当前位置:文档之家› 大学物理下册(湖南大学陈曙光)课后习题答案和全解

大学物理下册(湖南大学陈曙光)课后习题答案和全解

大学物理下册(湖南大学陈曙光)课后习题答案和全解
大学物理下册(湖南大学陈曙光)课后习题答案和全解

大学物理下册课后习题全解()

第十二章 真空中的静电场

12.1 如图所示,在直角三角形ABCD 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强.

[解答]根据点电荷的场强大小的公式 22014q q E k r r ==πε,其中1/(4πε0

) = k = 9.0×109N·m 2·C -2

. 点电荷q 1在C 点产生的场强大小为: 112

014q E AC

=

πε994-1

22

1.810910 1.810(N C )

(310)

--?=??

=???

方向向下.

点电荷q 2在C 点产生的场强大小为 2220||1

4q E BC =πε994-1

22

4.810910 2.710(N C )(410)

--?=??=???, 方向向右.

C 处的总场强大小为

E =

44-110 3.24510(N C )==??,

总场强与分场强E 2的夹角为1

2

arctan

33.69E E ==?θ.

12.2 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电线密度分别为+λ和-λ,求圆心处的场强. [解答]在带正电的圆弧上取一弧元

d s = R d θ,电荷元为d q = λd s , 在O 点产生的场强大小为 22

0001d 1d d d 444q s E R R R

λλθπεπεπε===, 场强的分量为d E x = d E cos θ,d E y = d E sin θ.

对于带负电的圆弧,同样可得在O 点的场强的两个分量.由于弧形是对称的,x 方向的合场强为零,总场强沿着y 轴正方向,大小为

2d sin y L

E E E ==?θ

/6

/6

000

sin d (cos )22R

R

=

=

-?

ππλλ

θθθπεπε

0(12R

=λπε.

12.3 均匀带电细棒,棒长a = 20cm ,电荷线密度为λ = 3×10-8C·m -1,求: (1)棒的延长线上与棒的近端d 1 = 8cm 处的场强;

(2)棒的垂直平分在线与棒的中点相距d 2 = 8cm 处的场强.

[解答](1)建立坐标系,其中L = a /2 = 0.1(m),x = L+d 1 = 0.18(m). 在细棒上取一线元d l ,所带的电量为d q = λd l ,

根据点电荷的场强公式,电荷元在P 1点产生的场强的大小为

1220

d d d 4()

q l

E k r x l ==-λπε

图12.1

场强的方向沿x 轴正向.因此P 1点的总场强大小通过积分得

120d 4()L L l E x l λπε-=-?014L

L

x l λπε-=- 011()4x L x L λπε=--+22

0124L x L

λ

πε=-. ① 将数值代入公式得P 1点的场强为

8

9

122

20.13109100.180.1

E -???=??-= 2.41×103(N·C -1), 方向沿着x 轴正向.

(2)建立坐标系,y = d 2.

在细棒上取一线元d l ,所带的电量为d q = λd l , 在棒的垂直平分在线的P 2点产生的场强的大小为

222

0d d d 4q l

E k

r r

λπε==, 由于棒是对称的,x 方向的合场强为零,y 分量为 d E y = d E 2sin θ.

由图可知:r = d 2/sin θ,l = d 2cot θ, 所以 d l = -d 2d θ/sin 2θ, 因此 02

d sin d 4y E d λ

θθπε-=,

总场强大小为

02

sin d 4L

y l L

E d λ

θ

θπε=--=

?02cos 4L

l L

d λ

θπε=-

=L

L

=-=

=

. ②

将数值代入公式得P 2点的场强为

89

221/2

20.13109100.08(0.080.1)

y E -???=??+= 5.27×103(N·C -1

). 方向沿着y 轴正向.

[讨论](1)由于L = a /2,x = L+d 1,代入①式,化简得

10110111

44/1

a E d d a d d a λλπεπε=

=

++, 保持d 1不变,当a →∞时,可得

101

4E d λ

πε→

, ③

这就是半无限长带电直线在相距为d 1的延长线上产生的场强大小.

(2)由②式得

y E =

=

当a →∞时,得 02

2y E d λ

πε→

, ④

这就是无限长带电直线在线外产生的场强公式.如果d 1=d 2,则有大小关系E y = 2E 1

12.4 一均匀带电的细棒被弯成如图所示的对称形状,试问θ为何值时,圆

心O 点处的场强为零.

图12.4

[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强. 在圆弧上取一弧元 d s =R d φ, 所带的电量为 d q = λd s ,

在圆心处产生的场强的大小为

2200d d d d 44q s E k

r R R

λλ?πεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为 d E x = -d E cos φ. 总场强为

2/2

0/2

cos d 4x E R

πθθ

λ??πε--=

?2/2

0/2

sin 4R

πθθλ?

πε--=

0sin 22

R λθ

πε=,方向沿着x 轴正向. 再计算两根半无限长带电直线在圆心产生的场强.

根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为

`04E R

λ

πε=

由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为

``02cos

cos 2

22

x E E R θ

λθ

πε==

,方向沿着x 轴负向.

当O 点合场强为零时,必有`

x x E E =,可得 tan θ/2 = 1,

因此 θ/2 = π/4, 所以 θ = π/2.

12.5 一宽为b 的无限长均匀带电平面薄板,其电荷密度为ζ,如图所示.试求:

(1)平板所在平面内,距薄板边缘为a 处的场强.

(2)通过薄板几何中心的垂直线上与薄板距离为d 处的场强.

[解答](1)建立坐标系.在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = ζd x ,

根据直线带电线的场强公式02E r

λ

πε=

, 得带电直线在P 点产生的场强为

00d d d 22(/2)

x

E r

b a x λσπεπε=

=

+-,其方向沿x 轴正向.

由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为

/2

0/21d 2/2b b E x b a x σπε-=

+-?/2

/2

ln(/2)2b b b a x σ

πε--=+-

0ln(1)2b a

σπε=+. ① 场强方向沿x 轴正向.

(2)为了便于观察,将薄板旋转建立坐标系.仍然在平面薄板上取一宽度为d x 的带电直线,电荷的线密度仍然为d λ = ζd x , 带电直线在Q 点产生的场强为

221/2

00d d d 22()x

E r

b x λσπεπε=

=

+,

图12.5

沿z 轴方向的分量为

221/20cos d d d cos 2()z x

E E b x σθθπε==

+,

设x = d tan θ,则d x = d d θ/cos 2θ,因此

d d cos d 2z E E σ

θθπε==

积分得

arctan(/2)

0arctan(/2)

d 2b d z b d E σθπε-=

?0arctan()2b

d σπε=. ② 场强方向沿z 轴正向.

[讨论](1)薄板单位长度上电荷为λ = ζb , ①式的场强可化为

0ln(1/)2/b a E a b a λπε+=

, 当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为

02E a

λπε→

, ③ 这正是带电直线的场强公式.

(2)②也可以化为0arctan(/2)

2/2z b d E d b d

λπε=

当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为

02z E d

λπε→

这也是带电直线的场强公式.

当b →∞时,可得:0

2z E σ

ε→

, ④ 这是无限大带电平面所产生的场强公式.

12.6 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?

(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少? [解答]点电荷产生的电通量为Φe = q/ε0.

(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0. (2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;

立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.

12.7 面电荷密度为ζ的均匀无限大带电平板,以平板上的一点O 为中心,R 为半径作一半球面,如图所示.求通过此半球面的电通量.

[解答]设想在平板下面补一个半球面,与上面的半球面合成一个球面.球面内包含的电荷为 q = πR 2ζ,

通过球面的电通量为 Φe = q /ε0,

通过半球面的电通量为Φ`e = Φe /2 = πR 2ζ/2ε0.

12.8 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.

[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性. (1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以

E = 0,(r < R 1).

