当前位置:文档之家› 量子力学基础知识

量子力学基础知识

量子力学基础知识
量子力学基础知识

第四章量子力学基础知识

量子力学是研究微观粒子(如电子,原子和分子等)运动规律的学科

量子力学的建立经历了由经典物理学到旧量子论,再由旧量子论到量子力学两个历史发展阶段。

4.1 微观粒子运动的特征

4.1.1 几个代表性的实验

经典物理学发展到19世纪末,在理论上已相当完善,对当时发现的各种物理现象都能加以理论上的说明。它们主要由牛顿的经典力学,麦克斯韦的电、磁和光的电磁波理论,玻耳兹曼和吉布斯等建立的统计物理学组成。19世纪末,人们通过实验发现了一些新的现象,它们无法用经典物理学解释,这些具有代表性的实验有以下3个。

(1)黑体辐射

黑体是指能全部吸收各种波长辐射的物体,它是一种理想的吸收体,同时在加热它时,又能最大程度地辐射出各种波长的电磁波。

绝热的开有一个小孔的金属空腔就是一种良好的黑体模型。进入小孔的辐射,经多次吸收和反射,可使射入的辐射实际上全部被吸收,当空腔受热时,空腔会发出辐射,称为黑体辐射。

实验发现,黑体辐射能量与波长的关系主要与温度有关,而与空腔的形状和制作空腔的材料无关。在不同温度下,黑体辐射的能量(亦称辐射强度)与波长的关系如图所示。许多物理学家试图用经典热力学和统计力学方法解释黑体辐射现象。瑞利(Rayleigh J W)和金斯(Jeans J H)把分子物理学中能量按自由度均分的原理用于电磁辐射理论,得到的辐射能量公式在长波处接近实验结果,在短波处和实验明显不符。特别是瑞利-金斯的理论预示在短波区域包括紫外以至x射线、γ射线将有越来越高的辐射强度,完全与事实不符,这就是物理学上所谓的“紫外灾难”。维恩(Wien W)假设辐射按波长分布类似于麦克斯韦的分子速度分布,得到的公式在短波处和实验结果接近,在长波处相差很大。

1900年普朗克(Planck M)在深入研究了实验数据,并在经典力学计算的基础上首先提出了“能量量子化”的假设,他认为黑体中原子或分子辐射能量时做简谐振动,这种振

子的能量只能采取某一最小能量单位ε

0的整数倍数值。ε=nε

, n=1,2,3,...

n称量子数。并且ε

=hν

其中h 称为普朗克常数,数值为6.626×10-34

J.s

由于量子数n 取值的整数性,辐射能量具有跳跃式的不连续性。这种能量变化的不连续性就称为能量的量子化。在量子化假定基础上,使振子的各本征振动的能量服从玻尔兹曼分布,得到辐射强度与波长的关系318[exp(/)1]E h hc k T --λ

=πλλ-

式中,T 为绝对温度;c 是光速;k 是玻尔兹曼常数。

这个公式结果和实验结果完全一致,很好地描述了黑体辐射问题。

下图中就是1500K 时辐射强度实验数据与瑞利-金斯理论及普朗克理论的比较。… (2)光电效应

19世纪赫兹发现光照射到金属表面上时,金属表面上会发射出光电子的现象就是的光电效应。测定装置示意图如图。当合适频率的入射光透过石英窗射向金属电极A 时,电极将发射具有一定动能的电子。在该电极与环形电极C 间施加电压V ,可在检流计G 中检测到光电流。当电压减少至零时,光电流仍有一定大小,说明光电子本身有动能。当电压变负达到某值时,光电流等于零,此时电压与电荷的乘积应与光电子的动能相等,由此可估计光电子动能的大小。 实验中发现的规律主要有以下几点:

每种金属都有一固定的频率ν0,称为临阈频率。只有当入射光频率大于ν0

时,才会有

光电流产生,否则,无论光强度多大都不会产生光电流。 光电流强度和入射光强度成正比。

光电子电子动能和入射光频率成线性增长关系,而与入射光强度无关

经典物理学理论认为光的能量应由光的强度决定,即由光的振幅决定,而与光的频率无关,光的频率只决定光的颜色。光电流是金属内电子吸收入射光能量后逸出金属表面所产生的,因此,光电流是否产生,以及产生后光电子的动能大小应由光强度决定。这样的解释显然和光电效应实验相矛盾。

1905年,爱因斯坦提出光子学说,成功地解释了光电效应,它的主要思想如下: 光的能量只能是最小能量单位ε0(称光量子)的整数倍,ε=n ε0,n=1,2,3,…,n 称为量子数,并且光能量与光子频率ν成正比,ε0=h ν

光子不但有能量,还有质量m ,不同频率的光子具有不同的质量。 光子具有动量P=mc=h/λ

光强度取决于单位体积内的光子数,即光子密度。

根据爱因斯坦的光子学说,当光照射到金属表面上时,能量为hν的光子被电子所吸收,电子将这部分能量中的一部分用来克服金属表面对它的吸引力,另一部分转变成逸出电子的动能。hν

为电子逸出功,所以只有当频率大于临阈频率时,才能有电子逸出,产生光电流。入射光强度越大,光子密度越大,光子越多,产生的光电流就越大,因此,光电流强度和入射光强度成正比。

(3)氢原子光谱

原子被火焰、电弧等激发时,能受激而发光,形成光源。将它的辐射线通过分光可以得到许多不连续的明亮的线条,称为原子光谱。实验发现原子光谱是不连续的线状光谱。这又是一个经典物理学不能解释的现象。下图就是氢原子的巴尔末线系

1911年卢瑟福(Rutherford E)用α粒子散射实验证实了原子模型,认为原子是由电子绕核运动构成的。经典物理学无法解释原子光谱现象,因为根据经典电动力学,绕核作轨道运动的电子是有加速度的,应当自动地放射出辐射,因而能量要逐渐减少,这样会使电子逐渐接近原子核,最后和核相撞,因此原子应为一个不稳定的体系。另一方面,根据经典电动力学,电子放出辐射的频率应等于电子绕核运动的频率,由于电子的能量要逐渐减少,其运动的频率也将逐渐地改变,因而辐射的频率也将逐渐地改变,所以原子发射的光谱应当是连续的。然而实验测得的光谱却是线状的、不连续的。这些都和经典的理论发生了本质的矛盾。

1913年玻尔(Bohr N)根据普朗克的量子论,爱因斯坦的光子学说和卢瑟福的原子模型,提出关于原子结构的三个假定:

电子只能在核外某些稳定的轨道上运动,这时电子绕核旋转不产生经典辐射,原子相应处于稳定态,简称定态。能量最低的稳定态称为基态,其它的称为激发态。

原子可由某一定态跳跃到另一个定态,称为跃迁,跃迁中放出或吸收辐射,其频率为ν

hν=E

2-E

1

=ΔE

原子各种可能存在的定态轨道有一定限制,即电子的轨道运动的角动量必须等于h/2π的整数倍,M=nh/2π,n=1,2,3,…

此式又称玻尔的量子化规律,其中n为量子数。%%%%1913年玻尔(Bohr N)根据普朗克的量子论,爱因斯坦的光子学说和卢瑟福的原子模型,提出关于原子结构的三个假定:电子只能在核外某些稳定的轨道上运动,这时电子绕核旋转不产生经典辐射,原子相应处于稳定态,简称定态。能量最低的稳定态称为基态,其它的称为激发态。

原子可由某一定态跳跃到另一个定态,称为跃迁,跃迁中放出或吸收辐射,其频率为ν

hν=E

2-E

1

=ΔE

原子各种可能存在的定态轨道有一定限制,即电子的轨道运动的角动量必须等于h/2π的整数倍,M=nh/2π,n=1,2,3,…

此式又称玻尔的量子化规律,其中n为量子数。根据玻尔的假定可以计算出氢原子基态轨道的半径a

为52.9pm,基态能量为-13.6eV,和实验结果十分接近。

对于微观体系的运动,经典物理学已完全不能适用。以普朗克的量子论、爱因斯坦的光子学说和玻尔的原子模型方法为代表的理论称为旧量子论。旧量子论尽管解释了一些简单的现象,但是,对绝大多数较为复杂的情况,仍然不能解释。这显然是由于旧量子论并没有完全放弃经典物理学的方法,只是在其中加入了量子化的假定,然而量子化概念本身与经典物理学之间是不相容的。因此,旧量子论要作为一个完整的理论体系,其本身是不能自圆其说的。

