当前位置:文档之家› 地磁场的结构和作用

地磁场的结构和作用

地磁场的结构和作用
地磁场的结构和作用

地磁场的结构和作用

作者:河北师范大学教授宋彬

【摘要】地磁场在近一个世纪里,呈现出加速变化的趋势,地磁环境因此正在成为人类生存环境的一个热点。本文客观的介绍地磁场的结构和作用,分为两部分,第一部分概括了地磁翻转现象、地磁场的成因、三要素和组成部分,第二部分分条列举了地磁场的作用。

关键字:地磁场地磁翻转双耦合发电盘磁层

1地磁场结构

1.1地磁三要素

怎样描述某一地点的地磁场呢?

我们不能感受到地磁场的存在,然而通过它作用于别的物体,不难将它认出。将一块磁铁平放到纸版下面在上面撒些铁屑并抖动纸板就会看到铁屑有规则的排成弧形线条分别向磁铁两极集中,铁屑线条是磁力线的反映。对于地球这个大磁场我们用指南针。指南针所指的方向正是磁力线在水平面上的投影,与地理正北方方向呈一夹角称磁偏角。磁偏角大小各处都不同。

指向南北的磁力线与地表的水平面之间一般也是斜交的在使用指南针时表现为磁针一端下垂另一端翘起,这个磁针北端与水平面的交角被称为磁倾角。通常以磁针北端向下为正值向上为负值。地球表面磁倾角为0°的个点称为地磁赤道;由地磁赤道到地磁北极,磁倾角由0°逐渐变为+90°,有抵触吵到到底次南极,磁倾角由0°逐渐变为-90°。

地磁场总磁力作用的方向,可以通过磁偏角、磁倾角来表现,但不能表示磁力作用大小,某一地点磁力强度大小的绝对值由磁感应强度来表示,这必须用磁力仪来测定,以特斯拉为计量单位地球的磁感应强度一般很弱,平均为50微特斯拉,只有永久磁铁的万分之一左右。

磁感应强度、磁倾角、磁倾角被称为地磁的三要素。把握住它们,我们就能对某个地方能够的磁场状况得到比较清楚的认识。

1.2地磁场的组成

宏观上讲,在地球中心如同存在一块柱状的大磁铁,这个假定的柱被称为磁偶极子,有它产生的偶极子磁场占地磁场成分的95%以上,是构成稳定地磁场的主体,即地球的基本磁场,基本磁场的强度在在地表附近较强,向上自在空气其中逐渐减弱这说明它主要为地内因素所控制。按照现在科学已达到的认识,除去基本磁场外,还包括两种成分:变化磁场和磁异常。

变化磁场具有日变化、年变化、多年(短周期和长周期)变化以及突发性变化,它的产生主要由于来自地球外部的带电粒子的作用,这样产生出来的是非偶极磁场,叠加在基本磁场上。太阳是这些带电粒子的主要来源,平时他通过太阳风持续不断年发射出比较稳定的粒子流,而它的表面出现黑子、耀斑正对着地球时会把大量带电的粒子抛向地球,是叠加在基本磁场上的变化磁场突然增强,实地磁场发生大混乱,出现磁暴。磁暴不仅使指南针失灵,还干扰无线电通讯和人类的正常工作,常在地球两极产生极光。地磁场对着太阳的一面受到太阳风的压迫不得不退缩,太阳风在受到磁场阻挡后迂回绕行,将它包围起来,地磁场背着太阳的一面随之被拉伸的很远形成一个在高层大气之外,形状类似彗星的磁性包层,这就是地球磁层(如下图8-3)。太阳风与地磁场相持不下所形成的曲面是磁层的边界叫磁层顶,

到这里也就到磁场的边界了。在朝向太阳的一面,磁层顶离地心约五万到七万多千米远;背着太阳的一面可能是这些数字的一百倍以上。地磁场中非偶极子磁场主要是这种流动的电磁

感应产生的。太阳风带

来了太阳磁场的影响,

在离太阳比地球还远十

倍的星际空间存在着太

阳风和太阳磁场,磁层顶

是地球的变化磁场与太

阳磁场保持相对平衡,

时有进退的过渡带。

磁异常地壳浅部

具有磁性的岩石或矿石

所引起的局部磁场它也

叠加在基本磁场之上。

一个地方的磁异常首先

通过对实测磁场强度进

行变化磁场的校正,然

会再减去基本磁场的正

常值来求得。地壳内含铁较多的矿石和富含铁元素的矿体常引起正磁异常,而高岩矿床石油天然气储层、富水地层和富水的岩石破碎带常引起负磁异常,利用这种局部的此异常了解地下地质情况,利用此方法进行找矿、勘探工作。

1.3地磁翻转现象

在地质时期,地表附近的岩石都被当时的古地磁场所永久磁化,岩石的这种磁性称为剩余磁性,借助地质时期的岩石剩余磁性我们可以恢复不同时期古地磁场。

现今地磁场的地磁极余地利己的位置比较接近,但不重合。地磁极围绕地理极附近作小幅度周期性迁移。数千年来,地磁极的平均位置可以看作与地理极基本重合。根据这一原理,可以把地质历史时期的古地磁极近似当做古地理极,把古地磁场的磁子午线当做古地理经线。地磁场的磁倾角之间有一个简单的公式:

tag?=1/2tag I(I为磁倾角,?为地理纬度)

古地磁场磁倾角可以换算成古地理纬度线。因而岩石在形成时期所产生的剩余磁化方向就可以用来大致确定古经线方向,用古磁倾角可以确定当时所处的古纬度。

在测定岩石的剩余磁场时发现了相当一批岩石的磁化方向与现在地磁场方向相反,于是就认为地磁场发生了180°改变,磁北极与磁南极对调,这种现象被称为地磁场翻转。随后越来越多的事实证明在地球历史上确实发生过这种变化,还一再的发生。

1906年,法国科学家在考查法国司马夫中央山脉地区溶岩时,发现那里的岩石具有与地磁场方向相反的磁性,后来此类发现不断增加。随着研究的深入,人们终于确信,地磁场方向并非一直不变。近年来,许多地质学家一致认为在过去的7600万年中地磁至少反转过171次。因为许多国家已经从地质勘测中查到了地磁反转的证据。更有甚者,地球的主要地磁场从1830年首次测量至今,已经减弱了近10%。这比在失去能量来源的情况下磁场自然消退的速度大约快20倍!

科学家们通过对海底熔岩的研究发现,地球的磁场曾经发生过多次翻转。众所周知,炽热的岩浆中含有数以万计的矿物质,就好像一个个“小指南针”。当岩浆冷却下来后,这些“指南针”也被固定住不再发生变化。这样,其“南北极”的指向就记录了当时地球磁场的

方向。研究表明,地球磁场平均每50万年翻转一次,而最近一次的翻转发生在78万年前。

在右图中列出了距

今500万年以来(a)、距

今8千万年以来和距今

2亿5千万年到5千万年

前(c)的古地磁(极性)年

表。从这些表中可以看

出,地球磁极性的变化

并没有明显的周期性。

表(a)中是不同地磁方向

时期的名称,而表(b)和

(c)中则是不同地质时期

的名称。这种表示地球

磁极性随年代变化的年

表称为古地磁(极性)年

表。另外,还可以根据

古岩的剩余磁性以及古

陶瓷等文物的剩余磁性

等来确定古人类和古文

物的年代,称为考古磁

学。我国曾利用古地磁

断代方法测定北京人、

云南元谋猿人和四川巫

山人的年代,结果同其他科学考古断代方法测定的年代是一致的。

由于一百多年来磁场不断减弱,人们不禁担心,地球磁场的又一次“大变脸”是否即将来临。对于人类和所有生物来说,地磁变换是灾难性的。地磁消失后,宇宙中的各种射线都会直达地表,地球上生活的生物将失去“保护伞”,受到强烈辐射的伤害。还有科学家认为,地磁场改变导致染色体畸变,会使动植物发生变异生长,还会使一些被压制的地壳运动提前。因此,地球磁极的变换是人类面临的最大的威胁。