(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl ,穿过高斯面的电通量为

d d 2

e S

S

E S E rl Φπ=?==??E S ?,

根据高斯定理Φe = q /ε0,所以

02E r

λπε=

, (R 1 < r < R 2

).

(3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以

E = 0,(r > R 2).

12.9 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内

外各点的场强.

[解答]方法一:高斯定理法.

(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`.

在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为 d e S

Φ=??

E S 2

d d d S S S =?+?+??

?

?

E S E S E S 1

`02ES E S ES =++=,

高斯面内的体积为 V = 2rS ,包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,

可得场强为 E = ρr/ε0,(0≦r ≦d /2).①

(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES ,

高斯面在板内的体积为V = Sd ,包含的电量为 q =ρV = ρSd , 根据高斯定理 Φe = q/ε0,

可得场强为 E = ρd /2ε0,(r ≧d /2). ②

方法二:场强迭加法.

(1)由于平板的可视很多薄板迭而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为 d ζ = ρd y ,

产生的场强为 d E 1 = d ζ/2ε0,

积分得

100

/2d ()222

r d y d

E r ρρεε-==+?

,③ 同理,上面板产生的场强为

/2

200d ()222

d r

y d

E r ρρεε=

=-?

,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.

(2)在公式③和④中,令r = d /2,得

E 2 = 0、E = E 1 = ρd /2ε0, E 就是平板表面的场强.

平板外的场强是无数个无限薄的带电平板产生的电场迭加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.

12.10 一半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为R`

明小球空腔内的电场为匀强电场.

[解答]挖去一块小球体,相当于在该处填充一块电荷体密度为-ρ的小球体,因此,空间任何一点的场强是两个球体产生的场强的迭加.

图12.10

对于一个半径为R ,电荷体密度为ρ的球体来说,当场点P 在球内时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程

23

01443

E r r ππρε=

P 点场强大小为 0

3E r ρ

ε=

. 当场点P 在球外时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程

23014

43

E r R ππρε=

P 点场强大小为 3

2

03R E r

ρε=. O 点在大球体中心、小球体之外.大球体在O 点产生的场强为零,小球在O 点产生的场强大小为

3

2

0`3O R E a

ρε=,方向由O 指向O `. O`点在小球体中心、大球体之内.小球体在O`点产生的场强为零,大球在O 点产生的场强大小为

`0

3O E a ρ

ε=

,方向也由O 指向O `. [证明]在小球内任一点P ,大球和小球产生的场强大小分别为

03r E r ρε=

, `0

`3r E r ρε=,方向如图所示. 设两场强之间的夹角为θ,合场强的平方为 222``2cos r r r r E E E E E θ=++222

()(`2`c o s )3r r r r ρθε=++, 根据余弦定理得

222

`2`c o s ()a r r r r πθ=+--, 所以 0

3E a ρ

ε=

, 可见:空腔内任意点的电场是一个常量.还可以证明:场强的方向沿着O 到O `的方向.因此空腔内的电场为匀强电场.

12.11 如图所示,在A 、B 两点处放有电量分别为+q 和-q 的点电荷,AB 间距离为2R ,现将另一正试验电荷q 0从O 点经过半圆弧路径移到C 点,求移动过程中电场力所做的功.

[解答]正负电荷在O 点的电势的和为零:U O = 0; 在C 点产生的电势为 0004346C

q q q U R R R

πεπεπε--=+=

, 电场力将正电荷q 0从O 移到C 所做的功为

W = q 0U OD = q 0(U O -U D ) = q 0q /6πε0R .

12.12 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2ζ,B 平面的电荷面密度为ζ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少?

[解答]两平面产生的电场强度大小分别为 E A = 2ζ/2ε0 = ζ/ε0,E B = ζ/2ε0,

两平面在它们之间产生的场强方向相反,因此,总场强大小为 E = E A - E B = ζ/2ε0, 方向由A 平面指向B 平面.

两平面间的电势差为 U = Ed = ζd /2ε0,

图12.11

当点电荷q 从A 面移到B 面时,电场力做的功为 W = qU = qζd /2ε0.

12.13 一半径为R 的均匀带电球面,带电量为Q .若规定该球面上电势值为零,则无限远处的电势为多少?

[解答]带电球面在外部产生的场强为 2

04Q E r

πε=

由于 d d R R R U U E r ∞

∞-=?=??E l 2

00d 44R

R

Q

Q

r r r πεπε∞

-==?04Q R

πε=

当U R = 0时,04Q

U R

πε∞=-.

12.14 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r

223

0(3)

8Q R r U R

πε-=. [证明]球的体积为343V R π=

,电荷的体密度为 3

34Q Q

V R ρπ==

. 利用12.10题的方法可求球内外的电场强度大小为3

0034Q

E r r R

ρεπε==,(r ≦R ); 2

04Q

E r

πε=,(r ≧R ). 取无穷远处的电势为零,则r 处的电势为

d d d R

r

r

R

U E r E r ∞

=?=+???E l 3

2

00d d 44R

r

R

Q Q

r r r R r πεπε∞

=+?

?

2

3

0084R

r

R

Q Q

r

R

r

πεπε∞

-=

+

2

2

3

00()84Q

Q

R r R R πεπε=-+2230(3)

8Q R r R

πε-=.

12.15 在y = -b 和y = b 两个“无限大”平面间均匀充满电荷,电荷体密度为ρ,其它地方无电荷. (1)求此带电系统的电场分布,画E-y 图;

(2)以y = 0作为零电势面,求电势分布,画E-y 图.

[解答]平板电荷产生的场强的方向与平板垂直且对称于中心面:E = E`,但方向相反. (1)在板内取一底面积为S ,高为2y 的圆柱面作为高斯面,场强与上

下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为 d e S Φ=??E S 0d d d 2S S S ES =?+?+?=???

E S E S E S 12.

高斯面内的体积为 V = 2yS , 包含的电量为 q = ρV = 2ρSy , 根据高斯定理 Φe = q/ε0,

可得场强为 E = ρy/ε0, (-b ≦y ≦b ).

穿过平板作一底面积为S ,高为2y 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES , 高斯面在板内的体积为 V = S 2b ,包含的电量为 q = ρV = ρS 2b , 根据高斯定理 Φe = q/ε0,

可得场强为 E = ρb/ε0, (b ≦y ); E = -ρb/ε0, (y ≦-b ). E-y 图如图所示.

(2)对于平面之间的点,电势为

0d d y U y ρε=-?=-??E l 2

2y C ρε=-+,

在y = 0处U = 0,所以C = 0,因此电势为 2

2y U ρε=-,(-b ≦y ≦b ).这是一条开口向下的抛物线.

当y ≧b 时,电势为00

d d nqb nqb U y y C εε=-?=-=-+??

E l ,

在y = b 处U = -ρb 2

/2ε0,所以C = ρb 2

/2ε0,因此电势为2

00

2b b U y ρρεε=-+

,(b ≦y ). 当y ≦-b 时,电势为 00

d d b b

U y y C ρρεε=-?==+??

E l , 在y = -b 处U = -ρb 2/2ε0,所以 C = ρd 2/2ε0,因此电势为

2

00

2b b U y ρρεε=+

, 两个公式综合得 2

00

||2b b U y ρρεε=-+

,(|y |≧d ). 这是两条直线.

U-y 图如右图所示.U-y 图的斜率就形成E-y 图,在y = ±b 点,电场强度是连续的,因此,在U-y 图中两条直线与抛物线在y = ±b 点相切.

[注意]根据电场求电势时,如果无法确定零势点,可不加积分的上下限,但是要在积分之后加一个积分常量.根据其它关系确定常量,就能求出电势,不过,线积分前面要加一个负号,即

d U =-??E l

这是因为积分的起点位置是积分下限.