从黑体辐射、光电效应和原子光谱等实验可见,对于微观体系的运动,经典物理学已完全不能适用。以普朗克的量子论、爱因斯坦的光子学说和玻尔的原子模型方法为代表的理论称为旧量子论。旧量子论尽管解释了一些简单的现象,但是,对绝大多数较为复杂的情况,仍然不能解释。这显然是由于旧量子论并没有完全放弃经典物理学的方法,只是在其中加入了量子化的假定,然而量子化概念本身与经典物理学之间是不相容的。因此,旧量子论要作为一个完整的理论体系,其本身是不能自圆其说的。

4.1.2 波粒二象性的普遍性及统计解释

17世纪末以前,人们对光的观察和研究还只限于几何光学方面。从光的直线传播、反射定律和折射定律出发,对于光的本性问题提出了两种相反的学说——以牛顿为代表的微粒说和以惠更斯为代表的波动说。

微粒说认为,光是由光源发出的以等速直线运动的微粒流。微粒种类不同,颜色不同。在光反射和折射时,表现为刚性弹性球。

波动说认为光是在媒质中传播的一种波,光的不同颜色是由于光的波长不同引起的。微粒说和波动说都能解释当时已知的实验事实,但在解释折射现象时导出的折射率结论相反:微粒说的结论是光在媒质中的相对折射率正比于光在媒质中的传播速率,而波动说则得出相对折射率反比于光在媒质中的传播速率的结论。当时由于还不能准确测量光速,所以无法判断哪种说法对。

随后光的干涉和衍射现象相继发现,这些现象是波的典型性质,而微粒说无法解释。光速的精确测定证实了波动说对折射率的结论是正确的。光的偏振现象进一步说明光是一种横波。因此在19世纪末、本世纪初的黑体辐射、光电效应和康普顿散射等现象发现以前,波动说占了优势。

为了解释光在真空中传播的媒质问题,提出了“以太”假说。“以太”被认为是一种弥漫于整个宇宙空间、渗透到一切物体之中且具有许多奇妙性质的物质,而光则认为是以“以太”为媒质传播的弹性波。19世纪70年代,麦克斯韦建立了电磁场理论,预言了电磁波的存在。不久后赫兹通过实验发现了电磁波。麦克斯韦根据光速与电磁波速相同这一事实,提出光是一种电磁波,这就是光的电磁理论。根据麦克斯韦方程组和电磁波理论,光和电磁波无需依靠“以太”作媒质传播,其媒质就是交替变化的电场和磁场本身。所谓“以太”是不存在的。

到了19世纪末,因为光的电磁波学说不能解释黑体辐射现象而碰到了很大的困难。为了解释这个现象,普朗克在1900年发表了他的量子论。接着爱因斯坦推广普朗克的量子论,在1905年发表了他的光子学说,圆满地解释了光电效应,又在1907年在振子能量量子化的基础上解释了固体的比热与温度的关系问题。根据他的意见,光的能量不是连续地分布在空间,而是集中在光子上。这个学说因为康普顿效应的发现再一次得到了实验证明。

光子学说提出以后,重新引起了波动说和微粒说的争论,并且问题比以前更尖锐化了,因为凡是与光的传播有关的各种现象,如衍射、干涉和偏振,必须用波动说来解释,凡是与光和实物相互作用有关的各种现象,即实物发射光(如原子光谱等)、吸收光(如光电效应、吸收光谱等)和散射光(如康普顿效应等)等现象,必须用光子学说来解释。不能用简单的波动说或微粒说来解释所有现象。因此,光既具有波动性的特点,又具有微粒性的特点,即它具有波、粒二象性(wave particle duality),它是波动性和微粒性的矛盾统一体,不连续的微粒性和连续的波动性是事物对立的两个方面,它们彼此互相联系,相互渗透,并在一定的条件下相互转化,这就是光的本性。

所谓波动和微粒,都是经典物理学的概念,不能原封不动地应用于微观世界。光既不是经典意义上的波,也不是经典意义上的微粒。光的波动性和微粒性的相互联系特别明显地表现在以下三个式子中:E=hν,p=h/λ,ρ=k|Ψ|2

在以上三个式子中等号左边表示微粒的性质即光子的能量E、动量p和光子密度ρ,等

式右边表示波动的性质,即光波的频率ν、波长λ和场强Ψ。按照光的电磁波理论,光的强度正比于光波振幅的平方|Ψ|2,按照光子学说,光的强度正比于光子密度ρ,所以ρ正比于|Ψ|2,令比例常数为k ,即得到ρ=k|Ψ|2

1924年,法国物理学家德布罗意提出,这种“二象性”并不特殊地只是一个光学现象,而是具有一般性的意义。他说:“整个世纪以来,在光学上,比起波动的研究方法,是过于忽略了粒子的研究方法;在实物理论上,是否发生了相反的错误呢?是不是我们把粒子的图象想得太多,而过分忽略了波的图象?”从这样的思想出发,德布罗意假定波粒二象性的公式也可适用于电子等静止质量不为零的粒子,也称为实物粒子。,即实物粒子也具有波粒二象性。实物粒子的波长等于普朗克常数除以粒子的动量,h h p

mv

λ==

这就是德布罗意关系式。

根据德布罗意假设,以1.0×106m.s -1的速度运动的电子波长为107.310m -?

质量为 1.0×10-3kg 的宏观物体,当以 1.0×10-2m.s -1速度运动时,波长为

296.6310m -?实物粒子波长太小,观察不到其波动性;只有微观粒子才可观测其波动性。

实物粒子的波称为德布罗意波或实物波。德布罗意指出:可以用电子的晶体衍射实验证实物质波的存在。

1927年美国科学家戴维逊和革末的单晶电子衍射实验以及英国汤普森的多晶体电子衍射实验证实了德布罗意关于物质波的假设。随后,实验发现质子、中子、原子和分子等都有衍射现象,且都符合德布罗意关系式。下面左边就是多晶体电子衍射的示意图,从电子发射器A 发出的电子射线穿过晶体粉末B ,投射到屏C 上,可以得到一系列的同心圆。这些同心圆叫衍射环纹。右边是电子射线通过金晶体时的衍射环纹图样。

下面就以多晶体电子衍射实验来进行讨论。从衍射环纹的半径和屏C 与晶体B 间的距离可以计算衍射角α,根据衍射角可用布拉格(Bragg)公式计算电子射线的波长λ,即 2sin

2

n d αλ

=

式中d 是晶格间距,n=1、2、3、…分别表示各同心圆,其中最小的同心圆n=1,其次n=2。 电子射线可从阴极射线管产生,并使之在电势差等于V 的电场中加速到速度v 。获得的动

能等于它在电场中降落的势能eV ,即: 212

eV

mv

= 因此v =

根据德布罗意关系式,可得电子波长

h h p mv λ=

==

知道电势V ,就可以计算出电子射线的波长λ。将衍射角算得的波长与通过德布罗意关系式算出的波长比较,两者一致。这样就从实验上证明了德布罗意关系式。

实物波的物理意义与机械波(水波、声波)及电磁波等不同,机械波是介质质点的振动,电磁波是电场和磁场的振动在空间传播的波,而实物波没有这种直接的物理意义。

那么实物波的本质是什么呢?有一种观点认为波动是粒子本身产生出来的,有一个电子就有一个波动。因此当一个电子通过晶体时,就应当在底片上显示出一个完整的衍射图形。而事实上,在底片上显示出来的仅仅是一个点,无衍射图形。另一种观点认为波是一群粒子组成的,衍射图形是由组成波的电子相互作用的结果。但是实验表明用很弱的电子流,让每个电子逐个地射出,经过足够长的时间,在底片上显示出了与较强的电子流,在较短时间内电子衍射完全一致的衍射图形。这说明电子的波动性不是电子间相互作用的结果。

在电子衍射实验中若将加速后的电子一个一个地发射,发现各电子落到屏上的位置是不重合的,也就是说电子的运动是没有确定轨迹的,不服从经典力学物体的运动方程。当不断发射了很多电子以后,各电子在屏上形成的黑点构成了衍射图象,这说明大量粒子运动的统计结果是具有波动性的。当电子数不断增加时,所得衍射图象不变,只是颜色相对加深,这就说明波强度与落到屏上单位面积中的电子数成正比。1926年,波恩提出了实物波的统计解释。他认为在空间的任何一点上波的强度(振幅绝对值平方)和粒子在该位置出现的几率成正比。 实物波的强度反映微粒出现的几率的大小,故可称几率波。

电子束单缝衍射实验示意图

4.1.3 不确定原理

可以把实物粒子的波粒二象性理解为:具有波动性的微粒在空间的运动没有确定的轨迹,

只有与其波强度大小成正比的几率分布规律。微观粒子的这种运动完全不服从经典力学的理论,所以在认识微观体系运动规律时,必须摆脱经典物理学的束缚,必须用量子力学的概念去理解。微观粒子的运动没有确定的轨迹,也就是说它在任一时刻的坐标和动量是不能同时准确确定的,这就是测不准原理。可以用电子束通过一个单缝的衍射实验来说明测不准原理。如图所示,具有动量p 的电子束,通过宽度为Δx 的狭缝,在y 方向与狭缝距离为l 处放一屏幕,可在屏幕上得到如图所示的衍射强度分布曲线。

经典粒子直线运动,通过狭缝后,在屏幕上显示宽度为Δx 的条状图案。具有波动性的电子,通过狭缝边缘和中心的两束电子波相互叠加,在到达屏幕处,有的位置上两束电子波是加强的(峰),有的位置上是相互抵消的。根据光学原理,相消的条件是这两束光从狭缝到达屏幕的光程差AO 为波长λ的半整数倍

/2sin AO /2x n ??θ≈=λ

考虑一级衍射(n=1)的情况 sin /x θ=λ?