1.4基本地磁场的成因

要真正的认识地磁场,就要弄清楚它的成因,关于地磁场的成因一直以来也没有定论,以下是假说和观点我们小组经过讨论认为是最科学合理的解释。

由上所述,地球可视为一个磁偶极子,根据科学家

的研究,地磁极的大概位置是:地磁南极在东经140°、

南纬67°的南极洲威尔克斯附近;地磁北极在西经

100°、北纬76°的北美洲帕里群岛附近。通过这两个

磁极的假想直线(磁轴)与地球的自转轴大约成11.5度

的倾斜。也就是说地磁南北极和地理的南北极并不重合。

科学家还发现,地磁南北极的地理位置不是固定不

变,而是在缓慢变化着的。位于地球中心的大磁铁产生

出磁场,是最早出现的地磁成因假说。但是居里先生的

发现使这个似乎完美的假说受到了挑战。因为使石岩获

得或丧失磁性的居里点温度一般为500~600℃,而在岩

石圈下,温度已超过1000℃,因此地球中心即便是铁,也不应该有磁性。地震波研究告诉我们,地核的外部是液态的,给地球中心具有电磁场的假说带来了新的希望,因为只要地核原来存在微弱的磁场,这些液态铁的非均匀运动就会发生扰动、漩涡,产生感应电流,不断增强原有电磁场,逐渐形成较稳定的地电磁场。铁质的地核不能成为一块磁铁,但相当于一个发电机系统。是“非稳定发电机”假说(20世纪40~50年代形成)。正是这种非稳定发电机模式,有可能解释地磁翻转。

70年代许多学者用“双耦合发电盘”作出了解释:两部线路连通在运动过程中旋转角度不同会产生扰动,系统电流也变化,当电流扰动大到一定程度系统,系统电流就可反向流动,从而造成磁场的翻转。

如果要实现上述假说必然会碰到磁流体发电机的“能量来源问题”。不少人想用外壳中液态物质径向对流、物质分歧、放射性元素蜕变放热或地核与地幔自转轴运动差异来解释,但在计算中得不到满意结果。1977年斯泰西(F .D .Stacey )最早假设地核旋转运动速度为10千米每年,而地幔几乎不动,据此推断出它们运动速度的差异,产生的能量与液态外壳形成的地磁场所需能量基本相同。90年代以来已有好多地理学家用数值模拟的方法,假设地球内核比液态外壳转得快(例如每500年多转一圈)经过几千年就可以形成相对稳定的地磁场,在一定时期之后其极性又可以翻转。近年来,宋晓东与李查斯(1996)通过地震波的系统研提出内核比地幔每年转快1.1°的结论,为地磁场非稳定发电机的成因机制提供了有力的支持,使以上所述地磁场成因假说得到了更广泛认可。

2地磁场的作用

2.1它保护了地球大气的存在,不被太阳风吹跑!

地球外围有一层厚厚的大气,而太阳每时每刻地向外发射着太阳风,太阳风的成分包括:带电粒子(带正电的粒子和带负电的离子)、能量粒子(可见光、红外线、紫外线、X射线等)和电中性的中子,其中带电粒子对空气分子的碰撞力最大,像彗星运动到太阳附近一样,彗星上的物质会沿着太阳风的方向被吹走,地球上的空气之所以不被吹跑呢,这就是地磁层存在的意义。大家知道,带电粒子在磁场中会受到磁场的作用而发生偏转,这种力称为“洛仑兹力”,其方向可以用左手去判定:伸出左手,让大拇指与其余四指垂直在同一个平面内,手心对准磁场北极,四指指向正电荷运动的方向,那么,大拇指所指的方向,就是正电荷受力的方向。根据这个判定,太阳风中带正电的粒子进入地球磁层以后,会受到洛仑兹力而向东偏转,带负电的离子受到洛仑兹力会向西运动,由于它们受到地磁场的作用力而发生了偏转,不能够直线运动去吹动地球上的大气,所以,保护了地球大气的存在,同时,也保护了水分的存在,因为,水能够蒸发而成为气体,如果被太阳风吹走,地球上的生命就不存在了,人类也就不存在了。月球上之所以没有空气,是因为它没有比较强的月球磁层,并不是它的引力小而吸引不住空气!

2.2它保护了地球生命体不受伤害

在太阳风的辐射中,对生命体能够造成直接伤害的还是各种带电粒子,由于这些带电粒子受到地球磁层的作用而发生偏转,不能够直接射到地面上来,因此,它保护了地球上的生命体,同时也保护了人类。

2.3它保护了地球上的一些用电器

在太阳风的辐射物中,仍然是带电粒子对地球上的各种物体具有破坏作用,它像一发一发的炮弹,如果打击到各种物体上,就会造成物体表面的破坏,尤其是用电器的电路以及它们的绝缘层,据一些资料显示,如果太阳发生“磁暴”,会干扰地球磁层,此时,许多的能量比较大的带电粒子射到地面上来,它能够穿透用电器的外壳,这些用电器的绝缘层受到破坏而造成短路,某变电站变压器的着火,就是这个原因造成的。

2.4它是电离层产生的重要因素

在太阳风的辐射物中,带电粒子的偏转,能够与大量的空气分子发生碰撞,造成空气分子的电离,所谓电离,这些“自由电子”对反射电磁波有重要作用,如果没有电离层的存在,人类的无线电通讯就会受到影响。

2.5它是产生臭氧层的重要条件

在太阳风的辐射物中,带电粒子的偏转能够与大量的空气分子发生碰撞使空气分子发生电离,其中有被电离的氧气分子和氧原子,它们在重新结合为分子的过程,有些结合为臭氧分子,在这些含有大量臭氧分子的区域,被科学家们称为臭氧层,说它们可以阻挡紫外线,它对地球生命体具有保护作用。

此外在夏季,空气的温度比较高,在太阳光的辐射下,空气分子就能够发生电离,因此,空气中存在大量的带电粒子,包括许多的漂浮电子,在风力的作用下,这些带电粒子在地磁场中运动就会受到“洛仑兹力”而发生偏转,由于带正电性的和带负电的受到“洛仑兹力”方向相反,这样就能够形成大量的带电的云团,由于带电云团之间容易出现放电,这就是雷电,雷电的产生对臭氧的形成有非常积极的意义,人们都说臭氧能够阻挡紫外线,对保护地球的生命有重要的作用,此外,雷电的产生能够使空气中的氮与氧化合而形成氮的氧化物,对于促进植物的光合作用有非常积极的作用。

最近几年人们利用人造卫星发现,在地球南极的上空,存在有“臭氧空洞”,所谓臭氧空洞是指地球的上层空间臭氧含量非常少区域,科学家们认为这是人类活动,有大量“氟利昂”泄露,破坏了臭氧,造成了臭氧空洞的出现,那么,没有人提问:为什么在人类生活的北半球的上层空间没有臭氧空洞,而在人迹没有的南极上空出现臭氧空洞呢?实际上,在南极的上空某一定的区域,由于地磁场磁力线与太阳风射来的方向一致,大量的带电粒子不能够受到“洛仑兹力”而发生“有效偏转”,不能够与空气分子发生碰撞,使空气分子发生电离,因此,氧离子和氧原子结合为臭氧的几率降低,这样就出现了在一区域的臭氧稀薄,也就是所谓的臭氧空洞,造成“臭氧空洞”的罪魁祸首不一定是“氟利昂”!