12.16 两块“无限大”平行带电板如图所示,A 板带正电,B 板带负电并接地(地的电势为零),设

A 和

B 两板相隔5.0cm ,板上各带电荷ζ=3.3×10-6C·m -2

,求:

(1)在两板之间离A 板1.0cm 处P 点的电势;

(2)A 板的电势.

[解答]两板之间的电场强度为 E=ζ/ε0,方向从A 指向B .

以B 板为原点建立坐标系,则r B = 0,r P = -0.04m ,r A = -0.05m . (1)P 点和B 板间的电势差为 d d B

B

P

P

r r P B r r U U E r -=?=??E l 0

()B P r r σ

ε=

-, 由于U B = 0,所以P 点的电势为

6

12

3.3100.048.8410

P U --?=??=1.493×104(V). (2)同理可得A 板的电势为

()A B A U r r σ

ε=

-=1.866×104(V).

12.17 电量q 均匀分布在长为2L 的细直线上,试求: (1)带电直线延长线上离中点为r 处的电势; (2)带电直线中垂在线离中点为r 处的电势;

(3)由电势梯度算出上述两点的场强. [解答]电荷的线密度为λ = q/2L .

(1)建立坐标系,在细在线取一线元d l ,所带的电量为d q = λd l , 根据点电荷的电势公式,它在P 1点产生的电势为

101d d 4l

U r l

λπε=

-

总电势为 10d 4L L l U r l λπε-=-?0

ln()

4L

l L

r l λ

πε=--=-0ln

8q r L

L

r L

πε+=

-. (2)建立坐标系,在细在线取一线元d l ,所带的电量为d q = λd l , 在线的垂直平分在线的P 2点产生的电势为

2221/2

0d d 4()l

U r l λπε=+,

积分得

2221/20

1d 4()L

L

U l r l λπε-=

+

?0)4L

l L

l λπε=-=

08q

L

πε=

0ln

4q L

L

r

πε=

(3)P 1点的场强大小为

11U E r ?=-?011()8q L r L r L πε=--+22

01

4q r L πε=

-, ① 方向沿着x 轴正向.

P 2点的场强为

22U E r ?=-

?01[4q L r πε=

=, ②

方向沿着y 轴正向.

[讨论]习题12.3的解答已经计算了带电线的延长线上的场强为

122

0124L E x L λ

πε=

-,由于2L λ = q ,取x = r ,就得公式①. (2)习题12.3的解答还计算了中垂在线的场强为

y E =

d 2 = r ,可得公式②.

由此可见,电场强度可用场强迭加原理计算,也可以用电势的关系计算.

12.18 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:

(1)A ,B 两点的电势;

(2)利用电势梯度求A ,B 两点的场强.

[解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势. 在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为 d V = 4πr 2d r ,

包含的电量为 d q = ρd V = 4πρr 2d r ,

在球心处产生的电势为

00

d d d 4O q U r r r

ρ

πεε=

=

, 球心处的总电势为

2

1

2

2210

d ()2R O R U r r R R ρρεε=

=

-?, 这就是A 点的电势U A .

过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.

球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得

2

2120

()2B U R r ρε=

-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为

3314()3

B V r R π=

-,包含的电量为 Q = ρV , 这些电荷集中在球心时在B 点产生的电势为

3

32100()43B B

B

Q U r R r r ρπεε=

=

-. B 点的电势为U B = U 1 + U 2322

120(32)6B B

R R r r ρε=--.

(2)A 点的场强为 0A

A A

U E r ?=-

=?. B 点的场强为3120()3B B B B B

U R E r r r ρ

ε?=-=-?.

[讨论] 过空腔中A 点作一半径为r 的同心球形高斯面,由于面内没有电荷,根据高斯定理,可得空

腔中A 点场强为

E = 0, (r ≦R 1).

过球壳中B 点作一半径为r 的同心球形高斯面,面内球壳的体积为 3314

()3

V r R π=-, 包含的电量为 q = ρV ,

根据高斯定理得方程 4πr 2E = q/ε0,

可得B 点的场强为 3120()3R E r r

ρ

ε=-, (R 1≦r ≦R 2).这两个结果与上面计算的结果相同.

在球壳外面作一半径为r 的同心球形高斯面,面内球壳的体积为 3

3214()3

V R R π=-, 包含的电量为 q = ρV ,

根据高斯定理得可得球壳外的场强为 3

32122

00()

43R R q

E r r

ρπεε-==,(R 2≦r ). A 点的电势为

d d A

A

A r r

U E r ∞

=?=??E l 12

1

31200d ()d 3A R R r R R r r r r ρ

ε=+-??2332120()d 3R R R r r ρε∞

-+? 2

2210

()2R R ρε=-.

B 点的电势为

d d B

B

B r r

U E r ∞

=?=??E l 2

3120()d 3B

R r R r r r ρε=-?2332120()d 3R R R r r ρε∞

-+?322

120(32)6B B R R r r ρε=--. A 和B 点的电势与前面计算的结果相同.

12.19 一圆盘,半径为R ,均匀带电,面电荷密度为ζ,求:

(1)圆盘轴线上任一点的电势(用该点与盘心的距离x 来表示); (2)从电场强度的和电势梯度的关系,求该点的电场强度. (此题解答与书中例题解答相同,在此省略)

12.20 (1)设地球表面附近的场强约为200V·m -1,方向指向地球中心,试求地球所带有的总电量.

(2)在离地面1400m 高处,场强降为20V·m -1,方向仍指向地球中心,试计算在1400m 下大气层里的平均电荷密度.

[解答]地球的平均半径为 R =6.371×106m .

(1)将地球当作导体,电荷分布在地球表面,由于场强方向指向地面,所以地球带负量. 根据公式 E = -ζ/ε0,电荷面密度为 ζ = -ε0E ;地球表面积为 S = 4πR 2, 地球所带有的总电量为Q = ζS = -4πε0R 2E = -R 2E /k ,k 是静电力常量,

因此电量为 629

(6.37110)200910

Q ??=-?=-9.02×105

(C). (2)在离地面高为h = 1400m 的球面内的电量为 2()`

`R h E Q k

+=-=-0.9×105(C),

大气层中的电荷为 q = Q - Q` = 8.12×105(C).

由于大气层的厚度远小于地球的半径,其体积约为 V = 4πR 2h = 0.714×1018(m 3), 平均电荷密度为 ρ = q /V = 1.137×10-12(C·m -3).

第十三章 静电场中的导体和电介质

13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分

别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)

[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为 2

04q E r πε=

当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A

和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为 04c

q U r πε=

13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则

通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一

点的场强为多少?

[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .

设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为

d d S Φ=??D S ?0

1

2

d d d 2S S S rlD π=?+?+?=???D S D S D S ,

可得电位移为 D = λ/2πr ,其方向垂直中心轴向外. 电场强度为 E = D/ε0εr = λ/2πε0εr r ,方向也垂直中心轴向外.

13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求

球心o 的电势为多少?

[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心

都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电

势迭加,大小为

图13.3

0001

11444o q q Q q

U r a b

πεπεπε-+=

++

13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求

(1)B 、C 板上的电荷为多少? (2)A 板电势为多少? [解答](1)设A 的左右两面的电荷面密度分别为ζ1和ζ2,所带电量分别为

q 1 = ζ1S 和q 2 = ζ2S ,

在B 、C 板上分别感应异号电荷-q 1和-q 2,由电荷守恒得方程

q = q 1 + q 2 = ζ1S + ζ2S . ① A 、B 间的场强为 E 1 = ζ1/ε0,

A 、C 间的场强为 E 2 = ζ2/ε0. 设A 板与

B 板的电势差和A 板与

C 板的的电势差相等,设为ΔU ,则

ΔU = E 1d 1 = E 2d 2, ② 即 ζ1d 1 = ζ2d 2. ③

解联立方程①和③得 ζ1 = qd 2/S (d 1 + d 2), 所以 q 1 = ζ1S = qd 2/(d 1+d 2) = 2×10-8(C); q 2 = q - q 1 = 1×10-8(C). B 、C 板上的电荷分别为 q B = -q 1 = -2×10-8(C); q C = -q 2 = -1×10-8(C).