通过狭缝前电子在x 方向动量p x 为零,通过狭缝后电子在x 方向动量p x =psin θ,所以动量在x 方向分量在通过狭缝前后的变化为sin sin /x p p h ?=θ=θ?λ

此式结合式sin /x θ=λ?可得x

x p h ???=

如果将x 方向的讨论改为y 或z 方向做类似讨论,显然可得

y y p h ???= z z p h ???= 称为测不准关系式。

若考虑到n=2,3,…,等多级衍射时,则为Δx ·Δp x ≥h ;Δy ·Δp y ≥h ;Δz ·Δp z ≥h 1927年,海森堡通过严格的推导,得出了测不准关系式为

4x h x p ???≥

π

;4y h y p ???≥π;4z h z p ???≥π

用能量E 和时间t 作为表示粒子状态的基本变量时,测不准关系则为4h E t

???≥π

测不准关系式表示通过狭缝时电子的坐标的不确定度和相应动量的不确定度的乘积至少等于一个常数。也就是说,当某个微粒的坐标完全被确定时(Δx →0),则它的相应动量就完全不能被确定(Δp x →∞),反之亦然。换言之,微观粒子在空间的运动,它的坐标和动量是不能同时准确确定的,讨论微观粒子的运动轨迹毫无意义。由于微观粒子运动具有波粒二象性,因而不能同时准确确定某些成对物理量,如位置与动量,能量与时间,这种现象也被称为不

确定原理。

经典力学中用轨迹描述物体的运动,即用物体的坐标位置和运动速度(或动量)随时间的变化来描述物体的运动。因此需要能够同时准确确定物体的坐标和速度。经典力学只适用于描述宏观粒子的运动。那么宏观粒子和微观粒子有什么不同呢?下面我们来做一简单比较。首先宏观粒子和微观粒子具有很多的共同点:都具有质量、能量和动量,服从能量守恒定律和动量守恒定律,都具有波粒二象性,都满足测不准关系式。它们的不同之处在于: 宏观粒子波动性不明显,其坐标和速度可同时准确测定,有确定的运动轨迹,可以用经典力学来描述。

微观粒子波动性显著,受测不准关系式的限制其坐标和速度不可能同时准确测定,没有确定的运动轨迹,不能用经典力学来描述。

宏观和微观的区分是相对的,不确定原理起作用,粒子的运动轨迹无法描述的场合,就是微观领域。而不确定原理不起作用,粒子的坐标和速度能够同时准确测定的场合,就是宏观领域。((宏观粒子和微观粒子的划分也不是绝对的,比如说电子,运动在原子中的电子,受测不准关系式限制,属于微观粒子;而电视机显相像管中电子枪发射的电子其运动轨迹就是可以控制的,属于宏观粒子。))

例4.1子弹(质量0.01kg,速度10001m s -? )和原子中的电子(质量 319.110kg -?,速度10001

m s -?)。当他们的速度不确定范围为其速度的 0010 时,分别计算它的位置的不确定范围并讨论计算结果, 解:对子弹

//()x x x h p h m v ?≥?=?

3411663100.011000110

J s kg m s ---???=????34

6.6310m -=? 对电子

'/('')x h m x ?≥?34

3111

6.63109.1101000110

J s kg m s ----??=?????6

7.2710m -=? 对子弹来说,Δx 很小,可以忽略,即子弹的坐标是可以准确测定;对电子来说,Δx’ 达7.27×10-6m,由于原子半径仅为10-10m 的数量级,所以Δx 不可忽略,在原子中运动的电子坐标在其速度误差为10%时是不能准确测定的,电子的运动无法用经典力学中的轨迹(即

速度和坐标)来描述,只能用量子力学来描述。 而子弹则可以用经典力学来描述。

4.2量子力学的基本假定

4.2.1算符和运算规则

规定运算操作性质的符号称为算符。例如ln 、d/dx 、sin 等分别表示对函数进行对数、微分、正弦等运算。算符的作用是:算符作用在一个函数上,得到一个新函数。

通常可以 ""∧标记算符,如 A 和 B ,如果算符A 将函数f (x )变成新函数g (x ),就可写成A f (x )=g (x ),(读作:算符A 作用于函数f(x)等于g(x)) 算符有如下的运算规则:

() () 2

()()()()()()()[()][()]

A B f x Af x B f x A B f x Af x B f x AB f x A B

f x A A Af x +=+-=-== () () ()()A B C f x AB f x AC f x +=+ () ()()()AB C f x A BC

f x = 算符的加法:两个算符相加作用于函数等于分别作用于函数后相加,算符的减法为:两个算符相减后作用于函数就等于分别作用于函数后相减;算符A 与算符B 的乘法等于算符B 作用于函数后的新函数再被算符A 作用;算符的平方等于算符作用于函数后的新函数再被该算符作用。算符的乘法还服从结合律和分配律,但是一般不服从交换律。满足乘法交换律的两个算符称为对易的算符。

当算符A 满足 A[

()()]A ()A ()f x g x f x g x ±=± 称A 为线性算符。如d/dx 就是线性算符,而 ln 和 sin 不是线性算符。

当A 满足 **A (A )d d =????τ??τ或 **1221A (A )d d =??

??τ??τ 称A 为自轭算符或厄密算符。这里积分是对所有变量的全部变化空间积分。

各种力学量对应的算符

表中列出的是各种力学量对应的算符,其中坐标算符就是其自身,也就是说坐标算符作用于函数就等于坐标乘以该函数。

本征方程、本征值和本征函数

如果一个算符A作用于函数f,所得的函数是一个常数乘以f,即 A f =αf则称这一方程为算符A的本征方程,常数α是算符A的本征值,函数f 则为算符A的本征函数。

例:算符A=d/dx,函数f=e 2x

Af=d/dx(e 2x )=2 e 2x =2f

可见,f 是算符A 的本征函数,本征值为2 例:算符A=d/dx,函数f=e 2x

算符A 作用于函数f 就是对函数f 求一阶导数,等于2f ,因此算符A 作用于函数f 等于2f 为一个本征方程,f 是算符A 的本征函数,本征值为2。 4.2.2 量子力学的基本假定 假定Ⅰ微观粒子的状态和波函数

微观粒子的运动状态可以用波函数(,,,)x y z t ψ来描述。(,,,)x y z t ψ是系统的状态函数,是系统所有粒子的坐标和时间的函数。

不含时间的实物粒子波的波函数(,,)x y z ψ描述微观系统的不随时间而变化的稳定态,称为定态波函数。

一般情况下定态波函数ψ是复数形式ψ=f+ig ,f 和g 是坐标的实函数,ψ的共轭函数 ψ*=f-ig 。定态波函数与其共轭函数的乘积为实函数,且为正值。为书写方便波函数与其共轭函数的乘积常表示为波函数模的平方或波函数的平方

由于波强度正比于粒子在空间某处的出现几率,而波强度可用振幅平方ψψ*表示,所以|ψ2|正比于空间某点粒子出现的几率,|ψ2|亦即粒子的几率密度。|ψ2|d τ为空间某点附近体积元d τ内粒子出现的几率。定态波函数是描述微观系统稳定态的函数,它的物理意义不仅是由模的平方描述的几率密度体现出来,而且它将决定该状态的很多物理量,以此来描述这个状态。这就是它的物理意义。

由于波函数描述的是几率波,所以ψ必须满足下列3个条件。 (1)ψ必须是单值函数

在空间每一点ψ只能有一个值。由于粒子在空间每一点出现的几率只能有一个值,因此波函数在每一点也只能取一个值。 (2)ψ必须是连续函数

由于粒子在空间出现的几率密度是连续,因此波函数必须是连续的。后面我们会看到,波函数所满足的是一个二阶偏微分方程,要使波函数的二阶偏导数有意义,则要求要求波函数对坐标的一阶偏导数也必须是连续的。

(3)ψ必须是有限且平方可积的

|ψ2|代表了粒子的几率密度,几率是一个有限值,因此波函数应该是有限的。由于波函数模的平方乘体积元在空间的积分是粒子在空间出现的几率,因此波函数必须是平方可积的。在全空间内粒子出现的几率为1,因此要求*1d =?