2.6促成了极光的产生。

极光的形成主要是由于太阳的带电微粒发射到地球磁场的势力范围,受到地球磁场的影响,从高纬度进入地球的高空大气,激发了高层空气质粒而造成的发光现象。地球是一块巨大的磁石,而它的磁极在南北两极附近。我们知道,指南针总是指着南北方向,就是因为受了地磁场的影响。从太阳射来的带电微粒流,也要受到地磁场的影响,而且使带电微粒流聚集在磁极附近。所以极光大多在南北两极附近的上空出现。在南极发生的叫南极光,在北极发生的叫北极光。

由于地磁场具有方向性。人们可以利用它指示方向(使用指南针),这对航海、探险以及科学考察有重要意义。很多动物也是利用地磁场的方向来辨别方位进行迁徙的。

参考文献<<地球科学概论>> 地质出版社陶世龙万天丰程捷编著

<<地球和空间科学>> 高等教育出版社刘南主编

地磁场水平分量的测量-实验

地磁场水平分量的测量 姓名:王秋来 专业班级:物科院11级物理学 学号:1108405037 【摘要】某一地点O 的地磁要素有:⑴地磁场总磁感应强度B ,⑵磁倾角I ,⑶磁偏角D ,⑷水平分量//B ,⑸垂直分量z B ,⑹北向分量x B ,⑺东向分量y B 。 确定某一点的地磁场通常用磁偏角,磁倾角和水平分量//B 三个独立要素。 利用正切电流计算原理,测定地磁场的水平分量//B 地磁场水平分量为:032 85a u N B b R = ? 【关键字】地磁场,水平分量,正切电流计,磁偏角。 1、实验目的 (1)学习测量地磁场水平分量的方法; (2)了解正切电流计的原理; (3)学习分析系统误差的方法 2、实验室提供的仪器和用具 亥姆霍兹线圈(N=700匝),地质罗盘(DL-I 型),直流稳压电源(DF173系列),电阻箱(ZX21型),直流电流表。 3、实验原理 3.1 地磁场与地磁要素 地球是一个大磁体,地球本身及其周围空间存着磁场叫做“地球磁场”又称地磁场,其主要部分是一个偶极

场。地心偶极子轴线与地球表面的两个交点称为地磁极,地磁的南(北)极实际上是地心磁偶极子的北(南)极,如图1。地心磁偶极子的磁轴

m m S N 与地球的旋转轴NS 斜交一个角度o 5.11,00≈θθ。所以地磁极与地理极 相近但不相同,地球磁场的强度和方向随地点、时间而发生变化。 地球表面任何一点的地磁场的磁感应强度矢量B 具有一定的大小和方向。在地理直角坐标系中如图2所示。O 点表示测量点,x 轴指向北,即为地理子午线(经线)的方向;y 轴指向东,即为地理纬线方向;z 轴垂直于地平面而指向地下。XOy 代表地平面。B 在xOy 平面上的投影//B 称为水平分量,水平分量所指的方向就是磁针北极所指的方向,即磁子午线的方向;水平分量偏离地理真北极的角度D 称为磁偏角,也就是磁子午线与地理子午线的夹角。由地理子午线起算,磁偏角东为正,西偏为负。B 偏离水平面的角度I 称为磁倾角。在北半球的大部分地区磁针的N 极下倾,而在南半球,则磁针的N 极向上仰,规定N 极下倾为正,上仰为负。B 的水平分量 //B 在x 、y 轴上的投影,分别称为北向分量x B 和东向分量y B ;B 在Z 轴上的投影z B 称为垂直分量。故某一地点O 的地磁要素有:⑴地磁场总磁感应强度B ,⑵磁倾角I ,⑶磁偏角D ,⑷水平分量//B ,⑸垂直分量z B ,⑹北向分量 x B ,⑺东向分量y B 。 不难看出,它们是B 在各个坐标体系中的坐标值,比如z y x B B B ,,就是B 在直角坐标系中的坐标值,而,,//B B z D 和D 、//B 、I 则分别是B 在柱面坐标系和球坐标系中的坐标值,这三种坐标体系是彼此独立的,在它们之间,存在着如下的变换关系: z y x z y x B B B B B B tgI B B D B B D B B 2//2222//2//////,,,sin ,cos +=+==?=?= 图2

材料成分结构性能三者间的关系

从钢铁材料看材料成分-结构-性能关系 钢铁从被利用开始至今一直是人类不可替代的原材料,是衡量一个国家综合国力和工业水平的重要指标。 我们都知道初铁外,C的含量对钢铁的机械性能起着重要作用,钢是含碳量为0.03%-2%的铁碳合金。随着碳含量的升高,碳钢的硬度增加、韧性下降。同时含碳量对工艺性能也有很大影响。对可锻性而言,低碳钢比高碳钢好。由于钢加热呈单相奥氏体状态时,塑性好、强度低,便于塑性变形,所以一般锻造都是在奥氏体状态下进行。对焊接性而言,一般来说含碳量越低,钢的焊接性能越好,所以低碳钢比高碳钢更容易焊接。而那些比例极小的合金加入,可以对钢的性能产生很大影响。可以说普通钢、优质钢和高级优质钢就是在这些比例极小的成分作用下分别出来的。那些合金成分的加入可以使钢的组织结构和性能都发生一定的变化,从而具有一些特殊性能。比如说,铬的加入不仅能提高金属的耐腐蚀性和抗氧化性,也能提高钢的淬透性,显著提高钢的强度、硬度和耐磨性;锰可提高钢的强度,提高对低温冲击的韧性;稀土元素可提高强度,改善塑性、体温脆性、耐腐蚀性及焊接性能等等。 钢铁材料的结构特征包括晶体结构、相结构和显微组织结构。钢铁是属于由金属键构成的晶体,因此就具有金属晶体的特性,如延展性。同时这也注定钢的机械性能不仅与其化学性能有关,而其晶体的结构和晶粒的大小影响更大。 铁碳合金的基本组元是纯Fe和Fe3C。铁存在同素异构转变,即在固态下有不同的结构。不同结构的铁与碳可以形成不同的固溶体。碳溶解于 -Fe中形成的固溶体成为铁素体,其含碳量非常低,所以性能与纯铁相似,硬度低、塑性高,并有铁磁性。其显微组织与工业纯铁也相似。碳溶于 -Fe形成的固溶体为奥氏体,具有面心立方结构,可以溶解较多的碳。在一般情况下,奥氏体是一种高温组织,故奥氏体的硬度较低,塑性高。通常在对钢铁材料进行热变形加工,都应将其加热呈奥氏体状态。 由此,从钢铁材料中,我们看到,材料的成分,结构和性能是密不可分的三者。成分和结构往往可以极大的影响材料的性能,而成分和结构之间也是相互影响的。 1、C的含量对钢铁的机械性能起着重要作用,随着碳含量的升高,碳钢的硬度增加、韧性下降。同时含碳量对工艺性能也有很大影响对可锻性而言,低碳钢比高碳钢好。对焊接性而言,一般来说含碳量越低,钢的焊接性能越好。 2、合金成分的加入可以使钢的组织结构和性能都发生一定的变化,从而具有一些特殊性能。比如说,铬的加入不仅能提高金属的耐腐蚀性和抗氧化性,也能提高钢的淬透性,显著提高钢的强度、硬度和耐磨性。 3、钢铁是属于由金属键构成的晶体,因此就具有金属晶体的特性,如延展性。同时这也注定钢的机械性能不仅与其化学性能有关,而其晶体的结构和晶粒的大小影响更大。 4、铁存在同素异构转变,即在固态下有不同的结构。不同结构的铁与碳可以形成不同的固溶体。碳溶解于 -Fe中形成的固溶体成为铁素体,其含碳量非常低,所以性能与纯铁相似,硬度低、塑性高,并有铁磁性。其显微组织与工业纯铁也相似。碳溶于 -Fe形成的固溶体为奥氏体,具有面心立方结构,可以溶解较多的碳。