(2)两板电势差为 ΔU = E 1d 1 = ζ1d 1/ε0 = qd 1d 2/ε0S (d 1+d 2), 由于 k = 9×109 = 1/4πε0,所以 ε0 = 10-9/36π, 因此 ΔU = 144π = 452.4(V).

由于B 板和C 板的电势为零,所以 U A = ΔU = 452.4(V).

13.5 一无限大均匀带电平面A ,带电量为q ,在它的附近放一块与A 平行的金属导体板B ,板B

有一定的厚度,如图所示.则在板B 的两个表面1和2上的感应电荷分别为多少?

[解答]由于板B 原来不带电,两边感应出电荷后,由电荷守恒得

q 1 + q 2 = 0. ① 虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S ,则面电荷密度分别为 ζ1 = q 1/S 、ζ2 = q 2/S 、ζ = q/S ,

它们产生的场强大小分别为 E 1 = ζ1/ε0、E 2 = ζ2/ε0、E = ζ/ε0. 在B 板内部任取一点P ,其场强为零,其中1面产生的场强向右,2面和A 板产生的场强向左,取向右的方向为正,可得 E 1 - E 2 – E = 0,

即 ζ1 - ζ2 – ζ = 0, 或者 q 1 - q 2 + q = 0. ② 解得电量分别为 q 2 = q /2,q 1 = -q 2 = -q /2.

13.6 两平行金属板带有等异号电荷,若两板的电势差为120V ,两板间相距为1.2mm ,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?

[解答]由于左板接地,所以ζ1 = 0.

由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面, 所以ζ4 = 0.由于两板带等量异号的电荷,所以ζ2 = -ζ3. 两板之间的场强为 E = ζ3/ε0,而 E = U/d , 所以面电荷密度分别为

ζ3 = ε0E = ε0U/d = 8.84×10-7(C·m -2),

ζ2 = -ζ3 = -8.84×10-7(C·m -2).

13.7 一球形电容器,内外球壳半径分别为R 1和R 2,球壳与地面及其它物体相距很远.将内球用细

导线接地.试证:球面间电容可用公式2

02

21

4R C R R πε=-表示.

(提示:可看作两个球电容器的并联,且地球半径R >>R 2)

图13.4

图13.6

[证明]方法一:并联电容法.在外球外面再接一个半径为R 3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为

1210

01221

1

441/1/R R C R R R R πεπε==--

外球壳和大外球壳之间也是一个电容器,电容为 20

23

1

41/1/C R R πε=-.

外球壳是一极,由于内球壳和大外球壳都接地,共享一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为

121200221

44R R

C C C R R R πεπε=+=+-2

02214R R R πε=

-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的

迭加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为

02

01

`

044q q R R πεπε+

=,

因此感应电荷为12

`R

q q R =-.

根据高斯定理可得两球壳之间的场强为 122

002`

44R q q E r R r

πεπε=

=-, 负号表示场强方向由外球壳指向内球壳.

取外球壳指向内球壳的一条电力线,两球壳之间的电势差为

1

1

2

2

d d R R R R U E r =

?=

??E l 1

2

1202()d 4R R R q r R r πε=

-

?1212

021202

()11

()44R q R R q R R R R πεπε-=-= 球面间的电容为

2

02

21

4R q C U R R πε==

-.

13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?

[解答]球形电容器的电容为 120

01221

1

441/1/R R C R R R R πεπε==--.

对于半球来说,由于相对面积减少了一半,所以电容也减少一半:

012

121

2R R C R R πε=

-. 当电容器中充满介质时,电容为:012

221

2r R R C R R πεε=

-.

由于内球是一极,外球是一极,所以两个电容器并联:012

1221

2(1)r R R C C C R R πεε+=+=

-.

13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.

[解答]假设在两介质的界面插入一薄导体,可知两个电容器串联,电容分别为 C 1 = ε1S/d 1和C 2 = ε2S/d 2.

总电容的倒数为 12211212

1212111d d d d C C C S S S εεεεεε+=+=+=

总电容为 122112

S C d d εεεε=

+.

13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:

(1)两极的电势差U ;

(2)介质中的电场强度E 、电位移D ;

(3)电容C ,它是真空时电容的多少倍?

[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通

过高斯面的电位移通量为

d d S Φ=??D S ?0

1

2

d d d 2S S S rlD π=?+?+?=???D S D S D S ,

高斯面包围的自由电荷为 q = λl ,

根据介质中的高斯定理 Φd = q ,

可得电位为 D = λ/2πr ,方向垂直中心轴向外.

电场强度为 E = D/ε = λ/2πεr ,方向也垂直中心轴向外.

取一条电力线为积分路径,电势差为

2

1

d d d 2R L

L

R

U E r r r λ

πε=?==

???E l 21ln 2R R λπε=. 电容为 212ln(/)

q l

C U R R πε=

=

. 在真空时的电容为 00212ln(/)

l q

C U R R πε==

,所以倍数为C/C 0 = ε/ε0.

13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:

(1)介质层内、外D 、E 、P 的分布;

(2)介质层内、外表面的极化电荷面密度.

[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为

2d d 4d S S

D S r D Φπ=?=

=??

D S 蜒

高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2,

方向沿着径向.用向量表示为 D = Q 0r /4πr 3.

电场强度为 E = D /ε0εr = Q 0r /4πε0εr r 3,方向沿着径向.

由于 D = ε0E + P , 所以 P = D - ε0E = 03

1

(1)

4r Q r

επ-

r

. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以 D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0.

(2)在介质层内靠近金属球处,自由电荷Q 0产生的场为 E 0 = Q 0r /4πε0r 3; 极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3; 总场强为 E = Q 0r /4πε0εr r 3.

由于 E = E 0 + E `,解得极化电荷为 `101(1)r

q Q ε=-,

介质层内表面的极化电荷面密度为 `

`011

22

11

1

(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为 ``

21q q =-, 面密度为 `

`0

22

22

22

1(1)44r Q q R R σπεπ==-. 13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?

[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为 W 1:W 2 = C 2:C 1 = 2:1.

两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为 W 1:W 2 = C 1:C 2 = 1:2.

13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?

[解答]平行板电容器的电容为 C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ;另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为 C = C 1 + C 2 = (1 + εr )ε0S /2d , 静电能为 W = CU 2/2 = (1 + εr )ε0SU 2/4d .

13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能;(3)极板上的自由电荷面密度.

[解答](1)如前所述,两电容器并联的电容为 C = (1 + εr )ε0S /2d .

(2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为 W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d .

(3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d .设两半的所带自由电荷分别为Q 1和Q 2,则

Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以

U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得

0111221

1/C U C Q

Q C C C C =

=

++, 真空中一半电容器的自由电荷面密度为

001

12122/2(1/)(1)r C U U Q S C C S d

εσε=

==

++. 同理,介质中一半电容器的自由电荷面密度为

0021222(/1)(1)r r C U U

C C S d

εεσε=

=

++. 13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:

(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?

(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少? [解答]平行板电容器的电容为 C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为 C = ε0S/d .

(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为

ΔW = W - W 0 = (C - C 0)U 2/2= (1 - εr )ε0SU 2/2d = -3.18×10-5(J).

(2)充电后所带电量为 Q = C 0U ,保持电量不变抽出玻璃板,静电能为

W = Q 2/2C ,

电能器能量变化为2

000(1)

2

C C U W W W C ?=-=-2

0(1)2r r SU d εεε=-= 1.59×10-4(J).

13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .

试证明电容器能量的一半储存在半径R 的圆柱体内.

[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r ,能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r ,能量元为 d W = w d V . 在半径a 到R 的圆柱体储存的能量为

2

d d 2V

V

W w V E V ε==??