全空间

ψψτ

满足该积分式的波函数称为归一化波函数。

符合单值、连续和平方可积这三个条件的波函数称为合格波函数或品优波函数。如果波函数未归一化,即波函数模的平方在全部空间对体积元的积分不等于1,而等于一个常数K

2||d K =?

全空间

ψτ

K 是一个正的有限数值。可将波函数除以常数K 的平方根,此时有

2

2

||1|'|d d ==??全空间全空间

τψτ

波函数'=

ψ与ψ

代表粒子的同一状态,为归一化的波函数,常数C =

化因子。由非归一化波函数ψ求得归一化波函数ψ’的过程,称为函数归一化。 假定Ⅱ关于力学量及其算符的假定

微观粒子系统的每一个力学量均对应一个量子力学算符。若某一力学量F 的算符 F 作用于波函数(,,,)x y z t ψ,等于某一常数α乘以波函数,即波函数是算符 F

的本征函数, F

F ψψ=那么这一微观粒子的的力学量F 对波函数所描述的状态就有确定的数值α,即力学量F 的实验观测值将于算符 F

的本征值α对应。 如果系统处于任一波函数ψ所描述的状态中,而波函数ψ不是算符 F

的本征函数,即算符F 作用于波函数ψ不等于常数乘以波函数ψ,那么,这时进行力学量的测量,将得不到力学量F 确定的数值,此时可用下式来求得平均值F : **

F d F d ψψτ

ψψτ

=

??

如果波函数ψ是已归一化的,则力学量F 的平均值为 *F F

d ψψτ=?(念作:波函数的共轭函数乘以算符F 作用于波函数在全空间对体积元的积分) 假定Ⅲ 薛定谔方程

微观粒子系统的运动规律遵从薛定谔方程。

h H i t

ψψ?-

=? 式中 H 为哈密顿算符,即: 222h H V m

=-?+ 对微观粒子系统的定态,则有: H

E ψψ= 哈密顿算符是能量算符,对应系统的能量E ,系统的能量E 等于系统的动能与势能之和E=T+V 。定态波函数是不随时间变化的,描述的是体系的稳定状态,其能量E 有确定值 假定Ⅳ 态的叠加原理

经典力学中波动具有可叠加性,量子力学中假设德布罗意波同样具有可叠加性,服从态叠加原理。

若ψ1,ψ2,…,ψn 为某一微观系统的可能状态,则由它们的线性组合所得的ψ也是该系统可能存在的状态。

1122n n i i i

C +C ++C =C =???∑ψψψψψ

系数C 1,C 2,…,C n 为任意常数。其数值的大小反映由ψ所决定的性质中ψi 的贡献,C i 越大,相应ψi 的贡献也越大。可以证明,几个能量相同的状态线性组合所得的状态仍具有相同的能量。由能量不同的状态线性组合所得的状态具有一些新的性质。

4.3薛定谔方程

在量子力学中粒子运动状态的变化规律,应该是和波动有关的一个新型方程,即薛定谔方程,应用这个方程,可由粒子的初始状态求得任一时刻的状态,得到波函数的具体形式。薛定谔方程是量子力学的基本方程,它不是从某些理论推导出来的,而是在德布罗意波概念启发下,归纳总结出来的,也是以假设的形式提出来的。 4.3.1定态薛定谔方程

薛定谔方程有含时方程和定态方程两种形式,为更好地理解薛定谔方程,在此尝试用类比的方法推演薛定谔方程的引出。我们以最简单的一维定态薛定谔方程为例。由于实物粒子的定态具有量子化的特征,而在经典的波动力学中有量子化特征的只有驻波。光波中频率为ν,波长为λ沿x 方向传播的平面驻波的波动方程为cos[2()]x A t =-ψπνλ

若考虑不受任何外场作用的粒子,即势能为零的粒子(称为自由粒子),其动量p 和能量

E 都是常数,将德布罗意关系式E=h ν,x

h

p =

λ代入,则得2cos[

()]x A xp Et h

=-π

ψ 此式不再是描述经典的平面波,而是描述自由粒子一维运动状态的德布罗意波。 将方程两边对x 求导得22sin[()]x x d p A xp Et dx

h

h

=-ψππ

再次对x 求导得2

2

2

222222cos[()]x x x d p A xp Et p h h h dx ????=--=- ? ?????

ψπππψ 令2h

= π,由于动能为2

2x p T m

=,代入整理得

2222d T m dx

-= ψψ 自由粒子一维运动的定态薛定谔方程,m 为质量。

如果粒子势能不为零,而只是坐标的函数V=V(x),系统能量E=T+V ,动能T=E-V ,代入

方程得222()2d E V m dx -=- ψψ或222

2d V E m dx -+= ψψψ 采用类似方法,可以从三维驻波波动方程引出描述实物粒子三维运动的定态薛定谔方

程2

2222222d d d V E m dx dy dz ??-+++=

???

ψψψψψ令2222222d d d dx dy dz ?=++称为Laplace 算符,则定态薛定谔方程可改写为222V E m ??-?+= ???

ψψ,令 222H V m =-?+ 称为哈密顿算符

可得到 H

E =ψψ定态薛定谔方程

4.4微观粒子的平动

用量子力学来解决定态实际问题时,首先要写出微观粒子系统的势能函数。然后,将它代入定态薛定谔方程中,通过求解,得到具体的定态波函数ψ。 所求得的每一个解

ψ表示该微观粒子系统的某一种稳定状态,与这个解相对应的能量

E ,就是该微观粒子系统在此稳定状态时的总能量。下面就以一维势箱中自由粒子的运动为例,应用量子力学来进行讨论。

4.4.1 一维势箱中的自由粒子运动

如图所示,一个长度为l 的一维势厢中有一个质量为m 的自由粒子沿x 轴方向做一维平动,粒子的势能在势箱中(图中Ⅱ区)为零,在势箱壁或势箱外(图中Ⅰ,Ⅲ区)的任何位置均为无穷大。这样粒子的运动就限制在x=0和x=l 之间,而不可能跃出势箱。 由于势箱内势能为零,势箱外为无穷

该系统的势能V 为: 0

0()0x l V x x l <

≤≥? 及x

由于粒子只能在势箱内运动,因此只有在势箱内,波函数不为零,而在势箱壁及势箱外

波函数为零,因此可得到波函数的边界条件0

0()00x l x x l ≠<

波函数为零,0

<时,0V =,薛定谔方程为:

22

220d mE

dx +=

ψψ 这是一个二阶线性齐次的常微分方程,该方程的通解为:

22cos sin A x B x h h ????

=+

?

?????

ππψ 下面就利用波函数的边界条件和归一化条件来确定系数A 和B 。 代入边界条件(0)0x ==ψ,可得到ACOS0=0,因cos0=1,所以A=0

方程的解为sin B x ?=???ψ 代入边界条件()0l =ψ

,得2sin 0B h ??

=

??

?

。由于A 已经等于零,若B 再等于零,则波函数恒等于零,没有意义,因此B

不等于零,只有sin 0?=?

?

?

这就要求2l n h

=ππ,n 为不等于零的整数,由此可得到系统能量22

2

8n n h E ml =

其中n=1,2,3,…称为量子数。能量带下标n 表示能量由量子数n 决定。

将求得的能量代入方程的解()sin n n x x B l ??

= ???

πψ,再将解得的波函数归一化,由

于粒子只出现在

0和l 之间,所以积分限变为从0到

l 2

22

00*sin 12l

l

n x B l dx B dx l ??=== ???

??πψψ

,因此可得B =

所以解得的波函数为()n n x x l ??

= ???