地磁场测量的研究

第28卷第4期延安大学学报(自然科学版)V o.l28N o.4 2009年12月Journal o fY anan U niversity(N atural Science Ed ition)D ec12009 地磁场测量的研究 赵晓伟 (延安大学物理与电子信息学院,陕西延安716000) 摘要:利用FD-HM-I型亥姆霍兹磁场测定仪及其所配备的高灵敏度毫特斯拉计传感器探头,测量地磁场水平及垂直分量,进一步测量出地磁场的大小和方向,改进了传统的测量地磁场的实验方法。 关键词:地磁场;测量;亥姆霍兹磁场测定仪;毫特斯拉计 中图分类号:O44115文献标识码:A文章编号:1004-602X(2009)04-0048-03 地磁场作为一种天然磁源,在军事、航空、航海、工业、医学、探矿等科研中有着重要的用途1地磁场的数值比较小,约为10-5T量级,其准确测量比较困难,但在直流磁场测量,特别是弱磁场测量中,却往往需要知道其准确数值,并设法消除其它因素对测量结果的影响。传统的亥姆霍兹线圈磁场测量实验[1-3],一般用探测线圈配以指针式交流电压表测量磁感应强度,由于线圈体积大、指针式交流电压表等级低等原因,测量的误差较大。近年来,在研究地磁场方面,科研工作者做了不少研究[4-8]。本文利用FD-HM-I型亥姆霍兹磁场测定仪及其所配备的高灵敏度毫特斯拉计传感器探头,测量地磁场水平及垂直分量,进一步测量出地磁场的大小和方向。所用的SS95A型集成霍耳传感器是一种高灵敏度优质磁场测量传感器,它的体积小(面积4mm@3 mm,厚2mm),其内部具有放大器和剩余电压补偿电路,采用此集成霍耳传感器(配直流数字电压表)制成的高灵敏度毫特斯拉计,可以准确测量0~2. 000mT的磁感应强度,其分辨率可达1@10-6T。因此,用它探测地磁场水平分量、地磁场垂直分量准确度较高,测量出地磁场的大小和方向,误差较小,是测量地磁场大小和方向的一种好方法,颇具推广价值。 1实验原理 为了减小干扰,其它铁磁物体远离实验装置。用水平仪将放置传感器探头的台面调节到水平,先放置一个罗盘,根据罗盘指针N、S极所指的方向测出地磁场水平分量的方向,作一条与罗盘指针N、S 极所指的方向所在直线相互平行的直线,调整传感器探头的方向,使传感器探头的法线方向与罗盘指针N、S极所指的方向相互垂直,移走罗盘,调节亥姆霍兹磁场测定仪面板上的毫特斯拉计调零旋钮,使毫特斯拉计显示为零(本毫特斯拉计为高灵敏度仪器,在台面上不同的位置,毫特斯拉计显示的最后一位可能有所不同,为防止其它杂散信号的影响,使毫特斯拉计显示为零),再调节传感器探头的方向使其与罗盘指针N、S极所指的方向一致(与前面所作直线相互平行),即与地磁场水平分量的方向一致,记录毫特斯拉计显示的数值,即地磁场水平分量B水平的大小。借助水平仪将传感器探头的法线方向调节到竖直,记录毫特斯拉计显示的数值,即地磁场垂直分量B垂直的大小。地磁场总量的大小用B地磁表示。 B地磁=B2水平+B2垂直(1) 地磁场的方向考虑它与水平方向的夹角,即磁倾角H为 H=arct g B垂直 B水平 (2) 这样,我们利用式(1)、式(2)就可以计算出地磁 收稿日期:20090826 作者简介:赵晓伟(1985)),男,陕西府谷人,延安大学物理与电子信息学院06级本科生。

叶的蒸腾作用教案

叶的蒸腾作用和结构第一课时 一、教材章节:八年级科学下第三章第5节 二、教学目标: 1、了解蒸腾作用的基本含义及其意义。 2、探究影响蒸腾作用强弱的环境因素。 3、掌握实验设计和操作、合作探究的基本技能,培养学生认真、细致、严谨的 科学态度 4、培养学生节约水资源、保护水资源的环保意识。 三、重点难点分析: 重点:蒸腾作用的基本含义及意义 难点:实验设计探究影响蒸腾作用强弱的环境因素 四、教学预设: 【引入】 1、引言:近段时间相信大家都很关注西南干旱和玉树地震问题,对于西南干旱,特别是云南最严重,那你知道引起这次干旱的原因可能有哪些吗?(投影干旱图片) 2、学生交流发言 3、教师:我也查阅了一些资料,有专家说可能和云南的地貌有关,也可能和大气环流有关,也有观点提出,可能和云南大面积种植桉树有关。对于这点,我就不理解了,植树造林,可以改善气候的,功臣呀,怎么也有罪了?也许通过今天这节课能解开这个疑团。(投影桉树图片) 【新课】 1、(投影课前观察实验装置图)请小组交流汇报课前实验的观察记录: 2、思考分析实验现象:试管中少掉的水到哪去了? 塑料袋内壁上的水来自哪里? 3、得出蒸腾作用的定义(投影定义) 4、思考:设置A、B两个装置的目的是为了研究什么问题? 5、归纳得出:蒸腾作用的主要场所是叶片(投影蒸腾作用的场所) 6、思考:试管中少掉的水都蒸腾出去了吗? 7、以玉米吸收水和散失水的数据,说明根吸收的水99%是蒸腾出去的(投影关于玉米的数据)

8、思考:根吸收的水99%是蒸腾出去的,这不是一种浪费吗?它对植物的生命活动有没有意义呢? 9、学生交流、归纳:蒸腾作用的意义(投影蒸腾作用对植物自身生命活动的三点意义) 10、补充蒸腾作用对水循环的促进作用(投影水循环图,并板书) 11、思考: 植物的蒸腾作用能促进水循环,改善局部气候,那么云南的干旱怎么可能与大面积种植桉树有关呢?我查阅了有关桉树的一些资料,说桉树是一台抽水机,一棵桉树每年要耗掉两吨水,对土壤的水分需求极大,大面积引种桉树会导致地下水位下降,这些说法用我们今天所学的知识来解释,也就是桉树的蒸腾作用非常强。那么,干旱与桉树有关吗?截至目前,也没有哪个专家厘清特大干旱的真正原因,但从中确有很多地方值得我们探究和反思。对于植树造林,提醒人类要科学地、合理地、因地制宜地进行。 12、思考并交流:桉树的蒸腾作用为什么那么强?可能和哪些因素有关?(桉树的叶片多、叶片表面积大、根系发达、云南的气温高、光照强等等) 13、归纳:影响蒸腾作用强弱的因素有内部的自身因素和外部的环境因素。大家思考一下沙漠植物的蒸腾作用强还是弱?它们具有怎样的结构来减弱蒸腾作用的?(投影沙漠中的仙人掌) 14、出示两盆植物,仙人球和吊兰,问:这是我放在办公桌上的两盆植物,你猜测一下,那盆植物我平时浇水要勤快一点? 15、蒸腾作用的强弱与植物自身的结构有很大的关系,但是与它所处的环境也密不可分,今天我们在课堂上就来研究一下蒸腾作用的强弱与环境因素的关系?(投影问题) 16、学生思考回答:影响蒸腾作用强弱的环境因素有哪些?(投影环境因素) 17、思考:怎么判断蒸腾作用的强弱? 18、教师演示,将插在红墨水中的枝条剥去树皮,引导学生观察被染红的部位,得出根据染红部位的高度来判断蒸腾作用的强弱。 19、问:你看看身边老师为你提供的实验器材,你觉得今天在课堂上能研究哪个环境因素?(空气流速) 20、小组讨论设计实验方案 21、交流汇报,归纳 22、学生实验:选取两支长短、粗细差不多的同种植物枝条,要求叶片数量一样,

