=13s 结果分析:一阶系统 G=1/(T+s)的,通过观察曲线发现,随着时间常数T的增大,同种响应要达到相同响应的时间增大,说明T越大,响应越慢。 (二)二阶系统的时域性能分析 (1)

结果分析:自然频率和阻尼比的适当时,通过调节相应的时间,阶跃响应可以得到稳定值。 (2)数据一:自然频率=5.96rad/sec 阻尼比=0.701

数据二:自然频率=8.2964rad/sec 阻尼比=0.701 结果分析:要达到既定范围,自然频率增大阻尼比要随之增大 (3)

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 【 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 @ 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 & (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s ! 解:(a )稳定; (b )稳定; (c )不稳定。

控制系统的时域分析实验报告

课程名称:控制理论指导老师:成绩: 实验名称:控制系统的时域分析实验类型:冋组学生姓名: 、实验目的和要求 1用计算机辅助分析的办法,掌握系统的时域分析方法。 2. 熟悉SimUlink仿真环境。 二、实验内容和原理 (一)实验原理 系统仿真实质上就是对系统模型的求解,对控制系统来说,一般模型可转化成某个微分方程或差分方程表示,因此在仿真过程中,一般以某种数值算法从初态出发,逐步计算系统的响应,最后绘制出系统的响应曲线,进而可分析系统的性能。控制系统最常用的时域分析方法是,当输入信号为单位阶跃和单位冲激函数时,求出系统的输出响应,分别称为单位阶跃响应和单位冲激响应。在MATLAB中,提供了求取连 续系统的单位阶跃响应函数step,单位冲激响应函数impulse,零输入响应函数initial等等。 (二)实验内容 二阶系统,其状态方程模型为 U X I y = [1.9691 6.4493] +[0] U X2 1?画出系统的单位阶跃响应曲线; 2. 画出系统的冲激响应曲线; 3. 当系统的初始状态为x0=[1,0]时,画出系统的零输入响应; 4. 当系统的初始状态为零时,画出系统斜坡输入响应; (三)实验要求 1. 编制MATLAB程序,画出单位阶跃响应曲线、冲击响应曲线、系统的零输入响应、斜坡输入响应; 2. 在SimUIink仿真环境中,组成系统的仿真框图,观察单位阶跃响应曲线并记录之。 三、主要仪器设备 计算机一台以及matlab软件,SimUIink仿真环境 四、操作方法与实验步骤 1、程序解决方案: 在MATLAB 中建立文件shiyu.m ,其程序如下: %时域响应函数 fun ction G1 = shiyu( A,B,C,D)

实验三 连续时间LTI系统的时域分析

实验三 连续时间LTI 系统的时域分析 一、实验目的 1、学会使用符号法求解连续系统的零输入响应和零状态响应 2、学会使用数值法求解连续系统的零状态响应 3、学会求解连续系统的冲激响应和阶跃响应 二、实验原理及实例分析 1、连续时间系统零输入响应和零状态响应的符号求解 连续时间系统可以使用常系数微分方程来描述,其完全响应由零输入响应和零状态响应组成。MATLAB 符号工具箱提供了dsolve 函数,可以实现对常系数微分方程的符号求解,其调用格式为: dsolve(‘eq1,eq2…’,’cond1,cond2,…’,’v’) 其中参数eq 表示各个微分方程,它与MATLAB 符号表达式的输入基本相同,微分和导数的输入是使用Dy ,D2y ,D3y 来表示y 的一价导数,二阶导数,三阶导数;参数cond 表示初始条件或者起始条件;参数v 表示自变量,默认是变量t 。通过使用dsolve 函数可以求出系统微分方程的零输入响应和零状态响应,进而求出完全响应。 [实例1]试用Matlab 命令求齐次微分方程0)()(2)(='+''+'''t y t y t y 的零输入响应,已知起始条件为2)0(,1)0(,1)0(=''='=---y y y 。

3、连续时间系统冲激响应和阶跃响应的求解 在连续时间LTI系统中,冲激响应和阶跃响应是系统特性的描述。在MATLAB中,对于冲激响应和阶跃响应的数值求解,可以使用控制工具箱中提供的函数impulse和step来求解。 ) , ( ) , ( t sys step y t sys impulse y = = 其中t表示系统响应的时间抽样点向量,sys表示LTI系统模型。