πψ,其中n=1,2,3,…

从能量公式看出,势箱中粒子的能量随量子数n 的变化取一些分立值E 1,E 2,E 3,…,即能量是量子化的。两相邻能级的间隔

22222

1222

(1)(21)888n n n n h n h h E E E n ml ml ml

++?=-=-=+ 随着l 的增大,能级间隔减小,l →∞时,能级间隔趋于零,即宏观系统能量是连续的。量子数最小为1,此时的能级E1所对应的是能级最低的状态,称为基态。n ≥2时所对应的态称为激发态。微观系统中,粒子基态能量不为零,因为势箱中势能V=0,所以该能量为粒子的动能。只要势箱宽度l 是有限值,粒子动能就恒大于零,该能量称为零点能。

本图形是基态、第一和第二激发态时势箱中粒子的波函数图形和粒子出现的几率分布图形。其中左图是为势箱中粒子不同状态的波函数示意图;右图为对应各状态粒子的几率分布情况

通过对量子力学解一维势箱中自由粒子运动的结果的讨论,可以总结出如下五个特性:

(1)势箱中粒子的运动具有多种运动状态,各种状态具有不同的几率密度分布和不同的能量。

(2)能量是量子化的,系统能量的不连续性是微观粒子的重要特性。

(3)势箱中粒子能量不为零,至少为2

2

8h ml

,这个基态能量称为零点能。这说明即使体系达到绝对零度,这个能量仍然存在。由于粒子的势能为零,这个能量是粒子的动能,说明粒子总是在不停地运动。

(4)势箱中粒子运动没有确定的轨迹,粒子在箱中各处的几率密度是不均匀的,不同状态的几率密度分布也是不同的。粒子的运动具有波的性质。

(5)由于波动性的存在,波函数可以为正值,可以为负值,也可以为零。波函数等于零的点称为节点,节点数为n-1,各状态随着能量的增加,节点数增加。

这些特性,是经典物理学所不能解释的现象,统称为量子效应。量子效应是所有微观粒子受一定势能场束缚的共同特征。当质量m 不断增大,粒子受束缚空间范围不断增大时,量子效应也会消失,体系变为宏观体系。 4.4.2三维势箱中自由粒子的平动

下面讨论三维势箱中自由粒子的平动,假设一个质量为m 的粒子,在边长为a 、b 和c 的三维方势箱中平动,粒子在势箱内的热能为零,在势箱壁和势箱外的势能为无穷大。分别以x,y 和z 表示边长的3个方向,则势箱的3个方向除了长度不同以外没有其他不同

该系统的势能V 为:0

0,0,0,(,,)0,0,0x a y b z c V x y z x a y b z c <<<<<

由于粒子只能在势箱内运动,因此在势箱内波函数不为零,在势箱壁及势箱外波函数为零,所以波函数

0,0,0,(,,)00,0,0x a y b z c x y z x a y b z c ≠<<<<<

=≤≥≤≥≤≥?

及x 及y 及z ψ 在三维势箱内运动的自由粒子的薛定谔方程为:22222

2220mE

x y z ???+++=???

ψψψψ这是一个三变量偏微分方程,一般采用分离变量法解方程。 假设:x y z =ψ

ψψψ,为三个独立函数乘积,其中ψx 、ψy 、ψz 分别为x 、y 、z 的函数。

能量为三个量的加和x y z E

E E E =++

将ψ=ψx ψy ψz 代入方程,

得到: 2

22222

21112()0y x z x y z x y z m

E E E x y z ???+++++=???

ψψψψψψ

因为x 、y 和z 为3个独立变量,Ex 、Ey 和Ez 为三个常数,可将方程分为三个独立的单变量方程。

22

2120x x x m

E x ?+=?

ψψ 2

2

2120y y y m

E y ?+=?

ψψ 22

2120z z z m

E z ?+=?

ψψ 分别解得

x x n x a =;πψ

y y n y b =;πψ

z z n z c

=πψ

2228x x n h E ma =; 222

8y y n h E mb

=; 22

28z z n h E mc =

其中n x =1,2,3,…,n y =1,2,3,…,n z =1,2,3,…

由此可得:x y z ψψψψ

=z n z c

π=

t x y z E E E E =++22

22

2

22()8y

x z n n

n h m a b c

=++

对于立方势箱:a b c == 2222

2

()8t x y z h E n n n ma

=++ 1x y z n n n ===的量子态称为基态,其他的量子态均为激态。当处于激发态时,可能出现两个以上的波函数(量子态)处在同一能级上,即是多重能级,它对应的状态称为多重态,同一能级上的多重态数称为多重度,也称简并度,常以g 表示

例题:在立方势箱中,某平动能级的222

45x y z n n n ++=,求该能级的多重度。

解:因平动量子数,x y n n 和只z n 能是1,2,3 等正整数,所以当22245x y z n n n ++=时,3个

量子数的取值只能是2,4和5,

3个平动量子数有以下种组合:

(2,4,5),(4,2,5),(5,2,4) (2,5,4),(4,5,2),(5,4,2) 该平动能级的多重度。g=3!=6

4.5 微观粒子的转动和振动

4.5.1双粒子刚性转子的转动

如图所示,互相联结的两个微观粒子的质量分别为m 1和m 2,x 表示两个微粒的质心,两个微粒与质心的距离为R 1和R 2,平衡间距R e =R 1 +R 2 该双粒子系统可视为刚性转子,其转动惯量I 为:2Re I μ=

式中()1212/m m m m μ

=+称为折合质量

角动量M I ω=,其中ω为角速度。动能2

2122M T I I

ω==在无外力作用下,双粒子

刚性转子的运动是自由的,位能为零,所以,该系统的总能量E 就等于动能T ,则有:

2

2M H T I

== 因此自由刚性转子的薛定谔方程 2

r 12M E I

=ψψ

球极坐标系下角动量算符为 222

2211sin 2sin sin M

I

???????=-+ ???

???????

θθθθθφ 因此转动薛定谔方程式为:

()2

22211sin .2sin sin h I

θ?θφθθθθφ??

?????-+ ??????????

()r E ?θφ=?

其中Er 为转动能,ψ(θφ)为转动波函数,可采用分离变量法将其分离为ψ(θφ)=Θ(θ)Φ(φ),然后分别求解决()θΘ和()φΦ。

简述建立量子力学基本原理的思想方法

简述建立量子力学基本原理的思想方法 摘要:量子力学是大学物理专业的一门必修理论基础课程,它研究的对象是分子、原子和基本粒子。本文对建立量子力学基本原理的思想方法作一简单叙述,供学员在学习掌握量子力学的基本理论和方法时参考。 关键词:量子力学;力学量;电子;函数 作者简介 0引言 19世纪末,由于科学技术的发展,人们从宏观世界进入到微观领域,发现了一系列经典理论无法解释的现象,比较突出的是黑体辐射、光电效应和原子线光谱。普朗克于1900年引进量子概念后,上述问题才开始得到解决。爱凶斯坦提出了光具有微粒性,从而成功地解释了光电效应。 1量子力学 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 2玻尔的两条假设 玻尔在前人工作的基础上提出了两条假设,成功地解释了氢原子光谱,但对稍微复杂的原予(如氦原子)就无能为力。直到1924年德布罗意提出了微观粒子具有波粒二象性之后才得到完整解释。 1924年,德布罗意在普朗克和爱因斯坦假设的基础上提出了微观粒子具有波粒二象性的假设,即德布罗意关系。1927年,戴维孙和革末将电子作用于镍单晶,得到了与x射线相同的衍射现象,从而圆满地说明了电子具有波动性。 2.1自由粒子的波动性和粒子性 它的运动是最简单的一种运动,它充分地反映了自由粒子的波动性和粒子性,将波(平面波)粒( p,E) 二象性统一在其中。如果粒子不是自由的,而是在一个变化的力场中运动,德布罗意波则不能描写。我们将用一个能够充分反映二象性特点的

量子力学简明教程

量子力学教案 主讲周宙安 《量子力学》课程主要教材及参考书 1、教材: 周世勋,《量子力学教程》,高教出版社,1979 2、主要参考书: [1] 钱伯初,《量子力学》,电子工业出版社,1993 [2] 曾谨言,《量子力学》卷I,第三版,科学出版社,2000 [3] 曾谨言,《量子力学导论》,科学出版社,2003 [4] 钱伯初,《量子力学基本原理及计算方法》,甘肃人民出版社,1984 [5] 咯兴林,《高等量子力学》,高教出版社,1999 [6] L. I.希夫,《量子力学》,人民教育出版社 [7] 钱伯初、曾谨言,《量子力学习题精选与剖析》,上、下册,第二版,科学出版社,1999 [8] 曾谨言、钱伯初,《量子力学专题分析(上)》,高教出版社,1990 [9] 曾谨言,《量子力学专题分析(下)》,高教出版社,1999 [10] P.A.M.Dirac,The Principles of Quantum Mechanics (4th edition), Oxford University Press (Clarendon),Oxford,England,1958;(《量子力学原理》,科学出版社中译本,1979) [11]https://www.doczj.com/doc/db2370776.html,ndau and E.M.Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (2nd edition),Addison-Wesley,Reading,Mass,1965;(《非相对论量子力学》,人民教育出版社中译本,1980)

第一章绪论 量子力学的研究对象: 量子力学是研究微观粒子运动规律的一种基本理论。它是上个世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它不仅在进到物理学中占有及其重要的位置,而且还被广泛地应用到化学、电子学、计算机、天体物理等其他资料。 §1.1经典物理学的困难 一、经典物理学是“最终理论”吗? 十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段。那时,一般物理现象都可以从相应的理论中得到说明: 机械运动(v<

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

量子力学教程第二版答案及补充练习

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学教程高等教育出版社周世勋课后答案详解

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:

