当前位置:文档之家› 核磁共振氢谱专项练习与解析

核磁共振氢谱专项练习与解析

核磁共振氢谱专项练习与解析
核磁共振氢谱专项练习与解析

核磁共振氢谱专项练习及答案

(一)判断题(正确的在括号内填“√”号;错误的在括号内填“×”号。)

1.核磁共振波谱法与红外吸收光谱法一样,都是基于吸收电磁辐射的分析法。( )

2.质量数为奇数,核电荷数为偶数的原子核,其自旋量子数为零。( )

3.自旋量子数I=1的原子核在静磁场中,相对于外磁场,可能有两种取向。( )

4.氢质子在二甲基亚砜中的化学位移比在氯仿中要小。( )

5.核磁共振波谱仪的磁场越强,其分辨率越高。( )

6.核磁共振波谱中对于OCH3、CCH3和NCH3,NCH3的质子的化学位移最大。( )

7.在核磁共振波谱中,耦合质子的谱线裂分数目取决于邻近氢核的个数。( )

8.化合物CH3CH2OCH(CH3)2的1H NMR中,各质子信号的面积比为9:2:1。( )

9.核磁共振波谱中出现的多重峰是由于邻近核的核自旋相互作用。( )

10.化合物Cl2CH—CH2Cl的核磁共振波谱中,H的精细结构为三重峰。( )

11.苯环和双键氢质子的共振频率出现在低场是由于π电子的磁各向异性效应。( )

12.氢键对质子的化学位移影响较大,所以活泼氢的化学位移在一定范围内变化。( )

13.不同的原子核产生共振条件不同,发生共振所必需的磁场强度(B0)和射频频率(v)不同。( ) 14.(CH3)4Si分子中1H核共振频率处于高场,比所有有机化合物中的1H核都高。( )

15.羟基的化学位移随氢键的强度变化而移动,氢键越强,δ值就越小。( )

答案

(一)判断题

1.√ 2.× 3.× 4.× 5.√ 6.× 7.√ 8.× 9.√ l0.√ 11.√ l2.√ l3.√ l4.× l5.×

(二)选择题(单项选择)

1.氢谱主要通过信号的特征提供分子结构的信息,以下选项中不是信号特征的是( )。

A.峰的位置; B.峰的裂分;C.峰高;D.积分线高度。

2.以下关于“核自旋弛豫”的表述中,错误的是( )。

A.没有弛豫,就不会产生核磁共振; B.谱线宽度与弛豫时间成反比;

C.通过弛豫,维持高能态核的微弱多数;D.弛豫分为纵向弛豫和横向弛豫两种。

3.具有以下自旋量子数的原子核中,目前研究最多用途最广的是( )。

A.I=1/2;B.I=0;C.I=1;D.I>1。

4.下列化合物中的质子,化学位移最小的是( )。

A.CH3Br;B.CH4;C.CH3I;D.CH3F。

5.进行已知成分的有机混合物的定量分析,宜采用( )。

A.极谱法;B.色谱法;C.红外光谱法;D.核磁共振法。

6.CH3CH2COOH在核磁共振波谱图上有几组峰?最低场信号有几个氢?( )

A.3(1H);B.6(1H);C.3(3H);D.6(2H)。

7.下面化合物中在核磁共振谱中出现单峰的是( 九

A.CH3CH2C1;B.CH3CH20H;C.CH3CH3;D.CH3CH(CH3)2。

8.下列4种化合物中,哪个标有*号的质子有最大的化学位移?( )

9.核磁共振波谱解析分子结构的主要参数是( )。

A.质荷比;B.波数;C.化学位移;D.保留值。

10.分子式为C5H10O的化合物,其NMR谱上只出现两个单峰,最有可能的结构式为( )。

A.(CH3)2 CHCOCH3;B.(CH3)3 C-CHO;

C.CH3CH2CH2COCH3;D.CH3CH2COCH2CH3

11.核磁共振波谱(氢谱)中,不能直接提供的化合物结构信息是( )。

A.不同质子种类数;B.同类质子个数;

C.化合物中双键的个数与位置;D.相邻碳原子上质子的个数。

12.在核磁共振波谱分析中,当质子核外的电子云密度增加时( )。

A.屏蔽效应增强,化学位移值大,峰在高场出现;