2200d ln 44R

a

l l R r r a λλπεπε==?. 当R = b 时,能量为210ln 4l b

W a

λπε=;

当R =

22200ln 48l l b

W a

λλπεπε==,

所以W 2 = W 1/2

,即电容器能量的一半储存在半径R

13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:

(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?

(2)电介质中总能量是多少(由积分算出)?

(3)由电容器能量公式推算出圆柱形电容器的电容公式? [解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,

根据介质是高斯定理,可知电位移为 D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r ,能量为 d W = w d V = Q 2d r /4πεlr .

(2)电介质中总能量为

22d d ln 44b

V a

Q Q b

W W r lr l a πεπε===??.

(3)由公式W = Q 2

/2C 得电容为 222l n (/)

Q l C W b a πε==

13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?

[解答]当两个电容串联时,由公式21

1212

111C C C C C C C +=+=

, 得 12

12

120PF C C C C C =

=+.

加上U = 1000V 的电压后,带电量为 Q = CU ,

第一个电容器两端的电压为 U 1 = Q/C 1 = CU/C 1 = 600(V); 第二个电容器两端的电压为 U 2 = Q/C 2 = CU/C 2 = 400(V).

由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.

第十四章 稳恒磁场

14.1 充满εr = 2.1电介质的平行板电容器,由于电介质漏电,在3min 内漏失一半电量,求电介质

的电阻率.

[解答]设电容器的面积为S ,两板间的距离为l ,则电介质的电阻为 l

R S

ρ=.

设t 时刻电容器带电量为q ,则电荷面密度为 ζ = q/S , 两板间的场强为 E = ζ/ε =q/εr ε0S , 电势差为 U = El =ql/εr ε0S , 介质中的电流强度为 0d 1d r q U q t R εερ

-

==,负号表示电容器上的电荷减少. 微分方程可变为 0d 1

d r q t q εερ

=-,积分得 0ln r t q C εερ=-

+, 设t = 0时,q = q m ,则得C = ln q m ,因此电介质的电阻率的公式为

0ln(/)

r m t

q q ρεε=

当t = 180s 时,q = q m /2,电阻率为 12

180

8.84210 2.1ln 2

ρ-=??? =1.4×1013(Ω·m).

14.2 有一导线电阻R = 6Ω,其中通有电流,在下列两种情况下,通过总电量都是30C ,求导线所产生的热量.

(1)在24s 内有稳恒电流通过导线; (2)在24s 内电流均匀地减少到零.

[解答](1)稳恒电流为 I = q/t = 1.25(A), 导线产生的热量为 Q = I 2Rt = 225(J).

(2)电流变化的方程为 1

2.5(1)24

i t =-

, 由于在相等的时间内通过的电量是相等的,在i-t 图中,在0~24秒内,变化电流和稳恒电流直线下的面积是相等的. 在d t 时间内导线产生的热量元为 d Q = i 2

R d t ,

在24s 内导线产生的热量为

24242

200

1d [2.5(1)]d 24Q i R t t R t ==-??

24

2

3

11

2.5624(1)324

t =-????-=300(J).

14.3 已知铜的相对原子质量A = 63.75,质量密度ρ = 8.9×103kg·m -3.

(1)技术上为了安全,铜线内电流密度不能超过6A·mm -2,求此时铜线内电子的漂移速度为多少? (2)求T = 300K 时,铜内电子热运动平均速度,它是漂移速度的多少倍? [解答](1)原子质量单位为 u = 1.66×10-27(kg), 一个铜原子的品质为 m = Au = 1.058×10-25(kg), 铜的原子数密度为 n = ρ/m = 8.41×1028(个·m -3),

如果一个铜原子有一个自由电子,n 也是自由电子数密度,因此自由电子的电荷密度为

ρe = ne = 1.34×1010(C·m -3). 铜线内电流密度为 δ = 6×106(A·m -2),

根据公式δ = ρe v ,得电子的漂移速度为 v = ρe /δ = 4.46×10-4(m·s -1).

(2)将导体中的电子当气体分子,称为“电子气”,电子做热运动的平均速度为

v =

其中k 为玻尔兹曼常数k = 1.38×10-23J·K -1,m e 是电子的质量m e = 9.11×10-31kg ,

可得 v = 1.076×105(m·s -1),

对漂移速度的倍数为 v /v = 2.437×108,

可见:电子的漂移速率远小于热运动的速度,其定向运动可认为是附加在热运动基础上的运动.

14.4 通有电流I 的导线形状如图所示,图中ACDO 是边长为b 的正方形.求圆心O 处的磁感应强度B = ?

[解答]电流在O 点的产生的磁场的方向都是垂直纸面向里的.根据毕-萨定律:0

02

d d 4I r μπ?=l r B , 圆弧上的电流元与到O 点的矢径垂直,在O 点产生的磁场大小为 012

d d 4I l B a

μπ=, 由于 d l = a d φ, 积分得 11d L B B =

?3/2

00

d 4I a

πμ?π=?

038I

a μ=. OA 和OD 方向的直线在O 点产生的磁场为零.在AC 段,电流元在O 点产生的磁场为

022

d sin d 4I l B r μθ

π=

由于 l = b cot(π - θ) = -b cot θ, 所以 d l = b d θ/sin 2θ;

又由于 r = b /sin(π - θ) = b /sin θ,

可得 02sin d d 4I B b

μθθ

π=,

积分得3/402/2d sin d 4L

I B B b ππμθθπ==?

?3/4

00/2

(cos )48I

I

b b

ππμθππ=-=

同理可得CD 段在O 点产生的磁场B 3 = B 2. O 点总磁感应强度为

00123384I I

B B B B a b

μπ=++=

+

. [讨论](1)假设圆弧张角为φ,电流在半径为a 的圆心处产生的磁感应强度为

04I

B a

μ?π=.

(2)有限长直导线产生的磁感应大小为 012(cos cos )4I

B b μθθπ=

-. 对于AC 段,θ1 = π/2、θ2 = 3π/4;对于CD 段,θ1 = π/4、θ2 = π/2,都可得

23B B ==

14.5 如图所示的载流导线,图中半圆的的半径为R ,直线部分伸向无限远处.求圆心O 处的磁感应强度B = ?

[解答]在直线磁场公式

012(cos cos )4I B R

μθθπ=-中,

令θ1 = 0、θ2 = π/2,或者θ1 = π/2、θ2 = π,就得半无限长导线在端点半径为

R 的圆周上产生的磁感应强度 04I B R

μπ=. 两无限长半直线在O 点产生的磁场方向都向着-Z 方向,大小为B z = μ0I /2πR . 半圆在O 处产生的磁场方向沿着-X 方向,大小为B x = μ0I /4R . O 点的磁感应强度为

0042x z I I

B B R R

μμπ=--=--B i k i k .

场强大小为

B =

=

与X 轴的夹角为 2

a r c t a n a r c t a n

z x B B θπ

==.

14.6 如图所示的正方形线圈ABCD ,每边长为a ,通有电流I .求正方形中心O 处的磁感应强度B = ?

[解答]正方形每一边到O 点的距离都是a /2,在O 点产生的磁场大小相等、方向相同.以AD 边为例,利用直线电流的磁场公式:

012(cos cos )4I B R

μθθπ=-,

令θ1 = π/4、θ2 = 3π/4、R = a /2,AD 在O 产生的场强为

02AD I

B a

π=

, O 点的磁感应强度为

04AD I

B B a

π==

, 方向垂直纸面向里.

14.7 两个共轴圆线圈,每个线圈中的电流强度都是I ,半径为R ,两个圆心间距离O

O

= R ,试证:O 1、O 2中点O 处附近为均匀磁场. [证明]方法一:用二阶导数.一个半径为R 的环电流在离圆心为x 的轴在

线产生的磁感应强度大小为:

20223/22()IR B R x μ=

+. 设两线圈相距为2a ,以O 点为原点建立坐标,两线圈在x 点产生的场强分

别为

2

012

23/2

2[()]

IR B R a x μ=

++, 2

022

2

3/2

2[()]IR B R a x μ=

+-.