二阶系统时域分析

专业:电气工程及其自动化 学号:07050443 05 姓名: 实验一 二阶系统时域分析 一、 实验目的 1. 研究二阶系统的两个重要参数ξ、n ω与系统结构之间的关系。 2. 观察系统在阶跃输入作用下的响应,运用基本理论,分析系统过度过程特点及各种参数对其学习过程的影响,从而找出改善系统动态性能的方法,并在实验中加以验证。 3. 学习二阶系统阶跃响应的测试方法。 4. 掌握开环传递函数与闭环传递函数之间的对应关系,以及ξ、n ω与传递函数系数之间的关系。 二、 实验内容 选择适当的元器件建立单位负反馈二阶系统。 开环传递函数由积分环节和惯性环节构成:()() 1S T S T K S G 21+= 令T T T 21==。 1. 设1T = 改变K 值,使阻尼比ξ,分别为0、0.5、0.7、1、1.5;观察并记录在单位阶跃信号作用下,不同阻尼比时,系统输出响应曲线,并测量系统的超调量σ%、上升时间r t 、峰值时间p t 、调节时间s t 。 (1)当阻尼比ξ无限大时: (2)当阻尼比ξ=0.5时:

(3)当阻尼比ξ=0.7时: (4)当阻尼比ξ=1时: (5)当阻尼比ξ=1.5时:

2. 设定K 值 使ξ=0.707,改变时间常数T ,观察并记录在单位阶跃信号作用下,系统输出曲线,并测量系统的超调量σ%、上升时间r t 、峰值时间p t 、调节时间s t 。并与(1)的结果加以比较。 (1) 当T=0.1时: (2) 当T=1时:

(3) 当T=1.5时: 3. 改变时间常数 使1T 不等于2T ,观察并记录输出波形的变化情况。 (1) 当1T 1=,2T 2=时: (2) 当2T 1=,1T 2=时:

连续时间系统的时域分析

第二章 连续时间系统的时域分析 §2-1 引 言 线性连续时间系统的时域分析,就是一个建立和求解线性微分方程的过程。 一、建立数学模型 主要应用《电路分析》课程中建立在KCL 和KVL 基础上的各种方法。 线性时不变系统的微分方程的一般形式可以为: )()(...)()()()(...)()(0111101111t e b t e dt d b t e dt d b t e dt d b t r a t r dt d a t r dt d a t r dt d m m m m m m n n n n n ++++=++++------ 二、求解(时域解) 1、时域法 将响应分为通解和特解两部分: 1) 通解:通过方程左边部分对应的特征方程所得 到的特征频率,解得的系统的自然响应(或自由响应); 2) 特解:由激励项得到系统的受迫响应;

3)代入初始条件,确定通解和特解中的待定系数。 经典解法在激励信号形式简单时求解比较简单,但是激励信号形式比较复杂时求解就不容易,这时候很难确定特解的形式。 2、卷积法(或近代时域法,算子法) 这种方法将响应分为两个部分,分别求解: 1)零输入响应:系统在没有输入激励的情况下,仅仅由系统的初始状态引起的响应 r )(t ; zi 2)零状态响应: 状态为零(没有初始储能)的条件下,仅仅由输入信号引起的响应 r )(t 。 zs ●系统的零输入响应可以用经典法求解,在其中 只有自然响应部分; ●系统的零状态响应也可以用经典法求解,但是 用卷积积分法更加方便。借助于计算机数值计算,可以求出任意信号激励下的响应(数值解)。 ●卷积法要求激励信号是一个有始信号,否则无