B.屏蔽效应减弱,化学位移值大,峰在高场出现;

C.屏蔽效应增强,化学位移值小,峰在高场出现;

D.屏蔽效应增强,化学位移值大,峰在低场出现。

13.下列原子核没有自旋角动量的是哪一种?( )

A.14N7; B.28Si l4; C.31P15;D.33 S16。

14.核磁共振波谱法在广义上说也是一种吸收光谱法,但它与紫外-可见及红外吸收光谱法的关键差异之一是( )。

A.吸收电磁辐射的频率区域不同;B.检测信号的方式不同;

C.记录谱图的方式不同;D.样品必须在强磁场中测定。

15.在核磁共振波谱中,如果一组l H受到核外电子云的屏蔽效应较小,则它的共振吸收将出现在下列的哪种位置?( )

A.扫场下的高场和扫频下的高频,较小的化学位移值(δ);

B.扫场下的高场和扫频下的低频,较小的化学位移值(δ);

C.扫场下的低场和扫频下的高频,较大的化学位移值(δ);

D.扫场下的低场和扫频下的低频,较大的化学位移值(δ)。

16.乙烯质子的化学位移值(δ)比乙炔质子的化学位移值大还是小? 其原因是( )。

A.大,因为磁的各向异性效应,使乙烯质子处在屏蔽区,乙炔质子处在去屏蔽区;

B.大,因为磁的各向异性效应,使乙烯质子处在去屏蔽区,乙炔质子处在屏蔽区;

C.小,因为磁的各向异性效应,使乙烯质子处在去屏蔽区,乙炔质子处在屏蔽区;

D.小,因为磁的各向异性效应,使乙烯质子处在屏蔽区,乙炔质子处在去屏蔽区。

17.化合物(CH3)2CHCH2CH(CH3)2,在1H NMR谱图上,有几组峰?从高场到低场各组峰的面积

比为多少?( )。

A.五组峰(6:1:2:1:6);B.三组峰(2:6:2);

C.三组峰(6:1:1);D.四组峰(6:6:2:2)。

18.在下列化合物中,字母标出的4种质子,它们的化学位移(δ)从大到小的顺序为( )。

A.a>b>c>d;B.b>a>d>C;C.c>d>a>b;D.d>c>b>a。

19.某二氯甲苯的1H NMR谱图中,呈现一组单峰,一组二重峰,一组三重峰。该化合物为下列哪

20.2-丙醇CH3CH(OH)CH3的1H NMR谱,若醇质子存在快速化学交换,当仪器的分辨率足够时,则下列哪一种预言是正确的?( )

A.甲基质子是单峰,次甲基质子是七重峰,醇质子是单峰;

B.甲基质子是二重峰,次甲基质子是七重峰,醇质子是单峰;

C.甲基质子是四重峰,次甲基质子是十四重峰,醇质子是单峰;

D.甲基质子是四重峰,次甲基质子是十四重峰,醇质子是二重峰。

21.下面4种核,能够用于核磁共振试验的有( )。

A.19F9;B.12C6;C.16O8;D.32 S6。

22.下面化合物中质子化学位移最大的是( )。

A.CH4;B.CH3F;C.CH3C1;D.CH3Br。

23.化合物在1H NMR中产生的信号数目为( )。

A.3;B.4;C.5;D.6。

24.化合物在1H NMR中各信号的面积比为( )。

A.3:4:1:3:3;B.3:4:1:6;

C.9:4:1;D.3:4:7。

25.化合物CH3CH2CH3的1 H NMR中CH2的质子信号受CH3耦合裂分为( )。

A.四重峰;B.五重峰;C.六重峰;D.七重峰。

26.自旋量子数I=0的原子核是( )。

A.19 F9;B.12C6;C.1 H1;D.15 N7。

27.当外磁场强度B0逐渐增大时,质子由低能级跃迁至高能级所需要的能量( )。

A.不发生变化;B.逐渐变小;C.逐渐变大;D.可能不变或变小。

28.下面原子核发生核磁共振时,如果外磁场强度相同,哪种核将需要最大照射频率?( ) A.19 F9;B.13C6;C.1 H1;D.15 N7。

29.化合物CH2F2质子信号的裂分峰数及强度比分别为( )。

A.1(1);B.2(1:1);C.3(1: 2:1);D.4(1:3:3:1)。

30.下列哪一个参数可以确定分子中基团的连接关系?( )