011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学基础

量子力学基础 习题 一、单选题 1、在热平衡状态下,黑体的辐出度M(T)与()成正比。 A.T B.T2 C.T3D.T4 2、设有两个黑体,它们的热平衡温度分别为T1、T2(T1>T2),那么,对应于各自的最大单色辐出度的波长λ1、λ2之间的关系为()A.λ1=λ2B.λ1<λ2 C.λ1>λ2D.λ1=2λ2 3、一束紫外光照射到金属铯的表面产生光电效应,其光电流的强度决定于() A、临界频率 B、驰豫时间 C、入射光强度 D、遏止电位 4、一束紫外光照射到某种金属的表面产生光电效应,其光电子的动能决定于() A.入射光强度B.入射光频率 C.脱出功D.驰豫时间 5、设微观自由粒子的速度远小于光速,则根据德布罗意关系,该粒子的波函数可表示成() A.球面波B.单色球面波 C.平面波D.单色平面波 6、在电子衍射实验中,设加速电压为100V,则电子的德布罗意波长约为() A.10nm B.1.0nm C.0.10nm D.0.01nm 7、设光的频率为ν,则该光子的质量可表示为() h A.hνB.ν hν C.mc2D.2c 8、量子力学的测不准关系反映了() A、微观粒子的固有特性 B、测量仪器的精度 C、微观粒子的质量 D、测量方法 9、设电子和质子具有相同的动能,德布罗意波长分别为λe和λp,则有() A.λe>λp B.λe=λp

C.λe<λp D.无法判断 10、微观粒子在空间某处出现的概率与该处()成正比 A.波函数B.波函数的平方 C.波函数的绝对值D.波函数的绝对值的平方 11、波函数的标准化条件是() A.连续B.有限 C.归一化D.单值、有限、连续 12、处于无限深势阱中的粒子() A.能量连续,动量连续B.能量量子化,但动量连续 C.能量量子化,动量也量子化D.能量连续,但动量量子化 二、判断题 1、熔炉中的铁水发出的光是热幅射。() 2、人体也向外发出热幅射,其波长范围在紫外区,所以人的肉眼看不到。() 3、自然界中的一切物体都具有波粒二象性。() 4、一束光照射到金属表面能否产生光电效应,关键在于入射光的强度是否足够 大。() 5、电子衍射实验中,电子的德布罗意波长决定于加速电压。() 6、不确定关系是反映微观粒子运动的普遍规律。() 7、波函数必须满足归一化条件。() 8、薛定谔方程是描述微观粒子运动的基本方程。() 三、填空题 1、黑体是一个理想模型,它是指。 2、光电效应是光的的反映。 3、在光电效应中,电子吸收光子遵守规则。 4、红限频率是指。 5、非相对论性的一维自由粒子的波函数可以表达为。 6、质量为10.0g的子弹,速度为1000m/s,它的德布罗意波长为。 7、不确定关系可以用来区分粒子和粒子,划分力学和力学的界限。 8、德布罗意波既不是机械波又不是电磁波,而是一种。 9、无限深势阱中的粒子的能量必定是。 10、STM的理论基础是。 四、简答题 1、绝对黑体是不是不发射任何辐射?

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学知识总结

量子力学基础知识总结 一.微观粒子的运动特征 1.黑体辐射和能量量子化 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体 普朗克提出能量量子化假设:定温下黑体辐射能量只与辐射频率有关,频率为ν的能量,其数值是不连续的,只能是hν的整数倍,称为能量量子化。 2.光电效应与光子学说 爱因斯坦将能量量子化概念用于电磁辐射,并用以解释光电效应。其提出了光子学说,圆满解释了光电效应。 光子学说内容: ①光是一束光子流,每一种频率的的光的能量都有一个最小单位,称为光子 光子能量ε=hν/c ②光子质量m=hν/c2 ③光子动量p=mc=hν/c= h/λ ④光的强度取决于单位体积内光子的数目,即光子密度。光电效应: hν= W+E K =hν +2 1 mv2,W为脱出功,E k 为光电子的动能。 3.实物微粒的波粒二象性 德布罗意提出实物微粒也具有波性:E=hν p=h/λ 德布罗意波长:λ=h/p=h/(mv) 4. 测不准原理:?x?x p≥h?y?p y ≥h?z?p y ≥h?tE≥h 二、量子力学基本假设 1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。这一函数称为波函数或态函数,简称态。 不含时间的波函数ψ(x,y,z)称为定态波函数。在本课程中主要讨论定态波函数。 由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψdτ为空间某点附近体积元dτ中电子出现的几率。 对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。 波函数ψ可以是复函数, 合格(品优)波函数:单值、连续、平方可积。 2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。 算符:作用对象是函数,作用后函数变为新的函数。

量子力学基础概念试题库完整

一、概念题:(共20分,每小题4分) 1、何为束缚态? 2、当体系处于归一化波函数ψ(,)?r t 所描述的状态时,简述在ψ(,)? r t 状态中测量力学量F 的可能 值及其几率的方法。 3、设粒子在位置表象中处于态),(t r ? ψ,采用 Dirac 符号时,若将ψ(,)? r t 改写为ψ(,)? r t 有何不 妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 4、简述定态微扰理论。 5、Stern —Gerlach 实验证实了什么? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1. 束缚态: 无限远处为零的波函数所描述的状态。能量小于势垒高度,粒子被约束在有限的空间内运动。 2. 首先求解力学量F 对应算符的本征方程:λλλφφφλφ==F F n n n ??,然后将()t r ,? ?按F 的本征态展开: ()?∑+=λφφ?λλd c c t r n n n ,? ,则F 的可能值为λλλλ,,,,n 21???,n F λ=的几率为2 n c ,F 在λλλd +~范围内 的几率为λλd c 2 3. Dirac 符号是不涉及任何表象的抽象符号。位置表象中的波函数应表示为?r ? 。 4. 求解定态薛定谔方程ψψE H =∧ 时,若可以把不显含时间的∧ H 分为大、小两部分∧ ∧ ∧ '+=H H H ) (0,其中(1) ∧) (H 0的本征值)(n E 0和本征函数)(n 0ψ 是可以精确求解的,或已有确定的结果)(n )(n )(n ) (E H 0000ψ ψ =∧,(2)∧ 'H 很 小,称为加在∧) (H 0上的微扰,则可以利用) (n 0ψ和) (n E 0构造出ψ和E 。 5. Gerlack Stein -实验证明了电子自旋的存在。 一、概念题:(共20分,每小题4分) 1、一个物理体系存在束缚态的条件是什么? 2、两个对易的力学量是否一定同时确定?为什么? 3、测不准关系是否与表象有关? 4、在简并定态微扰论中,如?()H 0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 5、在自旋态χ12 ()s z 中,?S x 和?S y 的测不准关系(?)(?)??S S x y 22?是多少? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1、条件:①能量比无穷远处的势小;②能级满足的方程至少有一个解。 2、不一定,只有在它们共同的本征态下才能同时确定。 3、无关。 4、因为作为零级近似的波函数必须保证()()()()()()()()011 1 00E H E H n n n n ??φφ--=-有解。 5、16 4 η。

量子力学基础

《大学物理》作业 No .8量子力学基础 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、选择题:(注意:题目中可能有一个或几个答案正确。) 1. 静止质量不为零的微观粒子作高速运动,这时粒子物质波的波长λ与速度v 有如下关系: [ C ] (A) v ∝λ (B) v 1 ∝λ (C) 2211c v -∝ λ (D) 22v c -∝λ 解:由德布罗意公式和相对论质 — 速公式 2 201 1c v m mv h p -= == λ 得2 20 1 1c v m h - =λ,即2211c v -∝λ 2. 不确定关系式 ≥???x p x 表示在x 方向上 [ D ] (A) 粒子位置不能确定 (B) 粒子动量不能确定 (C) 粒子位置和动量都不能确定 (D) 粒子位置和动量不能同时确定 3. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将 [ D ] (A) 增大2 D 倍。 (B) 增大2D 倍。 (C) 增大D 倍。 (D) 不变。 4. 已知粒子在一维矩形无限深势阱中运动,其波函数为: )(23cos 1)(a x a a x a x ≤≤-= πψ 那么粒子在6 5a x =处出现的概率密度为 [ A ] a 21(A ) a 1 (B) a 21(C) a 1(D) 解:概率密度 )23(cos 1)(22 a x a x πψ=