八年级生物《叶的蒸腾作用和结构》教案

教学目标:1、了解蒸腾作用的基本含义及其意义 2、知道气孔的分布状况 3、知道保卫细胞和气孔的结构 4、完整地描述水、无机盐的运输路径 重点难点:叶的结构水和无机盐的运输 教学过程: *************************************** 第一课时 课堂引入:我们都知道“水从低处留”,可在植物体内,是什么促使水从根部向茎、叶运输呢? 一、蒸腾作用 1、实验观察:选取一盆正处于生长旺盛期的植物,用一透明的塑料袋将邻近的叶片包扎起来,对该植物浇水后,置于阳光下照射。观察塑料袋上有无水珠生成,这说明____________________________。 2、水分以气体状态从体内散发到体外的过程,叫做蒸腾作用,蒸腾作用主要在叶片进行。 3、土壤中的水分由根毛进入根后,然后通过根、茎、叶的导管输送到叶肉细胞。这些水分,除了很小一部分参加植物体内各项生命活动外,99%通过蒸腾作用从叶中散发出去,蒸腾作用可以在温度偏高的情况下有效地降低叶片的温度,同时也是根吸水的主要动力,利于植物对水的吸收和运输,也利于溶解在水中的无机盐在植物体内的运输。由此可见,蒸腾作用不是在浪费水分,而是对植物的生活具有重要的意义。 4、学生讨论:①在春天的阳光下,水银柱将会有什么变化?为什么? ②如果把这一装置放在夏天的烈日下,水银柱会有什么变化?为什么? ③如果把这一装置放在阴暗潮湿的环境中,水银柱将会有什么变化?为什么? ④如果在实验室里,用电吹风吹叶片,水银柱将会有什么变化? ⑤请设计一个实验:证明蒸腾作用的强弱与光照条件有关。 5、课堂练习: ①在阴天或傍晚进行移植,并去掉部分枝叶,是为了降低: ( ) A.降低光合作用 B.减小呼吸作用 C.减少水分蒸腾作用 D.移栽方便 ②仙人掌在强烈的阳光下,不会被太阳光灼伤的原因是( ) A、吸水力大 B、储水多 C、蒸腾作用强 D、叶变成刺 ③关于植物体水分散失的意义,下列哪项是不正确的?( ) A、促进植物体对水分的吸收 B、促进矿质元素在植物体内的运输 C、促进溶于水的矿质元素的吸收 D、降低植物体特别是叶片的温度 ④北方果树由根系吸收的水分主要用于( ) A、光合作用 B、蒸腾作用 C、植物的生长 D、果实的形成 6、作业:作业本 第二课时 二、叶的结构: 1、实验观察1:①选取一张生长旺盛的蚕豆叶,用滤纸把它上、下表皮的水分吸干。 ②将两张浸有氯化钴溶液的蓝色滤纸,相对应地贴在叶片上、下表皮的表面,并用回形针将其固定。 ③观察贴在叶片上、下表皮上的滤纸的颜色变化。哪一张纸先变色?哪一张纸的颜色

实验五 地磁场测定

实验五 地磁场测定 一.概述 地磁场作为一种天然磁源,在军事、航空、航海、工业、医学、探矿等科研中有着重要用途。本仪器采用新型坡莫合金磁阻传感器测量地磁场的重要参量,通过实验可以掌握磁阻传感器定标以及测量地磁场水平分量和磁倾角的方法,了解测量弱磁场的一种重要手段和实验方法,本仪器与其他地磁场实验仪(如正切电流计测地磁场实验仪)相比具有以下优点: 1.实验转盘经过精心设计,可自由转动,方便地调节水平和铅直。内转盘相隔ο180,具有两组游标,这样既提高了测量精度,又消除了偏心差。 2.新型磁阻传感器的灵敏度高达50V/T ,分辨率可达8710~10--T ,稳定性好。用本仪器做实验,便于学生掌握新型传感器定标,及用磁阻传感器测量弱磁场的方法,测量地磁场参量准确度高; 3.本仪器不仅可测地磁场水平分量,而且能测出地磁场的大小与方向,这是正切电流计等地磁场实验仪所不能达到的。 本仪器可用于高校、中专的基础物理实验、综合性设计性物理实验及演示实验。 二.仪器技术要求 1.磁阻传感器 工作电压 6V ,灵敏度50V/T 2.亥姆霍兹线圈 单只线圈匝数N=500匝,半径10cm. 3.直流恒流源 输出电流0—200.0mA 连续可调 4.直流电压表 量程0—19.99mV ,分辨率0.01mV

5.测量地磁场水平分量不确定度小于3% 6.测量磁倾角不确定度小于3% 7.仪器的工作电压AC 220±10V 三.仪器外型

FD-HMC-2型 磁阻传感器与地磁场实验仪 (以下实验讲义和实验结果由复旦大学物理实验教学中心提供) 一.简介 地磁场的数值比较小,约510-T 量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。本实验采用新型坡莫合金磁阻传感器测量地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特性及测量地磁场的一种重要方法。由于磁阻传感器体积小,灵敏度高、易安装,因而在弱磁场测量方面有广泛应用前景。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式 θρρρθρ2cos )()(⊥⊥-+=∥ (1) 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的

地磁场水平分量的测量解读

实验二十九 地磁场水平分量的测量 1、教学目标 (1)学习测量地磁场水平分量的方法; (2)了解正切电流计的原理; (3)学习分析系统误差的方法 2、教学难点、重点 难点:地磁场的相关概念;正切电流计的原理。 重点:测量方法和测量公式。 3、实验室提供的仪器和用具 亥姆霍兹线圈(N=640匝,R=10cm ),地质罗盘(DL-I 型),直流稳压电源(DF173系列),电阻箱(ZX21型),直流电流表(0.5级,10Ma ),换向开关,水准器。 4、实验原理 4.1 地磁场与地磁要素 地球是一个大磁体,地球本身及其周围空间存着磁场叫做“地球磁场”又称地磁场,其主要部分是一个偶极场。地心偶极子轴线与地球表面的两个交点称为地磁极,地磁的南(北)极实际上是地心磁偶极子的北(南)极,如图1。地心磁偶极子的磁轴m m S N 与地球的旋转轴NS 斜交一个角度o 5.11,00≈θθ。所以地磁极与地理极相近但不 相同,地球磁场的强度和方向随 地点、时间而发生变化。 地球表面任何一点的地磁 场的磁感应强度矢量B 具有一定 的大小和方向。在地理直角坐标 系中如图2所示。O 点表示测量 点,x 轴指向北,即为地理子午 线(经线)的方向;y 轴指向东, 即为地理纬线方向;z 轴垂直于 地平面而指向地下。XOy 代表地 平面。B 在xOy 平面上的投影//B 称为水平分量,水平分量所指的 方向就是磁针北极所指的方向,即磁子午线的方向;水平分量偏离地理真北极的角度D 称为磁偏角,也就是磁子午线与地理子午线的夹角。由地理子午线起算,磁偏角东为正,西偏为负。B 偏离水平面的角度I 称为磁倾角。在北半球的大部分地区磁针的N 极下倾,而在南半球,则磁针的N 极向上仰,规定N 极下倾为正,上仰为负。B 的水平分量//B 在x 、y 轴上的投影,分别称为北向分量x B 和东向分量y B ;B 在Z 轴上的投影z B 称为垂直分量。故某一地点O 的地 磁要素有:⑴地磁场总磁感应强度B ,⑵磁倾角I ,⑶磁偏角D , ⑷水平分量//B ,⑸垂直分量z B ,⑹北向分量x B ,⑺东向分量y B 。 不难看出,它们是B 在各个坐标体系中的坐标值,比如z y x B B B ,,就是 图 1