实验三 连续时间LTI系统的时域分析报告

实验三 连续时间LTI 系统的时域分析 一、实验目的 1.学会用MA TLAB 求解连续系统的零状态响应; 2. 学会用MATLAB 求解冲激响应及阶跃响应; 3.学会用MA TLAB 实现连续信号卷积的方法; 二、实验原理 1.连续时间系统零状态响应的数值计算 我们知道,LTI 连续系统可用如下所示的线性常系数微分方程来描述, () ()0 ()()N M i j i j i j a y t b f t ===∑∑ 在MA TLAB 中,控制系统工具箱提供了一个用于求解零初始条件微分方程数值解的函数lsim 。其调用格式 y=lsim(sys,f,t) 式中,t 表示计算系统响应的抽样点向量,f 是系统输入信号向量,sys 是LTI 系统模型,用来表示微分方程,差分方程或状态方程。其调用格式 sys=tf(b,a) 式中,b 和a 分别是微分方程的右端和左端系数向量。例如,对于以下方程: ''''''''''''32103210()()()()()()()()a y t a y t a y t a y t b f t b f t b f t b f t +++=+++ 可用32103210[,,,];[,,,];a a a a a b b b b b == (,)sys tf b a = 获得其LTI 模型。 注意,如果微分方程的左端或右端表达式中有缺项,则其向量a 或b 中的对应元素应为零,不能省略不写,否则出错。 例3-1 已知某LTI 系统的微分方程为 y’’(t)+ 2y’(t)+100y(t)=f(t) 其中,' (0)(0)0,()10sin(2)y y f t t π===,求系统的输出y(t). 解:显然,这是一个求系统零状态响应的问题。其MATLAB 计算程序如下: ts=0;te=5;dt=0.01; sys=tf([1],[1,2,100]); t=ts:dt:te; f=10*sin(2*pi*t); y=lsim(sys,f,t); plot(t,y); xlabel('Time(sec)'); ylabel('y(t)'); 2.连续时间系统冲激响应和阶跃响应的求解 在MATLAB 中,对于连续LTI 系统的冲激响应和阶跃响应,可分别用控制系统工具箱提供的函数impluse 和step 来求解。其调用格式为 y=impluse(sys,t)

二阶系统的时域分析

实验三 二阶系统的时域分析 一、实验目的 1、通过考察系统的过渡过程指标,研究二阶系统的特征参数—阻尼比和自然频率对系统特性的影响,以及系统特征根的位置与过渡过程的关系。 2、学习自己设计实验,安排适当的实验参数,达到以上实验目标。 二、实验内容 根据传递函数2 22 2)(n n n s s s G ωζωω++=的单位阶跃响应,求取过渡过程的质量指标。按表1的形式整理实验数据,分析实验结果,完成实验报告。 此时,系统的特征根为j j s n n βαζωζω±=-±-=2 2,11。 1、令ζ=0.5,取三种不同的n ω,观察根在根平面上的位置,求其过渡过程和它的质量指

标,进行比较。说明当ζ相同时,过渡过程的哪些指标是相同的? 00.2 0.4 0.6 0.8 1 1.2 1.4 ωn 改变,ζ=0.5不变 Tim e (sec) A m p l i t u d e

2、固定n ω,取ζ=0、0. 3、 0.5、0.7、1,观察根在根平面上的位置,求其过渡过程和它的质量指标。总结当ζ不同时,质量指标有哪些变化? 24681012141618 00.20.40.60.811.2 1.41.61.82 Time (sec) A m p l i t u d e

通过上面两图形与表格总结可以得出: n ω影响二阶系统过渡过程中的峰值时间,过渡时间(在ζ不变的情况下,峰值时间随n ω增 大而减小,过渡时间随n ω的增大而减小) ζ影响几乎全部过渡过程指标,其中超调量,衰减比仅与ζ有关(超调量随着ζ的增大而 减小,衰减比随着ζ的增大而增大;在n ω不变的情况下,峰值时间随ζ增大而增大,过渡时间随ζ的增大而减小。) n ω,ζ对系统的稳态误差均没有影响,且均为0.