将65a x =代入上式,得 a a a a x 21)6523(cos 1)(22=?=πψ 5. 波长 λ = 5000 ?的光沿x 轴正方向传播,若光的波长的不确定量?λ=103-?,则利用不确定关系h p x x ≥???可得光子的x 坐标的不确定量至少为: [ C ] (A) 25cm (B )50cm (C) 250cm (D) 500cm 解:由公式p = λh 知: △322105000 -?-=?-=h h p λλ 利用不确定关系h p x x ≥???,可得光子的x 坐标满足 91025?=?≥ ?x p h x ?=250cm 二、填空题 1. 低速运动的质子和α粒子,若它们的德布罗意波长相同,则它们的动量之比=αP :p p 1:1 ;动能之比=αP :E E 4:1 。 解:由p = λ h 知,动量只与λ有关,所以1:1:αP =p p ; 由非相对论动能公式m p E 22 k =,且αp p p =,所以1:4:αP ==p m m E E α 2. 在B = 1.25×10 2 -T 的匀强磁场中沿半径为R =1.66cm 的圆轨道运动的α粒子的德布罗 意波长是 0.1 ? 。(普朗克常量h = 6.63×10-34J·s ,基本电荷e = 1.6×10-19 C) 解:由牛顿第二定律= evB 2R mv 2得eBR mv p 2==,又由λ h p =得 1.0(m)10998.010 66.11025.1106.121063.62112 21934 ≈?=???????===-----eBR h p h λ? 3. 若令c m h e c = λ (称为电子的康普顿波长,其中m e 为电子静止质量,c 为光速,h 为普

量子力学基础

量子力学基础 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第一章量子力学基础 一、教案目的: 通过本章学习,掌握微观粒子运动的特征、量子力学的基本假设,并初步学习运用薛定谔方程去分析和计算势箱中粒子运动的有关问题:b5E2RGbCAP 二、教案内容: 1、微观粒子的运动特征 黑体辐射和能量量子化;光电效应和光子学说;实物粒子的波粒二相性;不确定关系; 2、量子力学基本假设 波函数和微观粒子的状态;物理量和算符;本征态、本征值和薛定谔方程;态叠加原理;泡利原理; 3、箱中粒子的薛定谔方程及其解 三、教案重点 微观粒子运动的特征、量子力学的基本假设 四、教案难点: 量子力学的基本假设 五、教案方法及手段 课堂教案 六、课时分配: 微观粒子的运动特征 2学时 量子力学基本假设 4学时

箱中粒子的薛定谔方程及其解 2学时 七、课外作业 课本p20~21 八、自学内容 1-1微观粒子的运动特征 1900年以前,物理学的发展处于经典物理学阶段<由Newton的经典力学,Maxwell的的电磁场理论,Gibbs的热力学和Boltzmann的统计物理学),这些理论构成一个相当完善的体系,对当时常见的物理现象都可以从中得到说明。p1EanqFDPw 在经典物理学取得上述成就的同时,通过实验又发现了一些新现象,它们是经典物理学无法解释的。如黑体辐射、光电效应、电子波性等实验现象,说明微观粒子具有其不同于宏观物体的运动特征。DXDiTa9E3d 电子、原子、分子和光子等微观粒子,它们表现的行为在一些场合显示粒性,在另一些场合又显示波性,即具有波粒二象性的运动特征。人们对这种波粒二象性的认识是和本世纪物理学的发展密切联系的,是二十世纪初期二十多年自然科学发展的集中体现。RTCrpUDGiT 1.1.1黑体辐射和能量量子化——普朗克< planck)的量子假 说:量子说的起源 黑体是一种能全部吸收照射到它上面的各种波长的光,同时也能在同样条件下发射最大量各种波长光的物体。 带有一个微孔的空心金属球,非常接近于黑体,进入金属球小孔的辐射,经过多次吸收、反射,使射入的辐射全部被吸收。当空腔受热时,空腔壁会发出辐射,极小部分通过小孔逸出。5PCzVD7HxA

量子力学中要用到的数学知识大汇总

第一章矩阵 1.1矩阵的由来、定义和运算方法 1.矩阵的由来 2.矩阵的定义 3.矩阵的相等 4.矩阵的加减法 5.矩阵和数的乘法 6.矩阵和矩阵的乘法 7.转置矩阵 8.零矩阵 9.矩阵的分块 1.2行矩阵和列矩阵 1.行矩阵和列矩阵 2.行矢和列矢 3.Dirac符号 4.矢量的标积和矢量的正交 5.矢量的长度或模 6.右矢与左矢的乘积 1.3方阵 1.方阵和对角阵 2.三对角阵 3.单位矩阵和纯量矩阵 4.Hermite矩阵 5.方阵的行列式,奇异和非奇异方阵 6.方阵的迹 7.方阵之逆 8.酉阵和正交阵 9.酉阵的性质 10.准对角方阵 11.下三角阵和上三角阵 12.对称方阵的平方根 13.正定方阵 14.Jordan块和Jordan标准型 1.4行列式求值和矩阵求逆 1.行列式的展开 https://www.doczj.com/doc/db2370776.html,place展开定理 3.三角阵的行列式 4.行列式的初等变换及其性质 5.利用三角化求行列式的值 6.对称正定方阵的平方根 7.平方根法求对称正定方阵的行列之值 8.平方根法求方阵之逆 9.解方程组法求方阵之逆 10.伴随矩阵

11.伴随矩阵法求方阵之逆 1.5线性代数方程组求解 1.线性代数方程组的矩阵表示 2.用Cramer法则求解线性代数方程组 3.Gauss消元法解线性代数方程组 4.平方根法解线性代数方程组 1.6本征值和本征矢量的计算 1.主阵的本征方程、本征值和本征矢量 2.GayleyHamilton定理及其应用 3.本征矢量的主定理 4.Hermite方阵的对角化——计算本征值和本征矢量的Jacobi法1.7线性变换 1.线性变换的矩阵表示 2.矢量的酉变换 3.相似变换 4.等价矩阵 5.二次型 6.标准型 7.方阵的对角化 参考文献 习题 第二章量子力学基础 2.1波动和微粒的矛盾统一 1.从经典力学到量子力学 2.光的波粒二象性 3.驻波的波动方程 4.电子和其它实物的波动性——de Broglie关系式 5.de Broglie波的实验根据 6.de Broglie波的统计意义 7.态叠加原理 8.动量的几率——以动量为自变量的波函数 2.2量子力学基本方程——Schrdinger方程 1.Schrdinger方程第一式 2.Schrdinger方程第一式的算符表示 3.Schrdinger方程第二式 4.波函数的物理意义 5.力学量的平均值(由坐标波函数计算) 6.力学量的平均值(由动量波函数计算) 2.3算符 1.算符的加法和乘法 2.算符的对易 3.算符的平方 4.线性算符 5.本征函数、本征值和本征方程

《量子力学简明教程》授课教案

《量子力学》电子教案 杨子元编 宝鸡文理学院物理系

一、简单介绍《量子力学》在物理学中的地位与作用 1.物理学课程体系中,分为基础课与专业课 基础课包括力、热、光、电、原子物理 专业课——四大力学:理论、热统、电动、量子力学 2.大学四年中所学所有课程大多为经典物理(即十八、九世纪物理) 只有在量子力学中才涉及近代物理的内容 3.量子力学是从事物理教学及其研究中的一门基础专业学科(讲授意义) 二、学习中应注意的几个问题 1.关于“概念”问题; 量子力学中物理概念距离我们的生活越来越远,因此更加抽象。例“波函数” 概念(与经典概念比较,例“力”概念) 2.克服经典物理思想的束缚,防止用经典物理方法解决量子力学问题。 例:①轨道概念在量子力学已抛弃;②K P E E E +=不再成立,而用 P K E E E +=表示 3.必要的数学知识:偏微分方程,勒让德多项式,贝塞尔函数,矩阵(尤其是矩阵的对角化),厄米多项式,傅里叶变换。 三、教材与参考书 1.张怿慈 《量子力学简明教程》 人民教育出版社 2.曾谨言 《量子力学》上、下册 科学出版社 3.蔡建华 《量子力学》上、下册 人民教育出版社 4.梁昆淼 《物学物理方法》 人民教育出版社 5.[美]玻姆 量子理论 商务印书馆 6.大学物理(93.9—95.4) 《量子力学自学辅导》

第一章 绪 论 量子力学是反映微观粒子(分子、原子、原子核、基本核子等)运动规律的基础理论,它是本世纪二十年代总结大量事实和旧量子的基础上建立起来的,它不仅是近代物理学的基础,而且被广泛的应用于化学和电子学等领域。 在介绍量子力学之前,首先回顾一下量子力学产生的历史过程。 §1.1 经典物理学的困难 一、困难 1687年,牛顿的划时代巨著《自然哲学的教学原理》在伦敦出现。当时,自然科学没有完全从哲学分划出来,而用了哲学这个名称。 牛顿经典力学的主要内容是它的三大定律,到了十九世纪末,二十世纪初牛顿建立的力学大厦远远超出了这三条定律,可以说整个经典物理的大厦已竣工。 机械运动——牛顿力学 电磁现象——麦氏方程 光 学——波动理论 热 学——完整热力学和玻耳兹曼和吉布斯建立的统计物理学 当时物理学家非常自豪和得意,因为当时几乎所有的新发现都能很好地套进现有的模子中。然而正当经典物理大厦逐渐升高时,它庞大的躯体却产生了两大裂痕。 其一是迈克尔逊——莫雷关于地球相对于以太漂移速度零的结果。 经典力学相对原理表明,力学规律在不同参照系中应有相同形式 S 系 a m F = S/ 系 a m F '=' 也就是说对一切力学现象而言,一切惯性系都是等价的。 麦氏电磁理论中,有一光速C (常数),在伽利略变换下,由麦氏方程推出的波动