八年级生物《叶的蒸腾作用和结构》教案

叶的蒸腾作用和结构 教学目标:1、了解蒸腾作用的基本含义及其意义 2、知道气孔的分布状况 3、知道保卫细胞和气孔的结构 4、完整地描述水、无机盐的运输路径 重点难点:叶的结构水和无机盐的运输 教学过程: *************************************** 第一课时 课堂引入:我们都知道“水从低处留”,可在植物体内,是什么促使水从根部向茎、叶运输呢? 一、蒸腾作用 1、实验观察:选取一盆正处于生长旺盛期的植物,用一透明的塑料袋将邻近的叶片包扎起来,对该植物浇水后,置于阳光下照射。观察塑料袋上有无水珠生成,这说明____________________________。 2、水分以气体状态从体内散发到体外的过程,叫做蒸腾作用,蒸腾作用主要在叶片进行。 3、土壤中的水分由根毛进入根后,然后通过根、茎、叶的导管输送到叶肉细胞。这些水分,除了很小一部分参加植物体内各项生命活动外,99%通过蒸腾作用从叶中散发出去,蒸腾作用可以在温度偏高的情况下有效地降低叶片的温度,同时也是根吸水的主要动力,利于植物对水的吸收和运输,也利于溶解在水中的无机盐在植物体内的运输。由此可见,蒸腾作用不是在浪费水分,而是对植物的生活具有重要的意义。 4、学生讨论:①在春天的阳光下,水银柱将会有什么变化?为什么? ②如果把这一装置放在夏天的烈日下,水银柱会有什么变化?为什么? ③如果把这一装置放在阴暗潮湿的环境中,水银柱将会有什么变化?为什么? ④如果在实验室里,用电吹风吹叶片,水银柱将会有什么变化? ⑤请设计一个实验:证明蒸腾作用的强弱与光照条件有关。 5、课堂练习: ①在阴天或傍晚进行移植,并去掉部分枝叶,是为了降低: ( ) A.降低光合作用 B.减小呼吸作用 C.减少水分蒸腾作用 D.移栽方便 ②仙人掌在强烈的阳光下,不会被太阳光灼伤的原因是( ) A、吸水力大 B、储水多 C、蒸腾作用强 D、叶变成刺 ③关于植物体水分散失的意义,下列哪项是不正确的?( ) A、促进植物体对水分的吸收 B、促进矿质元素在植物体内的运输 C、促进溶于水的矿质元素的吸收 D、降低植物体特别是叶片的温度 ④北方果树由根系吸收的水分主要用于( ) A、光合作用 B、蒸腾作用 C、植物的生长 D、果实的形成 6、作业:作业本 第二课时 二、叶的结构: 1、实验观察1:①选取一张生长旺盛的蚕豆叶,用滤纸把它上、下表皮的水分吸干。 ②将两张浸有氯化钴溶液的蓝色滤纸,相对应地贴在叶片上、下表皮的表面,并用回

地磁场测量的意义

地磁测量的重要意义 地磁场的特点 由于地球本身具有磁性,所以地球及附近的空间存在着磁场, 这个磁场就是地磁场。地磁场是地球的基本资源之一,与人类生活息息相关,它在地球科学、航空航天、资源探测、交通通讯、国防建设、地震预报等领域有着重要的应用。正是因为地磁场有如此重要应用价值,人们对地磁场的测量又迫切的需求。因此,磁场的测量已成为热点课题之一[1]。可以将地磁场近似地看作是地球中心有一个磁铁棒放,它的N极大体上对着南极,从而产生的磁场,其磁感线性状如图1.1所示。事实上,地球磁场的产生是通过电流在导电液体核中流动的发电机效应产生磁场的。 图1.1 地球磁场示意图 地磁场包括基本磁场和变化磁场两个部分,它们是不同的两种磁场。基本磁场是地磁场的主要组成部分,它源于地球的内部,相对来说比较稳定,变化缓慢。变化磁场起源于地球外部,并且很微弱[2]。 地磁场是一个向量场。常用的地磁参量有7个,即地磁场总强度F,地磁场的水平强度H,垂直强度Z,X和Y分别为水平强度的北向和东向分量,D和I 分别为磁偏角和磁倾角。其中以磁偏角的观测历史为最早。

在地磁场观测中,通常用三个参量来表示地磁场的方向和大小: (1)磁偏角A,即地球表面任一点的地磁场磁感应强度矢量B所在的垂直平面(地磁子午面)与地理子午面之间的夹角; (2) 磁倾角Φ,即地磁场磁感应强度矢量B与水平面之间的夹角; (3) 地磁场磁感应强度的水平分量B,即地磁场磁感应强度矢量B在水平面 上的投影[3]。 地磁场的重要应用 地磁场数值较小约0. 5 ×10- 4T,其强度与方向也随地点而异。地磁场被视 为地球的一种重要的天然磁源,它在国家科研中有着重要用途。在地球科学的研究中,作为以地球系统的过程与变化及其相互作用为研究对象的基础学科,研究和掌握地磁场的固有特性及其变化规律是地球科学研究的重要内容。在交通运输方面,可以通过检测由于车辆干扰而引起的地磁场的变化来反应车辆本身的特点及运动情况[4]。 除此之外,地磁还可以用于石油定向斜井钻井中;在海洋中,进行地磁测量可以保证航海的安全、海洋工程建设及了解海底构造;在陆地上,人们通过大规模的地磁测量及分析地磁偏角的变化去测定强磁性铁矿床、弱磁性铁矿床以及铜、镍、铬、金刚石等各种矿石的分布;在科学研究方面,地磁测量有助于人类了解地球的成因和延边过程,掌握火山的活动规律,地震预报等[5];在军事上,可以作为战场环境重要参数对军事斗争的前期准备、部队战斗力的发挥都具有重要意义。 目前国内外在石油开采中,大都利用地磁测量和地磁偏角进行地下储油分布及及其构造的探测。 虽然人们天天生活在地球磁场的影响下,但是我们却无法靠自身的五官来感受和估计地磁场的大小和方向。所以利用地球磁场固有特点,设计和制备应用于地磁测量的磁性传感器,这对于地球科学、航天航空、资源探测、交通运输、空间天气、测绘等诸多技术领域都拥有巨大的应用价值。

实验报告磁阻传感器和地磁场的测量

磁阻传感器和地磁场的测量 一.实验目的 掌握磁阻传感器的特性。 掌握地磁场的测量方法。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式 θρρρθρ2cos )()(⊥⊥-+=∥ 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。

HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感器内部结构如图6-8-2而输出电压out U 可以用下式表示为b out V R R U ??? ? ???= 磁阻传感器的构造示意图 磁阻传感器内的惠斯通电桥 对于一定的工作电压,如V V b 00.6=,HMC1021Z 磁阻传感器输出电压out U 与外界磁场的磁感应强度成正比关系,KB U U out +=0 上式中,K 为传感器的灵敏度,B 为待测磁感应强度。0U 为外加磁场为零时传感器的输出量。 由于亥姆霍兹线圈的特点是能在其轴线中心点附近产生较宽范围的均匀磁场区,所以常用作弱磁场的标准磁场。亥姆霍兹线圈公共轴线中心点位置的磁感应强度为:I R NI B 42 /301096.445 8 -?== μ 上式中N 为线圈匝数(500匝);亥姆霍兹线圈的平均半径cm R 10=;真空磁导率270/104A N -?=πμ。