实验七 控制系统的时域分析方法

实验七 控制系统频域分析方法 1.实验目的 (1)熟练掌握Nyquist 图和Bode 图的绘制。 (2)熟练掌握利用Nyquist 图和Bode 图分析系统的性能。 2.实验仪器 (1)Matlab6.5应用软件安装版 一套 (3)PC 机 一台 3. 实验原理 依据MA TLAB 的建模指令,利用MATLAB 对系统仿真,分析系统的频率特性。 4. 实验步骤 (1)建立系统的MATLAB 模型,绘制系统Nyquist 图和Bode 图,分析系统稳定性 (2)求系统的幅值穿越频率和相位穿越频率,分析系统的稳定性。 (3)依据系统框图建立系统模型,利用LTI Viewer 分析系统的稳定性。 (4)绘制离散系统开环传递函数的Nyquist 图和Bode 图,绘制系统单位阶跃响应图。 5. 实验报告内容(选做其中三题) 1、绘制下列各单位反馈系统开环传递函数的Bode 图和Nyquist 图,并根据其稳定裕度判断系统的稳定性。(使用subplot 指令) ) 31)(2s 1)(s 1(10)s (G 1k s +++=)( )101)(s 1(s 10)s (G 2k s ++= )( ) 2.01)(s 1.01(s 10)s (G 32k s ++=)( )101)(s 1.01(s 10)s (G 42k s ++= )( 2、设单位反馈系统的开环传递函数为)12s (s K )s (G 2k ++=n n w s w ξ,其中无阻尼固有频率 Wn=90rad/s ,阻尼比ξ=0.2,试确定是系统稳定的K 的范围。 3、设系统如图7-22所示,试用LTI Viewer 分析系统的稳定性,并求出系统的稳定裕度及单位阶跃响应峰值. 4、设闭环离散系统结构如图7-23所示,其中) 1(10s +=s s G )(,1s =)(H ,绘制T=0.01s,1s 时离散系统开环传递函数的Bode 图和Nyquist 图,以及系统的单位阶跃响应曲线..

控制系统的时域分析实验报告

一、实验目的和要求 1.用计算机辅助分析的办法,掌握系统的时域分析方法。 2.熟悉Simulink 仿真环境。 二、实验内容和原理 (一)实验原理 系统仿真实质上就是对系统模型的求解,对控制系统来说,一般模型可转化成某个微分方程或差分方程表示,因此在仿真过程中,一般以某种数值算法从初态出发,逐步计算系统的响应,最后绘制出系统的响应曲线,进而可分析系统的性能。控制系统最常用的时域分析方法是,当输入信号为单位阶跃和单位冲激函数时,求出系统的输出响应,分别称为单位阶跃响应和单位冲激响应。在MA TLAB 中,提供了求取连续系统的单位阶跃响应函数step ,单位冲激响应函数impulse ,零输入响应函数initial 等等。 (二)实验内容 二阶系统,其状态方程模型为 ?1x -0.5572 -0.7814 1x 1 = + u ?2x 0.7814 0 2x 0 1x y = [1.9691 6.4493] +[0] u 2x 1.画出系统的单位阶跃响应曲线; 2.画出系统的冲激响应曲线; 3.当系统的初始状态为x0=[1,0]时,画出系统的零输入响应; 4.当系统的初始状态为零时,画出系统斜坡输入响应; (三)实验要求 1.编制MA TLAB 程序,画出单位阶跃响应曲线、冲击响应曲线、系统的零输入响应、斜坡输入响应; 2.在Simulink 仿真环境中,组成系统的仿真框图,观察单位阶跃响应曲线并记录之。 三、主要仪器设备 计算机一台以及matlab 软件,simulink 仿真环境 四、操作方法与实验步骤 1、程序解决方案:

在MATLAB命令窗口中输入下列命令:并返回系统的传递函数 其输出的曲线如下

关于典型二阶系统的时域分析10页

林美花(1班)学号:200900192029 二、1:. 在过阻尼情况下,典型二阶系统有两个相异的实数极点,其阶跃响应实际上是两个一阶系统响应的叠加。请以例【3-1】中的系统为例(ωn=5),不断增大ζ值,观察每个ζ值下两个实数极点间的距离;同时绘出两个实数极点分别对应的一阶系统响应和二阶系统的响应,观察它们间的关系。你能得出什么结论?为什么? 解:(1)根据理论推算两实数极点之间的距离为2*ωn*(ζ2-1)0.5 ,所以增大ζ值,两个实数极点间的距离随之增大。 (2)源程序如下: clc; clear; wn=5; num=wn^2; zeta=[1.1:0.1:2.0]; for i=1:10 figure(i) hold on s1=-zeta(i)*wn+wn*(zeta(i)^2-1)^0.5; s2=-zeta(i)*wn-wn*(zeta(i)^2-1)^0.5; num1=wn^2/(s1-s2); num2=-wn^2/(s1-s2); den=[1,2*zeta(i)*wn,wn^2];

step(num,den) den=[1,-s1]; step(num1,den) den=[1,-s2]; step(num2,den) hold off end title('stepresponse')