方向相同,总场强为B = B 1 + B 2.

一个线圈产生的磁场的曲线是凸状,两边各有一个拐点.两个线圈的磁场迭加之后,如果它们相距太近,其曲线就是更高的凸状;如果它们相距太远,其曲线的中间部分就会下凹,与两边的峰之间各有一个拐点.当它们由远而近到最适当的位置时,两个拐点就会在中间重合,这时的磁场最均匀,而拐点处的二阶导数为零.

设k = μ0IR 2/2,则

223/2223/2

11

{}[()][()]B k R a x R a x =++++-

B 对x 求一阶导数得

2

25/2

d 3{d [()]

B a x

k x R a x +=-++225/2}[()]a x R a x --+- 求二阶导数得

22222

27/2

d 4()3{d [()]

B R a x k x R a x -+=-++22

227/24()}[()]R a x R a x --++-, 在x = 0处d 2B /d x 2 = 0,得R 2 = 4a 2,所以 2a = R . x = 0处的场强为

223/22

[(/2)]B k R R =+k ==

图14.7

方法二:用二项式展开.将B 1展开得

2

012223/22[2]IR B R a ax x μ=

+++2

0223/22223/2

2()[1(2)/()]

IR R a ax x R a μ=++++. 设20223/2

2()

IR k R a μ=+,则 23/2

1222(1)ax x B k R a -+=++. 同理,23/2

222

2(1)ax x B k R a --+=++.

当x 很小时,二项式展开公式为 2

(1)(1)1 (12)

n

n n x nx x -+=+

++?. 将B 1和B 2按二项式展开,保留二次项,总场强为

22232[12ax x B k R a -+=+?++2222

1352()...]1222ax x R a

--++??+?+2

2232[12ax x k R a --+++?++ 2

222

1352()...]1222ax x R a ---++??+?+ 2

2232[12x k R a -=+?++ 22222

354...]24()a x R a --+??++

222

222

342[1...]2()

R a k x R a --=+?++ 令R 2 - 4a 2 = 0,即a = R /2,得

2

00223/2

2()25IR I

B k R a R

μ==

=

+, 可知:O 点附近为匀强磁场.

14.8 将半径为R 的无限长导体圆柱面,沿轴向割去一宽为h (h <

[解答]方法一:补缺法.导体圆柱面可看作由很多无限长直导线组成,如果补上长缝,由于对称的缘故,电流在轴在线产生的磁感应强度为零.割去长缝,等效于同时加上两个大小相等,方向相反的电流,其中,与i 相同的电流补上了长缝,与i 相反的电流大小为I = ih .

在轴在线产生的磁感应强度为 0022I ih

B R R

μμππ=

=

. 方法二:积分法.在导体的截面上建立坐标,x 坐标轴平分角α,α = h/R . 电流垂直纸面向外,在圆弧上取一线元 d s = R d θ, 无限长直线电流为 d I = i d s = iR d θ,

在轴线产生的磁感应强度大小为 00d d d 22I i

B R μμθππ

==,

两个分量分别为

0d d sin sin d 2x i

B B μθθθπ==

, 0d d cos cos d 2y i

B B μθθθπ

=-=-.

积分得

2/22/2

00/2

/2

sin d cos 22x i i B παπαααμμθθθ

ππ--==-?0[cos(2/2)cos(/2)]02i

μπααπ

=-

--=; 2/22/2

00/2

/2

cos d sin 22y i i B παπαααμμθθθ

ππ--=-=-?0[sin(2/2)sin(/2)]2i

μπααπ

=-

--

图14.8`

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理试卷期末考试试题答案

2003—2004学年度第2学期期末考试试卷(A 卷) 《A 卷参考解答与评分标准》 一 填空题:(18分) 1. 10V 2.(变化的磁场能激发涡旋电场),(变化的电场能激发涡旋磁场). 3. 5, 4. 2, 5. 3 8 6. 293K ,9887nm . 二 选择题:(15分) 1. C 2. D 3. A 4. B 5. A . 三、【解】(1) 如图所示,内球带电Q ,外球壳内表面带电Q -. 选取半径为r (12R r R <<)的同心球面S ,则根据高斯定理有 2() 0d 4πS Q r E ε?==? E S 于是,电场强度 204πQ E r ε= (2) 内导体球与外导体球壳间的电势差 22 2 1 1 1 2200 01211d 4π4π4πR R R AB R R R Q Q dr Q U dr r r R R εεε?? =?=?==- ????? ? r E (3) 电容 12 001221114π/4πAB R R Q C U R R R R εε??= =-= ?-?? 四、【解】 在导体薄板上宽为dx 的细条,通过它的电流为 I dI dx b = 在p 点产生的磁感应强度的大小为 02dI dB x μπ= 方向垂直纸面向外. 电流I 在p 点产生的总磁感应强度的大小为 22000ln 2222b b b b dI I I dx B x b x b μμμπππ===? ? 总磁感应强度方向垂直纸面向外. 五、【解法一】 设x vt =, 回路的法线方向为竖直向上( 即回路的绕行方向为逆时

针方向), 则 21 d cos602B S Blx klvt Φ=?=?= ? ∴ d d klvt t εΦ =- =- 0ac ε < ,电动势方向与回路绕行方向相反,即沿顺时针方向(abcd 方向). 【解法二】 动生电动势 1 cos602 Blv klvt ε?动生== 感生电动势 d 111 d [cos60]d 222d d dB B S Blx lx lxk klvt t dt dt dt εΦ=- =?=--?===?感生- klvt εεε==感生动生+ 电动势ε的方向沿顺时针方向(即abcd 方向)。 六、【解】 1. 已知波方程 10.06cos(4.0)y t x ππ=- 与标准波方程 2cos(2) y A t x π πνλ =比较得 , 2.02, 4/Z H m u m s νλνλ==== 2. 当212(21)0x k ππΦ-Φ==+合时,A = 于是,波节位置 21 0.52k x k m += =+ 0,1,2, k =±± 3. 当 21222x k A ππΦ-Φ==合时,A = 于是,波腹位置 x k m = 0,1,2, k =±± ( 或由驻波方程 120.12cos()cos(4)y y y x t m ππ=+= 有 (21) 00.52 x k A x k m π π=+?=+合= 0,1,2, k =±± 20.122 x k A m x k m π π=?=合=, 0,1,2, k =±± )

大学物理课后习题答案(赵近芳)下册

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 22 0)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无关. 题8-1图 题8-2图

8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θ πεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距 源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解 解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能 再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不

会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人说,因为f =qE ,S q E 0ε= ,所以f =S q 02 ε.试问这两种说法对吗为什么 f 到底应等于 多少 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用力 S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的 距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试 证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

湖南大学大学物理2期末试卷答案

大学物理试卷(二)答案与评分标准 一 选择题(每小题3分,共30分) 1(B )2(D )3(B )4(B )5(B )6(D )7(D )8(C )9(D )10(C ) 二 填空题(共 30分) 1. λ / (2ε0) 3分 2. W e 0 / εr 4分 3. aIB 3分 4. E D r εε0= 3分 5. t E R d /d 2 0πε 3分 6. 不变 1分 变长 1分 波长变长 1分 7. 123ννν+= 2分 123 1 1 1 λλλ+ = 2分 8. 电子自旋的角动量的空间取向量子化 3分 9. 泡利不相容原理 2分 能量最低原理 2分 三.计算题(每小题10分,共40分) 1.解:在任意角φ 处取微小电量d q =λd l ,它在O 点产生的场强为: R R l E 002 04d s co 4d d εφ φλελπ=π= 3分 它沿x 、y 轴上的二个分量为: d E x =-d E cos φ 1分 d E y =-d E sin φ 1分 对各分量分别求和 ?ππ=20 2 00d s co 4φ φελR E x = R 004ελ 2分