高分子的化学结构和性能之间的关系

高分子的化学结构和性能之间的关系 相对分子量超过10000的化合物称之为高分子,又称高聚物或聚合物。同样的单体即化学组成完全相同,由于合成工艺不同,生成的聚合物结构即链结构或取代基空间取向不同,其性能也不同。 (一)聚乙烯性能与结构的关系 1、高压聚乙烯(低密度聚乙烯)——LDPE LDPE是在微量氧的存在下,通过高温(200℃)高压(1000大气压)聚合而成。支链比较多,比较长,链与链之间距离较大,密度小。 2、低压聚乙烯(高密度聚乙烯)——HDPE HDPE支链很少,而且很短,分子量较大,分子链之间靠的比较近,密度大。 3、线性低密度聚乙烯——LLDPE LLDPE合成所用的单体除乙烯外,还有小部分α-烯烃。虽然它有许多支链,但是支链的长度仅仅是α—烯烃聚合后余下的部分,分子链之间距离较LDPE小,密度比LLDPE大,但比HDPE小。 尽管三种PE只是在链结构上有所差异,却直接影响到分子链间的距离,进而影响到材料密度,即材料的密度主要由链结构所决定。而密度又直接影响材料性能,所以链结构不同性能自然也就不同。 4、茂金属聚乙烯——mPE mPE与普通乙烯丙烯共聚物最大的区别是:由于金属茂催化剂的强定向作用,使分子链中的丙烯单体上的甲基呈有序排列,而且分子量分布窄。正由于mPE上述结构特征,使mPE具有如下优异特性:(1)韧性好、刚性大、透明性和清洁度比普通PE都好;(2)熔体强度大,不易发生破裂。(3)熔体粘度大,热稳定性好。(4)低温热封性好,是至今低温热封性能最好的树脂,可广泛应用于食品包装。 (二)聚丙烯性能与结构关系 1、PP均聚物: PP均聚物与PE相比PP最大区别是C链上含有甲基,甲基的存在使分子链间距增大,密度减小,PP在所有树脂密度最小。根据PP碳链上的甲基在空间取向不同,可分等规PP、间规PP和无规PP三种。等规PP和间规PP碳链上的甲基在空间取向是规整有序的,而无规PP碳链上的甲基在空间取向无规律性,随意排布。也正由于这个结构上的微少差异,使其性能差别很大,等规PP和间规PP具有很好的力学性能,而无规PP呈蜡状物,基本上无力学性能。 从上述讨论,可以看出,PP的几乎所有性能都与甲基和甲基的空间排布方式有关,PP与PE性能上的差异完全由甲基的存在决定。 2、PP共聚物 (1)乙—丙橡胶 PP共聚物的性能与组成结构具有密切关系,当丙烯含量为40~70% 时,则完全成为一种无定形的橡胶状弹性体,称之为乙—丙橡胶。主要用作其它树脂改性剂,可提高材料的韧性和抗冲击强度。 (2)PP无规共聚物: PP无规共聚物中,乙烯含量一般不超过20%。所谓无规是指乙烯单体在无规共聚物分子链中呈无规则排列,乙烯可起到阻止共聚物结晶作用,使结晶度降低,玻璃化温度降低,但透明性、柔软性和光泽度提高。

地磁场的测定

地磁场的测定 行军、航海利用地磁场对指南针的作用来定向。人们还可以根据地磁场在地面上分布的特征寻找矿藏。地磁场的变化能影响无线电波的传播。当地磁场受到太阳黑子活动而发生强烈扰动时,远距离通讯将受到严重影响,甚至中断。假如没有地磁场,从太阳发出的强大的带电粒子流(通常叫太阳风),就不会受到地磁场的作用发生偏转而直射地球。在这种高能粒子的轰击下,地球的大气成份可能不是现在的样子,生命将无法存在。所以地磁场这顶“保护伞”对我们来说至关重要。所以我们研究小组将对地磁场进行一系列的测定。下面我先对地磁场进行一些简单的介绍: 地磁场包括基本磁场和变化磁场两个部分。基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,属于静磁场部分。变化磁场包括地磁场的各种短期变化,主要起源于地球内部,相对比较微弱。地球变化磁场可分为平静变化和干扰变化两大类型。大量的事实和证据表明,地磁场的磁极曾经互换过。 地磁场不是毫无变化的,它的强度与地磁极位置会改变。科学家发现,地磁极会周期性地逆反定向,这过程称为地磁反转。最近一次的反转是大约78万年前的布容尼斯-松山反转(Brunhes–Matuyama reversal)。对于澳大利亚红英安岩和枕状玄武岩的古地磁学(paleomagnetism)研究发现,地磁场的存在,估计至少已有35亿年之久[1]。地磁场会在太空与太阳风和其它带电粒子群流互相作用,因而形成磁层。地球磁层并不是球状的,在面对太阳的一面,其边界离地心的距离约为七万千米(随太阳风强度的不同而变化)。 磁极的位置 特性 地表上的地磁场强度并不均匀,强度因地理位置而有所变化:从0.3高斯(南美地区和南非)到0.6高斯(加拿大的磁北极附近,澳大利亚南部和一部分西伯利亚地区)。 地磁场类似磁铁棒,但是这种相似只是粗略的。磁铁棒或是其它永久磁铁的磁场是由于铁原子中的电子有序的运动而形成的。然而,地核的温度高于居里点(铁的居里点:绝对温度1043K),铁原子的电子轨道的方向会变得随机化,这样的

八年级科学下册 第三章第二单元 植物体中物质的运输、叶的蒸腾作用和结构学案 浙教版

第三章 第二单元 植物体中物质的运输、叶的蒸腾作用和结构 重点: 1. 了解植物茎的分类和结构,能说出各部分构造的功能。 2. 了解导管对水和无机盐的运输;了解筛管对有机物的运输。 3. 了解植物叶片的解剖结构及其各部分构造的功能。 4. 了解保卫细胞及气孔的组成、分布和作用。 5. 理解蒸腾作用对植物生长的意义。 6. 了解土壤污染及防治土壤污染的措施。 难点: 1. 正确区分各类茎及观察茎的结构。 2. 植物蒸腾作用的实际运用。 3. 正确分析农业、工业、生活等方面引起土壤污染的因素以及对土壤的危害,制定出最佳防治污染的措施。 知识要点: (一)茎: 1、茎的类别: 茎的类别 特点 代表植物 茎与环境的关系 直立茎 茎较坚硬,能直立,最常见 果树,甘蔗,白菜 茎的生长都能使叶更好地伸展在空中,接受阳光进行光合作用或使根更好地吸收水分和养料 攀援茎 用卷须等攀他物上升的茎 葡萄,黄瓜等 缠绕茎 借茎本身缠绕他物上升的茎 牵牛,常春藤,菜豆 匍匐茎 平卧于地,四周蔓延,长不定根 草莓 2、茎的结构及各部分的功能:(由内到外) 树皮: 作用 韧皮部:内有 ,运输 双子叶植物的茎 形成层:属_______组织,细胞能分裂增生,使茎加粗 木质部:内有_______,运输_______和_______ 髓:由薄壁细胞构成,有贮藏营养物质的作用 3、茎的功能: 茎具有支持、 的功能。 (1)水分和无机盐的运输: ①输送的方向:自下而上向枝端运输。 土壤中的水分和无机盐???→?根尖吸收进入根部????→?茎中导管的输送 输送到叶