结论:在过阻尼的状态下,由图像可知其阶跃响应实际上是两个一阶系统响应的叠加。随着ζ的不断增加,一个极点不断靠近原点,另一个不断远

离。当两个极点相距较近时,对阶跃响应产生的影响都不能忽略。ζ的增大使不断远离原点的极点所产生的影响越来越小,最后趋近于零。当两个极点的绝对值之比达到某一倍数(五倍)以上时,则可以忽略离虚轴较远的极点的影响,将二阶系统近似为一阶系统来考虑。同理,在考虑高阶问题时可以找到主导极点,可以降阶处理,化简运算。 二、2:请绘制出图3-21。根据典型二阶系统的脉冲响应,可以分析出系统的哪些暂态性能指标,为什么? 解: clc; clear; wn=5; num=wn^2; zeta=[0.1:0.2:0.7,1.0]; figure(1) hold on for i=1:5 den=[1,2*zeta(i)*wn,wn^2]; impulse(num,den) end hold off title('stepresponse')

自动控制原理实验报告《线性控制系统时域分析》讲述

实验一线性控制系统时域分析 1、设控制系统如图1 所示,已知K=100,试绘制当H分别取H=0.1 ,0.2 0.5,1, 2,5,10 时,系统的阶跃响应曲线。讨论反馈强度对一阶 系统性能有何影响? 图1 答: A、绘制系统曲线程序如下: s=tf('s'); p1=(1/(0.1*s+1)); p2=(1/(0.05*s+1)); p3=(1/(0.02*s+1)); p4=(1/(0.01*s+1)); p5=(1/(0.005*s+1)); p6=(1/(0.002*s+1)); p7=(1/(0.001*s+1)); step(p1);hold on; step(p2);hold on; step(p3);hold on; step(p5);hold on; step(p6);hold on; step(p7);hold on;

B 、绘制改变H 系统阶跃响应图如下: 00.050.10.150.20.250.30.350.40.450.5 0.2 0.4 0.6 0.8 1 1.2 1.4 Step Response Time (seconds) A m p l i t u d e 结论: H 的值依次为0.1、0.2、0.5、1、2、5、10做响应曲线。matlab 曲线默认从第一条到第七条颜色依次为蓝、黄、紫、绿、红、青、黑,图中可知随着H 值得增大系统上升时间减小,调整时间减小,有更高的快速性。 2、 二阶系统闭环传函的标准形式为 22 2 ()2n n n s s s ωψξωω=++,设已知 n ω=4,试绘制当阻尼比ξ分别取0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 5 等值时,系统的单位阶跃响应曲线。求出ξ取值 0.2 ,0.5 ,0.8时的超调量,并求出ξ取值 0.2 ,0.5 ,0.8,1.5,5时的调节时间。讨论阻尼比变化对系统性能的影响。

控制系统的时域分析

实验二控制系统的时域分析 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、系统的典型响应有哪些? 2、如何判断系统稳定性? 3、系统的动态性能指标有哪些? 三、实验方法 (一)典型响应 1、阶跃响应: 阶跃响应常用格式: 1、)(sys step 或[y,t]=step(sys);其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。例:假设一连续模型为:s e s s s s s s G -+++++=10 232623102010)(234,则可以通过下面的命令直接输入系统模型,并绘制出阶跃响应曲线。 解:>>num=[0,0,0,10,20]; >>den=[10,23,26,23,10]; >>G=tf(num,den); >>G.iodelay=1; >>step(G,30)%终止时间为30。 2、脉冲响应: 脉冲响应函数常用格式:①)(sys impulse ; ②); ,(); ,(T sys impulse Tn sys impulse ③) ,(T sys impulse Y =3、任意输入响应: 任意输入响应的几种常用格式: ),,(T U sys lsim ;其中sys 可为任意模型;T 为时间向量;U 为响应时间对应的系统输入,例 如:)sin(T U =; (二)分析系统稳定性 有以下三种方法: 1、利用pzmap 绘制连续系统的零极点图;pzmap(G); 2、Pole(G)和zero(G)可以分别求出系统的极点和零点。 3、利用roots 求分母多项式的根来确定系统的极点。roots(den). (三)系统的动态特性分析 方法一:图解法 在控制理论中,介绍典型线性系统的阶跃响应分析时,常用一些指标来定量描述系统的超调