)d(sin sin 420 00 =π=?πφφελR E y 2分 故O 点的场强为: i R i E E x 004ελ-== 1分 2.解:(1) 在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 d q = ρd V = qr 4πr 2d r /(πR 4) = 4qr 3d r/R 4 则球体所带的总电荷为 ( )q r r R q V Q r V ===??0 3 4 d /4d ρ 2分 (2) 在球内作一半径为r 1的高斯球面,按高斯定理有 4041 24 121 1 d 41 4R qr r r R qr E r r εε=π?π= π? 得 4 02 1 14R qr E επ= (r 1≤R), 1E 方向沿半径向外. 2分 在球体外作半径为r 2的高斯球面,按高斯定理有 022 2/4εq E r =π 得 22024r q E επ= (r 2 >R ), 2E 方向沿半径向 外. 2分 (3) 球内电势 ?? ∞?+?=R R r r E r E U d d 2111 ??∞π+π=R R r r r q r R qr d 4d 420 402 1εε 4 03 10123R qr R q εεπ-π=???? ??-π=3310412R r R q ε ()R r ≤1 2分 球外电势 202 0224d 4d 2 2 r q r r q r E U r R r εεπ= π=?=? ?∞ ()R r >2 2分 3.解: 321B B B B ++= B 1、B 2分别为带电的大半圆线圈和小半圆线圈转动产生的磁感强度,B 3为沿直径的带电线段转动产生的磁感强度. ππ= 21b I λω, 422200101λωμλωμμ= π?π==b b b I B 3分 ππ= 22a I λω, 422200202λωμλωμμ=π?π==a a a I B 3分

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理期末考试试题

西安工业大学试题纸 1.若质点的运动方程为:()2r 52/2t t i t j =+-+(SI ),则质点的v = 。 2. 一个轴光滑的定滑轮的转动惯量为2/2MR ,则要使其获得β的角加速度,需要施加的合外力矩的大小为 。 3.刚体的转动惯量取决于刚体的质量、质量的空间分布和 。 4.一物体沿x 轴运动,受到F =3t (N)的作用,则在前1秒内F 对物体的冲量是 (Ns )。 5. 一个质点的动量增量与参照系 。(填“有关”、“无关”) 6. 由力对物体的做功定义可知道功是个过程量,试回答:在保守力场中,当始末位置确定以后,场力做功与路径 。(填“有关”、“无关”) 7.狭义相对论理论中有2个基本原理(假设),一个是相对性原理,另一个是 原理。 8.在一个惯性系下,1、2分别代表一对因果事件的因事件和果事件,则在另一个惯性系下,1事件的发生 2事件的发生(填“早于”、“晚于”)。 9. 一个粒子的固有质量为m 0,当其相对于某惯性系以0.8c 运动时的质量m = ;其动能为 。 10. 波长为λ,周期为T 的一平面简谐波在介质中传播。有A 、B 两个介质质点相距为L ,则A 、B 两个质点的振动相位差=?φ____;振动在A 、B 之间传播所需的时间为_ 。 11. 已知平面简谐波方程为cos()y A Bt Cx =-,式中A 、B 、C 为正值恒量,则波的频率为 ;波长为 ;波沿x 轴的 向传播(填“正”、“负”)。 12.惠更斯原理和波动的叠加原理是研究波动学的基本原理,对于两列波动的干涉而言,产生稳定的干涉现象需要三个基本条件:相同或者相近的振动方向,稳定的位相差,以及 。 13. 已知一个简谐振动的振动方程为10.06cos(10/5)()X t SI π=+,现在另有一简谐振动,其振动方程为20.07cos(10)X t =+Φ,则Φ= 时,它们的合振动振幅最 大;Φ= 时,它们的合振动振幅最小。 14. 平衡态下温度为T 的1mol 单原子分子气体的内能为 。 15. 平衡态下理想气体(分子数密度为n ,分子质量为m ,分子速率为v )的统计压强P= ;从统计角度来看,对压强和温度这些状态量而言, 是理想气体分子热运动激烈程度的标志。

大学物理下练习题答案汇总

大学物理下练习题 一、选择题(每题1分,共41分) 1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B ) (A) 场强E 的大小与试验电荷q 0的大小成反比; (B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0. 2.下列几个说法中哪一个是正确的?(C ) (A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。 (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。 (C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。 ( D )以上说法都不正确。 3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A ) (A ) i a 02πελ . (B) 0. (C) i a 04πελ . (D) )(40j +i a πελ . 4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C ) (A) 大小为零. (B) 大小为q/(2πε0a 2), 方向沿x 轴正向. (C) 大小为() 2022a q πε, 方向沿y 轴正向. (D) 大小为()2 022a q πε, 方向沿y 轴负向. 5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D ) (A) πR 2E . (B) πR 2E /2 . (C) 2πR 2E . (D) 0 . 6. 下列关于高斯定理理解的说法中,正确的是:(B ) (A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零 +λ -λ ? (0, a ) x y O 图 1.1 图1.2 图1.3

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

湖南大学物理(2)第14,15章课后习题参考答案

湖南大学物理(2)第 14,15章课后习题参 考答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第14章 稳恒电流的磁场 一、选择题 1(B),2(D),3(D),4(B),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题 (1). 最大磁力矩,磁矩 ; (2). R 2c ; (3). )4/(0a I μ; (4). R I π40μ ; (5). 0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8). )/(lB mg ; (9). aIB ; (10). 正,负. 三 计算题 1.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量. 解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r r R I B ≤π=μ 因而,穿过导体内画斜线部分平面的磁通Φ1为 ???==S B S B d d 1 Φr r R I R d 2020?π=μπ=40I μ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20 R r r I B >π=μ 因而,穿过导体外画斜线部分平面的磁通Φ2为 ??=S B d 2Φr r I R R d 220?π=μ2ln 20π=I μ 穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π +I μ I S 2R 1 m

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理习题集(下)答案

一、 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子 的初相为4 3 π,则t=0时,质点的位置在: [ D ] (A) 过1x A 2=处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1 x A 2 =-处,向正方向运动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表 此简谐振动的旋转矢量图为 [ B ] 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ] (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ] (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。 6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ] (4) 题(5) 题

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

(完整版)湖南大学生物理竞赛试题及答案,推荐文档

湖南省第 3 届大学生物理竞赛试卷 (2010 年 4 月 24 日) 时间 150 分钟 满分 120 分 一、选择题(每题 3 分,共 12 分) 1、真空中波长为的单色光,在折射率为 n 的透明介质中从 A 沿某路径传播到 B ,若A ,B 两点相位差为3,则此路径 AB 的光程为 [ ] (A) 1.5 (B) 1.5n (C) 1.5n (D) 3 2、氢原子中处于 2p 状态的电子,描述其量子态的四个量子数(n , l , m l , m s ) 可能取的值为 [ ] (A) (2, 2,1, - 1 ) 2 (B) 1 (2, 0, 0, ) 2 (C) (2,1, -1, - 1 ) 2 1 (D) (2, 0,1, ) 2 3、某元素的特征光谱中含有波长分别为 = 450nm 和 = 750nm (1nm = 10-9 m )的 1 2 光谱线。在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 2 的谱线的级数将是 [ ] (A) 2,3,4,5…… (B) 2,5,8,11…… (C) 2,4,6,8…… (D) 3,6,9,12…… 4、长为 2L 、质量为 m 的均匀直棒的两端用绳自天花板竖直吊住,若一端突然剪断,剪断 绳的瞬间另一端绳中的张力为: [ ] (A) 1 mg 2 (B) mg (C) 3 mg 4 (D) 1 mg 4 二、填空题(每题 3 分,共 18 分) 1、电子枪的加速电压U = 5?104V ,则电子的速度(考虑相对论效应) ,电子的德布罗意波长 。 2、弦上一驻波,其相邻两节点的距离为65cm ,弦的振动频率为230Hz ,则波长为 ,形成驻波的行波的波速为 。 3、长为 L 的铜棒 ab 在垂直于匀强磁场 B 的平面内以角速度作逆时 针转动, B 垂直于转动平面向里,如图所示。则棒中的动生电动势为 a ,a 、b 两端何端电势高 (填 a 或 b )。 4、一均匀带正电的无限长直导线,电荷线密度为,其单位长度上总共发出的电场线(E 线)的条数是 。 5、用白光垂直照射在厚度为4 ?10-5 cm ,折射率为 1.5 的薄膜表面上,在可见光范围内, b B