A.化学位移;B.裂分峰数及耦合常数;

C.积分曲线;D.谱峰强度。

31.取决于原子核外电子屏蔽效应大小的参数是( )。

A.化学位移;B.耦合常数;C.积分曲线;D.谱峰强度。

32.化合物在1 H NMR中Ha的精细结构有几重峰?( )

A.四重峰;B.五重峰;C.六重峰;D.七重峰。

33.化合物的H A、H M和H X构成AMX自旋系统(其中有远程耦合),H A在1 HNMR中有几重

A.三重峰;B.四重峰;C.五重峰;D.六重峰。

34.结构中如果Hb核和Hc核磁等价,Ha核裂分为几重峰?( )

A.三重峰;B.四重峰;C.五重峰;D.六重峰。

35.结构中如果Hb核和Hc核磁不等价,Ha核裂分为几重峰?( )

A.五重峰;B.六重峰;C.八重峰;D.九重峰。

答案

(二)选择题

1.C 2.C 3.A 4.B 5.B 6.A 7.C 8.D 9.C l0.B 11.C l2.C l3.B l4.A l5.C l6.B l7.C l8.D l9.A 20.B 21.A 22.B 23.B 24.B 25.D 26.B 27.C 28.C 29.C 30.B 31.A 32.C 33.B 34.B 35.D

(三)简答题

1.试述产生核磁共振的条件是什么?

2.核磁共振波谱基本原理是什么?主要获取什么信息?

3.一个自旋量子数为5/2的核在磁场中有多少种能态?各种能态的磁量子数取值为多少?

4.什么是化学位移?它是如何产生的?影响化学位移的因素有哪些?

5.简述自旋一自旋裂分的原理。

6.何谓一级图谱?一级图谱的自旋耦合裂分有哪些规律?

7.什么是化学等同和磁等同?试举例说明。

8.脉冲傅立叶变换核磁共振波谱仪在原理上与连续波核磁波谱仪有什么不同?它有哪些优点?

9.射频辐射的频率固定时,要使共振发生,氟核和氢核哪一个将需要更大的外磁场?为什么?

10.使用60.0MHz NMR仪器时,TMS的吸收与化合物中某质子之间的频率差为l80Hz。如果使用400MHz 的NMR仪器,它们之间的频率差将是多少?

11.三个不同质子A、B和C,它们的屏蔽系数大小次序为dB>dA>dC。问它们在一样磁场强度下,共振频率的大小次序为何?

12.一个化合物估计不是二苯醚就是二苯甲烷,试问能否利用l H NMR谱来鉴别这两个化合物,并说明原因。

13.在1H NMR谱中,下列化合物中OH氢核的化学位移为ll,对于酚羟基来说这个化学位移比预计的结果在低场一些,试解释原因。

14.对于醇类化合物来说,如果测定时升高温度,将对OH信号产生什么影响?如果在测定时加几滴D20,将对0H信号产生什么影响?

15.请指出下列分子中氢核属于什么自旋系统,并指出氢核谱峰的裂分数。

(四)结构解析题

1.在下列化合物中,比较Ha和Hb,哪个具有较大的δ值?为什么?

2.根据1 H NMR谱中的什么特点,能否鉴别下列两种异构体(A)和(B)?

3.一个分子的部分l H NMR谱图如下,试根据峰位置及裂分峰数,推断产生这种吸收峰的氢核的相邻部分的结构及电负性。

4.某化合物的两个氢核的共振频率分别为v A = 360Hz和v B = 300Hz,J AB =18Hz,其部分l H NMR谱图如下图所示,请指出A和B两个氢核构成什么自旋系统,并解释原因。

5.在下列AMX系统中(考虑远程耦合),H A,H M和Hx各裂分为几重峰?