②输送的组织:。它位于部。 ③水分输导的动力:其中主要的是蒸腾拉力。 (2)有机物的运输: ①输送的方向:自上而下向根运输 ②输送的组织:。它位于部。 (二)叶: 1、蒸腾作用:根从土嚷中吸收的水中只有很少部分用于植物的生命活动,其中的99%都通过蒸腾作用散发出去了。 (1)含义:叶将根吸收的水经气孔以形式向大气散发的过程。 (2)器官∶ (3)影响蒸腾作用的环境因素:、、湿度等。一般气孔周围的湿度小,气温较高,光照强,则植物的蒸腾作用就强,反之就比较弱。 (4)蒸腾作用的意义: ①是根吸水的动力②能促进水分和无机盐的吸收和运输③可降低叶面的温度 2、叶的结构:分为表皮(上有由保卫细胞组成的)、叶肉和叶脉。 (1)保卫细胞和气孔:表皮细胞是一种排列紧密、无色透明的细胞。无叶绿体,对叶起保护作用。表皮上还有成对的半月形细胞,叫做保卫细胞,内有叶绿体。两个保卫细胞之间的小孔就是气孔,是二氧化碳和氧气进出叶片的门户,也是蒸腾作用散水的通道。 (2)气孔和蒸腾作用的关系: 气孔可以张开或闭合,由保卫细胞控制,保卫细胞吸水膨胀,气孔张开;失水萎缩,气孔闭合,以此调节植物的蒸腾作用。当植物体水分较多时,气孔张大,蒸腾作用加强;当植物缺水时,气孔关闭,蒸腾作用减弱。 (三)保护土壤: 1、目前土壤资源最大的威胁来自于土壤的和过度开发。 2、土壤污染主要有:农药化肥污染、工业三废(废水、废渣、废气)污染、生活垃圾污染。 3、我国的土壤资源并不充裕,因此保护土壤更是非常重要。保护土壤,就是保护我们自己的家园。 【典型例题】 例1. 玉米的茎长成后不能增粗,而桃树的茎能年年变粗,从茎的结构分析,能不能变粗的根本原因是() A. 茎内有无韧皮部 B. 茎中有无形成层 C. 茎内有无木质部 D. 茎内有无髓 分析:茎能否增粗决定于有无形成层,形成层细胞能够分裂增生,属于分生组织;向外分裂产生的细胞生长形成韧皮部,向内生长形成木质部,所以双子叶植物的茎能逐年加粗。而单子叶植物如玉米、小麦、水稻、竹类等植物因为没有形成层,因此它们的茎不能加粗。 答案:B 例2. 小明和小刚两人到刚砍伐过树木的山上去观察茎的结构,观察到茎的切面中从里到外有许多同心圆,两个人都数了同一棵树横切面上的同心圆,小明发现树皮由内到外有17个同心圆,小刚从里数到最外面发现有20个同心圆,下列说法正确的是()

地磁场水平分量的测量

地磁场水平分量的测量 地磁场的数值比较小,约T 105-数量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。本实验采用新型坡莫合金磁阻传感器测定地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻 传感器的特性及测量地磁场的一种重要方法。由于磁阻传感器体积小,灵敏度高、易安装,因而在弱磁场测量方面有广泛应用前景。 【实验目的】 1.掌握各向异性磁阻传感器的原理和特性 2.了解各向异性磁阻传感器测量磁场的基本原理 3.学会用磁阻传感器测定地磁场 【实验仪器】 地磁场实验仪、底座、转轴,带角度刻度的转盘、磁阻传感器的引线、亥姆霍磁线圈 【实验原理】 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 磁阻传感器由长而薄的玻莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式: θρ-ρ+ρ=θρ⊥⊥2cos )()(∥ (1) 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感器内部结构如图2所示。图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。因而输出电压out U 可以用下式表示

材料结构与性能地关系

关于新型材料结构与性能的关系相关文章读后感 通过阅读文献,我了解了关于新型材料的一些基础知识。 新型材料是指那些新近发展或正在发展的、具有优异性能和应 用前景的一类材料。新型材料的特征: (1)生产制备为知识密集、技术密集和资金密集; (2)与新技术和新工艺发展密切结合。如:大多新型材料通过 极端条(如超高压、超高温、超高真空、超高密度、超高频、 超高纯和超高速快冷等)形成。 (3)一般生产规模小,经营分散,更新换代快,品种变化频繁。 (4)具有特殊性能。如超高强度、超高硬度、超塑性,及超导 性、磁性等各种特殊物理性能。 (5)其发展与材料理论关系密切。 新型材料的分类,根据性能与用途分为新型结构材料和功能材料。新型结构材料是指以力学性能为主要要求,用以制造各种机器零件和工程结构的一类材料。新型结构材料具有更高力学性能(如强度、硬度、塑性和韧性等),能在更苛该介质或条件下工作。功能材料指具有特定光、电、磁、声、热、湿、气、生物等性能的种类材料。广泛用于能源、计算机、通信、电子、激光、空间、生命科学等领域。根据材料本性或结合键分为金属材料、元机非金属材料、高分子材料、复合材料

新型材料,在国民经济中具有举足轻重的地位。对新一代材料的要求是:(1)材料结构与功能相结合。(2)开发智能材料。智能材料必须具备对外界反应能力达到定量的水平。目前的材料还停留在机敏材料水平上,机敏材料只能对外界有定性的反应。(3)材料本身少无污染,生产过程少污染,且能再生。(4)制造材料能耗少,本身能创造新能源或能充分利用能源。 材料科学发展趋势:(1)研究多相复合材料。指两个或三个主相都在一个材料之中,如多相复合陶瓷材料,多相复合金属材料,多相复合高分子材料,金属—陶瓷、金属—有机物等。(2)研究并开发纳米材料。①把纳米级晶粒混合到材料中,以改善材料脆性。②利用纳米材料本身的独特性能。 基于材料结构和性能关系研究的材料设计,其核心科学问题有三: (l)寻找决定材料体系特性的关键功能基元; (2)材料微观结构和宏观功能特性的关系的研究; (3)基于功能基元材料体系的设计原理。 各种新型材料的开发研究越来越引起人们的重视,活性碳纤维(ACF)(或纤维状活性碳(FAC)是近几十年迅速发展起来的一种新颖的高效吸附材料。 ACF的吸附性能与其结构特征有密切关系.影响性能的结构因素可分为两个方面:其一为孔结构因素,如比表面积、孔径、孔容等。在通常情况下,比表面积与吸附量有正比关系;其二为表面官能团的种类和含量,例如含氮官能团的ACF对含硫化合物有优异的吸附能力.

地磁场水平分量的测量知识讲解

地磁场水平分量的测

地磁场水平分量的测量 地磁场的数值比较小,约10 5T数量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。本实验采用新型坡莫合金磁阻传感器测定地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻 传感器的特性及测量地磁场的一种重要方法。由于磁阻传感器体积小,灵敏度高、易安 装,因而在弱磁场测量方面有广泛应用前景。 【实验目的】 1.掌握各向异性磁阻传感器的原理和特性 2.了解各向异性磁阻传感器测量磁场的基本原理 3.学会用磁阻传感器测定地磁场 【实验仪器】 地磁场实验仪、底座、转轴,带角度刻度的转盘、磁阻传感器的引线、亥姆霍磁线 圈 【实验原理】 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 磁阻传感器由长而薄的玻莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附 着在硅片上,如图1所示。薄膜的电阻率()依赖于磁化强度M和电流I方向间的夹角,具有以下关系式: 2 ()(// )cos (1)其中//、分别是电流I平行于M和垂直于M时的电阻率。当沿着铁镍合金带的 长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强 度成平方关系),使磁阻传感器输出显示线性关系。 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将

相关主题
文本预览
相关文档 最新文档