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理下册练习及答案

大学物理下册练习及答 案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

电磁学 磁力 A 点时,具有速率s m /10170?=。 (1) 欲使这电子沿半圆自A 至C 运动,试求所需 的磁场大小和方向; (2) 求电子自A 运动到C 所需的时间。 解:(1)电子所受洛仑兹力提供向心力 R v m B ev 20 0= 得出T eR mv B 3197 310101.105 .0106.11011011.9---?=?????== 磁场方向应该垂直纸面向里。 (2)所需的时间为s v R T t 87 0106.110 105 .0222-?=??===ππ eV 3100.2?的一个正电子,射入磁感应强度B =的匀强磁场中,其速度 B 成89角,路径成螺旋线,其轴在B 的方向。试求这螺旋线运动的周期T 、螺距h 和半径r 。 解:正电子的速率为 731 19 3106.210 11.9106.110222?=?????==--m E v k m/s 做螺旋运动的周期为 1019 31 106.31 .0106.11011.922---?=????==ππeB m T s 螺距为410070106.1106.389cos 106.289cos --?=????==T v h m 半径为319 7310105.1 0106.189sin 106.21011.989sin ---?=??????==eB mv r m d =1.0mm ,放在 知铜片里每立方厘米有2210?个自由电子,每个电子的电荷19106.1-?-=-e C ,当铜片中有I =200A 的电流流通时, (1)求铜片两侧的电势差'aa U ; (2)铜片宽度b 对'aa U 有无影响为什么 解:(1)53 1928'1023.210 0.1)106.1(104.85 .1200---?-=???-???== nqd IB U aa V ,负号表示'a 侧电势高。 v A C

湖南大学物理化学期末考试复习习题 (1)

复习习题 1. 某理想气体反应过程的)g (B ∑ν=1,反应过程的m ,r V C ?=5.6 J ?mol -1?k -1 , m ,r p C ?=( 13.914 ) J ?mol -1?k -1 2.( 系统内部及系统与环境之间发生的一系列无限接近平衡的 )过程称为可逆过程。 3. 状态函数E 的微小变量应记为( d E )。 4.一定量理想气体节流膨胀过程中:μJ -T =( 0 );△H =( 0 ); △U =( 0 )。 5.任一不可逆循环过程的热温商的总和,可表示为;?(δQ /T )不可逆( > ) 0。 6.△A 与△G 分别代表(等温、等容、可逆过程中,系统对外所作的最大非体积等于系统亥姆霍兹函数的减少值;等温、等压、可逆过程中,系统对外所作的最大非体积等于系统吉布斯函数的减少值)。 7.在恒温恒压下,一切化学变化必然是朝着化学势(降低)的方向自动的进行。 8. 在80℃下,将过量的NH 4HCO 3(s )放人真空密闭容器内,NH 4HCO 3(s)按下式进行分 解: NH 4HCO 3(s )= NH 3(g )+CO 2(g )+H 2O (g ) 达平衡后,系统的C =(1);F =(0)。 9.在一定温度下,一定量理想气体所进行的可逆过程与不可逆过程,体积功的大小相比较 可知: 可逆过程系统对环境作(a ); 环境对系统做(b)功。 选择填入:(a )最大;(b )最小;(c )大小无法确定。 10.在25℃的标准状态下,反应 C 2H 6(g )+3 .5O 2 → 2CO 2(g )+3H 2O (l ) 此反应过程的△H m (b ); △U m (b ); W (a )。 选择填入:(a )>0;(b )<0;(c )=0;(d )无法确定。 11.在恒压、绝热、W ’=0的条件下发生某化学反应,使系统的温度上升、体积变大,则此 过程的△H (b );△U (c );W (c )。 选择填入:(a )>0;(b )=0;(c )<0;(d )无法确定。 12.在同一温度下,W ′=0,同一个化学反应的Q p ,m (d )Q V ,m 。 选择填入:(a )>;(b )<;(c )=;(d )无法确定。 13. 在隔离系统内自动发生某过程,则此过程系统总的熵变△iso S (a )。

大学物理上册期末考试题库

质 点 运 动 学 选择题 [ ]1、某质点作直线运动的运动学方程为x =6+3t -5t 3 (SI),则点作 A 、匀加速直线运动,加速度沿x 轴正方向. B 、匀加速直线运动,加速度沿x 轴负方向. C 、变加速直线运动,加速度沿x 轴正方向. D 、变加速直线运动,加速度沿x 轴负方向. [ ]2、某物体的运动规律为2v dv k t dt =-,式中的k 为大于零的常量.当0=t 时,初速v 0,则速度v 与时间t 的函数关系是 A 、0221v kt v += B 、022 1v kt v +-= C 、02211v kt v +=, D 、02211v kt v +-= [ ]3、质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻 质点的速率) A 、dt dv B 、R v 2 C 、R v dt dv 2+ D 、 242)(R v dt dv + [ ]4、关于曲线运动叙述错误的是 A 、有圆周运动的加速度都指向圆心 B 、圆周运动的速率和角速度之间的关系是ωr v = C 、质点作曲线运动时,某点的速度方向就是沿该点曲线的切线方向 D 、速度的方向一定与运动轨迹相切 [ ]5、以r 表示质点的位失, ?S 表示在?t 的时间内所通过的路程,质点在?t 时间内平均速度的大小为 A 、t S ??; B 、t r ?? C 、t r ?? ; D 、t r ?? 填空题 6、已知质点的运动方程为26(34)r t i t j =++ (SI),则该质点的轨道方程 为 ;s t 4=时速度的大小 ;方向 。 7、在xy 平面内有一运动质点,其运动学方程为:j t i t r 5sin 105cos 10+=(SI ), 则t 时刻其速度=v ;其切向加速度的大小t a ;该质 点运动的轨迹是 。 8、在x 轴上作变加速直线运动的质点,已知其初速度为v 0,初始位置为x 0加速度为a=C t 2 (其中C 为常量),则其速度与时间的关系v= , 运动

大学物理上册(湖南大学陈曙光)课后习题答案全解.

大学物理上册课后习题答案() 第一章 质点运动学 1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度; (2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度. [解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m). 在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m), 经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2, 因此v (1) = 12×1 - 6×12 = 6(m·s -1), v (2) = 12×2 - 6×22 = 0 质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t , 因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0, 第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2). [注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒. 1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为2 2(1)(1)n s a n t -= +,并由上述资料求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得 a = (n – 1)v o /t , (1) 根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:2 2(1)(1)n s a n t -= +. 计算得加速度为:2 2(51)30(51)10 a -= += 0.4(m·s -2 ). 1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问: (1)矿坑有多宽?他飞越的时间多长? (2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法. (1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动, 初速度的大小为 v y 0 = v 0sin θ = 24.87(m·s -1). 取向上的方向为正,根据匀变速直线运动的速度公式 v t - v 0 = at , 这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为 t 1 = v y 0/g = 2.49(s). 再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m). 人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:2 22h t g == 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 70m 22.5o 图1.3

相关主题
文本预览
相关文档 最新文档