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱解析图谱的步骤 核磁共振氢谱 核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。 解析图谱的步骤 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析时要引起注意,最好重新测试图谱。 2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。 (2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。 (3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。 (4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。 3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。 4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。 5.解析羧基、醛基、分子内氢键等低磁场的质子信号。 6.解析芳香核上的质子信号。 7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结

核磁共振氢谱解析方法

2.3 核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被 测样品的信号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I 是否有-CH3-O- 、CHCOC3NH=、 CH3C、RCOC2CHl 、RO-CH2-Cl 等基团。 g.确定有无芳香族化合物。如果在 6.5-8.5 范围内有信号,则 表示有芳香族质子存在。如出现AA'BB'的谱形说明有芳香邻位 或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关 系,确定有何种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I 相对照,确定是 何官能团,并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合 理。再对照已知化合物的标准谱图。

2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C3HNO。测定氢谱谱图如下所示, 推定其结构。 图3七0未知化合物C3H7NO3的图谱解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm 有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质 子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群 的积分强度为2: 2:3,可能有一CH—、一CH—、一CH —基 团。各裂分峰的裂距(J),低场三重峰为7Hz,高场三重峰为 8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互 作用。这六重峰的质子为2个,所以使两边信号各裂

核磁共振氢谱解析方法

2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样品的信 号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示有芳香 族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确定有何 种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官能团, 并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。再对照已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定其结 构。

解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分强度为2:2:3, 可能有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰的裂距(J),低场三 重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂 分为三重峰。则该化合物具有CH 3-CH 2 -CH 2 -结构单元。参考所给定的分 子式应为CH 3-CH 2 -CH 2 -NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求其结 构。

核磁共振氢谱解析图谱的步骤

核磁共振氢谱解析图 谱的步骤 -CAL-FENGHAI.-(YICAI)-Company One1

核磁共振氢谱解析图谱的步骤 核磁共振氢谱 核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。 解析图谱的步骤 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析时要引起注意,最好重新测试图谱。 2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。 (2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为ppm处。 (3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节 未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。

(4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。 3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢 原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。 4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。 5.解析羧基、醛基、分子内氢键等低磁场的质子信号。 6.解析芳香核上的质子信号。 7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结构中所连活泼氢官能团。 8.根据图谱提供信号峰数目、化学位移和偶合常数,解析一级类型图谱。 9.解析高级类型图谱峰信号,如黄酮类化合物B环仅4,-位取代时,呈现 AA,BB,系统峰信号,二氢黄酮则呈现ABX系统峰信号。 10. 如果一维1H-NMR难以解析分子结构,可考虑测试二维核磁共振谱配合解析结构。 11. 组合可能的结构式,根据图谱的解析,组合几种可能的结构式。 12. 对推出的结构进行指认,即每个官能团上的氢在图谱中都应有相应的归属信号。

核磁共振氢谱解析方法

WOIRD格式 2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样品的信 号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH3-O-、CHCOC3N H=、CH3C、RCOC2H C l、 RO-CH2-Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示有芳香 族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确定有何 种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官能团, 并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。再对照 已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C3H7NO2。测定氢谱谱图如下所示,推定其结 构。

解析计算不饱和度u=1,可能存在双键,1.50和 1.59ppm有小峰, 峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分强度为2:2:3,可能有-CH2-、-CH2-、-CH3-基团。各裂分峰的裂距(J),低场三重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们 与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂分为三重峰。则该化合物具有CH3-CH2-CH2-结构单元。参考所给定的分子式应为CH3-CH2-CH2-NO2,即1-硝基丙烷。 例2:已知某化合物分子式为C7H16O3,其氢谱谱图如下图所示,试求其结构。

核磁共振氢谱解析方法

2、3核磁共振氢谱解析方法 1、核磁共振氢谱谱图得解析方法 a、检查整个氢谱谱图得外形、信号对称性、分辨率、噪声、被测样品得 信号等。 b、应注意所使用溶剂得信号、旋转边带、C卫星峰、杂质峰等。 c、确定TMS得位置,若有偏移应对全部信号进行校正。 d、根据分子式计算不饱与度u。 e、从积分曲线计算质子数。 f、解析单峰。对照附图I就是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g、确定有无芳香族化合物。如果在6、5-8、5范围内有信号,则表示有芳 香族质子存在。如出现AA`BB`得谱形说明有芳香邻位或对位二取代。 h、解析多重峰。按照一级谱得规律,根据各峰之间得相系关系,确定有何 种基团。如果峰得强度太小,可把局部峰进行放大测试,增大各峰得强度。 i、把图谱中所有吸收峰得化学位移值与附图I相对照,确定就是何官能团, 并预测质子得化学环境。 j、用重水交换确定有无活泼氢。 k、连接各基团,推出结构式,并用此结构式对照该谱图就是否合理。再对 照已知化合物得标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定其结构。