第一章 量子力学基础

第一章 量子力学基础知识 一、概念题 1、几率波:空间一点上波的强度和粒子出现的几率成正比,即,微粒波的强度 反映粒子出现几率的大小,故称微观粒子波为几率波。 2、测不准关系:一个粒子不能同时具有确定的坐标和动量 3、若一个力学量A 的算符A ?作用于某一状态函数ψ后,等于某一常数a 乘以ψ,即,ψψa A =?,那么对ψ所描述的这个微观体系的状态,其力学量A 具有确定的数值a ,a 称为力学量算符A ?的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A =?称为A ?的本征方程。 4、态叠加原理:若n ψψψψ,,,,321????为某一微观体系的可能状态,由它们线性组 合所得的ψ也是该体系可能存在的状态。其中: ∑=+??????+++=i i i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321???为任意常 数。 5、Pauli 原理:在同一原子轨道或分子轨道上,至多只能容纳两个电子,这两个 电子的自旋状态必须相反。或者说两个自旋相同的电子不能占据相同的轨道。 6、零点能:按经典力学模型,箱中粒子能量最小值为0,但是按照量子力学箱中粒子能量的最小值大于0,最小的能量为228/ml h ,叫做零点能。 二、选择题 1、下列哪一项不是经典物理学的组成部分? ( ) a. 牛顿(Newton)力学 b. 麦克斯韦(Maxwell)的电磁场理论 c. 玻尔兹曼(Boltzmann)的统计物理学 d. 海森堡(Heisenberg)的测不准关系 2、下面哪种判断是错误的?( ) a. 只有当照射光的频率超过某个最小频率时,金属才能发身光电子

量子力学基础考试习题思考题

习题22 22-1.计算下列物体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。 解:(1)具有MeV 10动能的电子,可以试算一下它的速度: 2 12k mv E = ?v c ==>光速,所以要考虑相对论效应。 设电子的静能量为20m c ,总能量可写为:20k E E m c =+,用相对论公式: 22224 0E c p m c =+ ,可得:p = = h p λ= = 348 -= 131.210m -=?; (2)对于具有MeV 10动能的质子,可以试算一下它的速度: 74.410/v m s = ==?,所以不需要考虑相对论效应。 利用德布罗意波的计算公式即可得出: 34 159.110h m p λ--====?。 22-2.计算在彩色电视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。 解:(1)用非相对论公式: 34127.7610h m p λ--====?; (2)用相对论公式:设电子的静能为20m c ,动能为:k E eU =, 由2 0222240E eU m c E c p m c =+=+????? ,有:127.6710m λ-==?。 22-3.求出实物粒子德布罗意波长与粒子动能E K 和静止质量m 0的关系,并得出: E K << m 0c 2时, K E m h 02/≈λ; E K >> m 0c 2时, K E hc /≈λ. 解:由 202c m mc E K -=2 0220])/(1/[c m c c m --=v 解出: 2 2 0/)(c c m E m K += )/(220202 c m E c m E E c K K K ++=v , 根据德布罗意波: )/(/v m h p h ==λ 把上面m ,v 代入得: 2 02 2c m E E hc K K += λ,

物理奥赛辅导第十七章量子力学基础知识

第十七章量子力学基础知识 量子力学是研究微观粒子(如电子,原子和分子等)运动规律的学科 量子力学的建立经历了由经典物理学到旧量子论,再由旧量子论到量子力学两个历史发展阶段。 微观粒子运动的特征 1 、几个代表性的实验 经典物理学发展到19世纪末,在理论上已相当完善,对当时发现的各种物理现象都能加以理论上的说明。它们主要由牛顿的经典力学,麦克斯韦的电、磁和光的电磁波理论,玻耳兹曼和吉布斯等建立的统计物理学组成。19世纪末,人们通过实验发现了一些新的现象,它们无法用经典物理学解释,这些具有代表性的实验有以下3个。 (1)黑体辐射 黑体是指能全部吸收各种波长辐射的物体,它是一种理想的吸收体,同时在加热它时,又能最大程度地辐射出各种波长的电磁波。 绝热的开有一个小孔的金属空腔就是一种良好的黑体模型。进入小孔的辐射,经多次吸收和反射,可使射入的辐射实际上全部被吸收,当空腔受热时,空腔会发出辐射,称为黑体辐射。 实验发现,黑体辐射能量与波长的关系主要与温度有关,而与空腔的形状和制作空腔的材料无关。在不同温度下,黑体辐射的能量(亦称辐射强度)与波长的关系如图所示。 许多物理学家试图用经典热力学和统计力学方法解释黑体辐射现象。瑞利(Rayleigh J W)和金斯(Jeans J H)把分子物理学中能量按自由度均分的原理用于电磁辐射理论,得到的辐射能量公式在长波处接近实验结果,在短波处和实验明显不符。特别是瑞利-金斯的理论预示在短波区域包括紫外以至x射线、γ射线将有越来越高的辐射强度,完全与事实不符,这就是物理学上所谓的“紫外灾难”。维恩(Wien W)假设辐射按波长分布类似于麦克斯韦的分子速度分布,得到的公式在短波处和实验结果接近,在长波处相差很大。 1900年普朗克(Planck M)在深入研究了实验数据,并在经典力学计算的基础上首先提出了“能量量子化”的假设,他认为黑体中原子或分子辐射能量时做简

量子力学基础简答题(经典)

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,)?r t 所描述的状态时,简述在ψ(,)? r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ? ψ,采用Dirac 符号时,若将ψ(,)? r t 改写为ψ(,) ? r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如?() H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ 1 2 ()s z 中,?S x 和?S y 的测不准关系(?)(?)??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger &&方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger &&方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger &&方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

第13章量子力学基础教材

第13章 量子力学基础 13.1 绝对黑体和平常所说的黑色物体有什么区别? 答:绝对黑体是对照射其上的任意辐射全部吸收而不发生反射和透射的物体,而平常所说的黑色物体是只反射黑颜色的物体。 13.2 普朗克量子假设的内容是什么? 答:普朗克量子假设的内容是物体发射和吸收电磁辐射能量总是以νεh =为单位进行。 13.3 光电效应有哪些实验规律?用光的波动理论解释光电效应遇到了哪些困难? 答:光电效应的实验规律为:1)阴极K 在单位时间内所发射的光子数与照射光的强度成正比;2)存在截止频0ν;3)光电子的初动能与照射光的强度无关,而与频率成线性关系; 4)光电效应是瞬时的。 用光的波动理论解释光电效应遇到的困难在于:1)按照波动理论,光波的能量由光强决定,因而逸出光电子的初动能应由光强决定,但光电效应中光电子的初动能却与光强无关;2)若光波供给金属中“自由电子”逸出表面所需的足够能量,光电效应对各种频率的光都能发生,不应存在红限;3)光电子从光波中吸收能量应有一个积累过程,光强越弱,发射光子所需时间就越长。这都与光电效应的实验事实相矛盾。 13.4 波长λ为0.1nm 的X 射线,其光子的能量ε= J 151099.1-?;质量m = kg 321021.2-?;动量p = 1241063.6--???s m kg . 13.5 怎样理解光的波粒二象性? 答:光即具有波动性,又具有粒子性,光是粒子和波的统一,波动和粒子是光的不同侧面的反映。 13.6 氢原子光谱有哪些实验规律? 答:氢原子光谱的实验规律在于氢原子光谱都由分立的谱线组成,并且谱线分布符合组合规律 )11()()(~2 2n k R n T k T kn -=-=ν k 取 ,3,2,1,分别对应于赖曼线系,巴耳米线系,帕形线系,. 13.7 原子的核型结构模型与经典理论存在哪些矛盾? 答:原子的核型结构与经典理论存在如下矛盾:1)按经典电磁辐射理论,原子光谱应是连续的带状光谱;2)不存在稳定的原子。这些结论都与实验事实矛盾。 13.8 如果枪口的直径为5mm,子弹质量为0.01kg,用不确定关系估算子弹射出枪口时的横

相关主题
文本预览
相关文档 最新文档