连续LTI系统的时域分析

实验报告 实验二连续LTI系统的时域分析 班级 姓名 学号 指导老师 时间

一、实验目的: 1、熟悉连续时间系统的线性和时不变性质。 2、掌握线性时不变系统的单位冲激响应的概念。 3、掌握两个连续时间信号卷积的计算方法和编程技术。 4、了解线性时不变系统的微分方程描述方法及其MATLAB 编程的求解方法。 二、实验环境:matlab7.0 三、实验原理: 卷积积分在信号与线性系统分析中具有非常重要的意义,是信号与系统分析的基本方法之一。 (1)线性时不变(LTI )系统的单位冲激响应 给定一个连续时间LTI 系统,在系统的初始条件为零时,用单位冲激信号δ(t)作用于系统,此时系统的响应信号称为系统的单位冲激响应(Unit impulse response ),一般用h(t)来表示。需要强调的是,系统的单位冲激响应是在激励信号为δ (t)时的零状态响应(Zero-state response )。 系统的单位冲激响应是一个非常重要的概念,如果已知一个系统的单位冲激响应,那么,该系统对任意输入信号的响应信号都可以求得。 (2)卷积的意义 对于LTI 系统,根据系统的线性和时不变性以及信号可以分解成单位冲激函数可得,任意LTI 系统可以完全由它的单位冲激响应h(t)来确定,系统的输入信号x(t)和输出信号y(t)之间的关系可以用卷积运算来描述,即: ?∞ ∞--=τττd t h x t y )()()( 由于系统的单位冲激响应是零状态响应,故按照上式求得的系统响应也是零状态响应。它是描述连续时间系统输入输出关系的一个重要表达式。 (3)函数说明 利用MATLAB 的内部函数conv( )可以很容易地完成两个信号的卷积积分运算。其语法为:y = conv(x,h)。其中x 和h 分别是两个参与卷积运算的信号,y 为卷积结果。 四、实验内容: 1、已知两连续时间信号如下图所示,绘制信号f 1(t )、f 2(t )及卷积结果f (t )的波形;设时间变化步长dt 分别取为0.5、0.1、0.01,当dt 取多少时,程序的计算结果就是连续时间卷积的较好近似?

控制系统的时域分析

实验报告 实验名称控制系统的时域分析 课程名称自动控制原理 院系部:专业班级:学生姓名:学号: 同组人:实验台号:指导教师:成绩:实验日期: 华北电力大学

一、实验目的及要求: 掌握如何运用计算机的matlab 软件进行时域分析。 二、仪器用具: 三、实验原理 一个动态系统的性质常用典型输入下的响应来描述。响应是指零初始条件下某种典型的输入函数作用下对象的响应,在MATLAB 的控制工具箱中给出的阶跃函数step()的调用格式为:[y,x]=step(mun,den,t)或[y,x]=step(A,B,C,D,iu,t) 四、实验方法与步骤: 1、伺服系统的方框图如图所示,求d 和e 的值,是系统的阶跃响应满足 1)超调量不大于30%,2 )峰值时间为0.6秒 2、求二阶系统H(s)=5(s+1)/(8s+1)(2s+1)在单位阶跃输入时 系统时域响应曲线。并记录响应曲线。编程求出d t ,p t ,%σ , s t ,并与理论计算得出的结果比较是否一致。

五、实验结果与数据处理: 实验一. 在matlab中输入: a=log(1/0.3)/sqrt(pi^2+(log(1/0.3))^2); b=pi/(0.6*sqrt(1-a^2)); d=0.5*b^2 e=(2*sqrt(2*d)*a-3)/d num=b^2; den=[1 2*a*b b^2]; sys2=0.5*tf(num,den) step(sys2) 得: d = 15.7210 e = 0.0645 sys2 = 15.72 ---------------------- s^2 + 4.013 s + 31.44

相关主题
文本预览
相关文档 最新文档