解析计算不饱与度u=1,可能存在双键,1、50与1、59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群得积分强度为2:2:3,可能 有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰得裂距(J),低场三重峰为7Hz, 高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰得质子为2个,所以使两边信号各裂分为三重峰。 则该化合物具有CH 3-CH 2 -CH 2 -结构单元。参考所给定得分子式应为CH 3 -CH 2-CH 2 -NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求其结构。

核磁共振氢谱解析方法

创作编号:BG7531400019813488897SX 创作者:别如克* 2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样 品的信号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示 有芳香族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确 定有何种基团。如果峰的强度太小,可把局部峰进行放大测试,增 大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官 能团,并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。 再对照已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定 其结构。

解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分 强度为2:2:3,可能有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰 的裂距(J),低场三重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂分为三重峰。则该化合物具有CH 3 -CH 2-CH 2 -结构单元。参考所给定的分子式应为CH 3 -CH 2 -CH 2 - NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求 其结构。

氢谱谱图解析步骤

谱图的解析 NMR谱法一般经历如下的步骤进行谱图的解析: ★与IR法相同,首先尽可能了解清楚样品的一些自然情况,以便对样品有一些大概的认识; 通过元素分析获得化合物的化学式,计算不饱和度Ω; ★根据化学位移值确认可能的基团,一般先辨认孤立的,未偶合裂分的基团,即单峰,即不同基团的1H之间距离大于三个单键的基团及一些活泼氢基团,如甲基醚、甲基酮()、甲基叔胺()、甲基取代的苯等中的甲基质子及苯环上 的质子,活泼氢为―O―H,,-SH等;然后再确认偶合的基团。从有关图或表中的δ可以确认可能存在的基团,这时应注意考虑影响δ的各种因素如电负性原子或基团的诱导效应、共轭效应、磁的各向异性效应及形成氢键的影响等; ★根据偶合裂分峰的重数、偶合常数,判断基团的连接关系。先解析一级光谱,然后复杂光谱。 进行复杂光谱解析时,应先进行简化; ★根据积分高度确定出各基团中质子数比,印证偶合裂分多重峰所判断的基团连接关系; ★通过以上几个程序,一般可以初步推断出可能的一种或几种结构式。然后,反过来,从可能的结构式按照一般规律预测可能产生的NMR谱,与实际谱图对照,看其是否符合,从而可以推断出某种最可能的结构式。 例某化合物的化学式为,IR谱表明有一很强的吸收峰,NMR谱如下,试确定其结构。 解:

有三组峰,相对面积为2:1:3,若分别为2、1、3个,则总数为6,为分子式12个的一半,因此分子可能有对称性; IR显示~1750cm

-1有一强峰,应有存在,且分子中有4个O,则可能有2个; 处有一组三重峰,可能为-CH ,且受裂分,而处有一组四重峰,与 3 是典型的组分;而δ较大,可能为的组分;处有一单峰,相对面积为1,则是一个与碳基相连的孤立(不偶合)的,可能为 所以可能有 的结合。而此结合的、O的数目为分子式的一半,而C原子数一半多半个原子。因此可以推测出整个分子的中间C原子为对称的结构,可能为 验证:以炔可能结构,推测其NMR谱,与实验谱图比较,结果相符合。是否可能为 (请思考) (二)定量分析 NMR图谱中积分曲线的高度与引起该共振峰的氢核数成正比,这不仅是结构分析的重要参数,而且是定量分析的依据。 用NMR 技术进行定量分析的最大优点是,不需要有被测物质的纯物质作标准,也不必绘制校准曲线或引入校准因子,而只要与适当的标准参照物(不必是被测物质的纯物质)相对照就可得到被测物质的量,对标准物的基本要求是其NMR 谱的共振峰不会与试样峰重叠。 常用的标准物为有机硅化合物,其质子峰大多在高场,便于比较,为六用基环三硅氧烷和六甲基环三硅胺等。

相关主题
文本预览
相关文档 最新文档