Microstrip Leaky-Wave Antennas
- 格式:pdf
- 大小:986.03 KB
- 文档页数:7
IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.56,NO.7,JULY20081853
CharacterizationandDesignofCylindrical
MicrostripLeaky-WaveAntennas
Lieh-ChuanLin,HayatoMiyagawa,ToshihideKitazawa,SeniorMember,IEEE,RueyBingHwang,SeniorMember,IEEE,andYu-DeLin,Member,IEEE
Abstract—Thespectral-domainapproachisappliedfortheanalysisandthedesignofthecylindricalmicrostripleaky-waveantenna.Thefirsthigher-orderleaky-modeisthoroughlyinvesti-gated.Weperformthewell-knownspectral-domainapproachandGalerkin’smethodtoacquirethecomplexpropagationconstantsofleakymodes,whichareverifiedwithresultsobtainedbythescattering-parameterextractiontechnique.Twopracticalan-tennasaredesignedandimplemented.Measuredreturnlossandradiationpatternsshowagoodperformanceofthesecylindricalantennas,comparedtothatoftheplanarones.
IndexTerms—Cylindricalmicrostrip,leaky-wave,spectral-domainapproach(SDA).
I.INTRODUCTION
SPACE-WAVEleakymodesonmanykindsofplanar
transmissionlineshavebeenwidelystudiedandalsore-
ceivednumerousattentions[1]–[6].Leaky-waveantennasare
well-knownfortheiradvantagessuchashigh-gain,wide-band,
etc.Theyalsohavethefrequency-scanningfeature.Although
cylindricaltransmissionlineshavebeenresearchedin[7]–[14],
printedleaky-waveantennasbasedoncylindricalsubstrates
haveyettobestudiedthoroughlyintheliteratures[15]–[17],
whichmayfindapplicationsinsystemsthatrequireconformal
antennasincylindricalshapes.
Thispaperfirstpresentsananalysistoobtainthepropaga-
tioncharacteristicsofthefirsthigherorderleakymodeonthe
cylindricalmicrostripantennas.InSectionII,weusethespec-
traldomainapproach(SDA)[18]tocharacterizethefirsthigher
ordermodeofthecylindricalmicrostripline.Odd-symmetry
andeven-symmetrycurrentbasisfunctionsarechoseninthe
longitudinalandtransversedirections,combinedwiththeedge
conditions.SectionIIIcontainsthenumericalresultsthatchar-
acterizetheeffectsofdifferentouterradiiofcylinders,substrate
thicknesses,andstripwidths.Theleaky-modescatteringparam-
eterextractiontechnique[19]isalsousedtoprovideaverifi-
cationofthenumericalresultsobtainedbySDA.SectionIV
showstheimplementationandmeasurementsoftwocylindrical
leaky-waveantennaswithaperture-couplingfeedingstructures.
Bothoftheseantennashavehighgainsandwidebandwidth.
ManuscriptreceivedDecember8,2006;revisedJanuary25,2008.Pub-lishedJuly7,2008(projected).ThisworkwassupportedinpartbytheNationalScienceCouncilunderGrantsNSC95–2218-E-009–041andNSC95–2752-E-002–009,andinpartbytheKinkiMobileRadioCenter,FoundationunderKMRCR&DGrantforMobileWireless.L-.C.Lin,R.B.Hwang,andY.-D.LinarewithNationalChiaoTungUni-versity,Hsinchu,Taiwan,R.O.C.(e-mail:cm_doglin@hotmail.com).H.MiyagawaandT.KitazawaarewithRitsumeikanUniversity,Kusatsu,Shiga525-8577,Japan.DigitalObjectIdentifier
10.1109/TAP.2008.924693Fig.1.Thecross-sectionalviewofthecylindricalmicrostripline.
II.THEORY
Fig.1showsthecrosssectionofthecylindricalmicrostrip
line.RegionIisthecylindricalsubstratewithapermittivityof
andathicknessof.RegionIIisfreespace.The
stripwithacircumferentialwidthisplacedontopofthesub-
strate.Andtheinnergroundconductorislocatedatacircumfer-
enceofradius.Thepermeabilitiesofallmaterialsare.The
thicknessofthestripandthegroundconductorareassumedto
bezeros.Weexpandthez-componentsoffieldsincylindrical
coordinatesbyinverseFourierseries(suppressingthetime-har-
monicexpressionandz-dependence)[12]as(1)(2)(3)
(4)where
anddefinethe-directionpropagationconstantsuchthat
,whereandaretheattenuationcon-
stantandthephaseconstant,respectively.isthe-directed
propagationconstant.Thecanbeexpressed
intermsoffromMaxwell’sequationsincylindrical
coordinates.
Toanalyzethefirsthigherorderleakymodewithanodd
symmetry,weplaceaPECboundaryatthebottom
0018-926X/$25.00©2008IEEE1854IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.56,NO.7,JULY2008
Fig.2.ThePECboundaryrepresentationandtransformation.
inFig.2.ThelongitudinalfieldsbetweenthePEC
sidewallsarethestandingwaves,inthecircumferentialdirec-
tionasopposedtothecreepingwavesin[15].Inthestructure
underconsiderationinthispaper,thepropagationdirectionof
themicrostripleaky-waveantennaisalongthe-directionofthe
cylinder.Shouldsomeapplicationsdemandthatthepropagation
directionofthemicrostripleaky-waveantennasbealongthe
-directionofthecylinder,theanalysismethodin[15]thatim-
plementedWatsontransformtotakeintoaccount,thecreeping
waves,surfacewaves,andspace-waveleakywavesshouldbe
employed.
Thecross-sectiononthe-planecanbetransformedinto
thatoftheplanarmicrostriplinewiththePECsidewalls,like
shieldedmicrostriplines.Thisdirectmappingissimilartothat
usedin[20].Sincethetwoendpointsand
areactuallythesamepointsandatthesamePECboundary,thefieldsbetweenthemareperiodicfunctions.
Tocomputethefieldsinthesidewalls,thevariablesof
theinverseFourierseries(1)–(4)areintegersontherealaxis(-axis)ofthe-plane.Insolvingplanarmicrostripleaky-wave
structures[21]–[24],thevariablesusedinintegrationsover
therealaxisarecontinuous;however,variablesarediscretein
solvingcylindricalstructures.Sincethesurface-waveleakage
phenomenoninplanartransmissionlineswillnotoccurin
cylindricalsubstrates,noconsiderationofthesurfacewave
leakageisneededinthisanalysis.Thebranchpointsinsolving
planarmicrostripleaky-wavestructures[21]–[24]arenot
neededinsolvingcylindricalstructuresbecausethevariables
areirrelevantto.
Thesignof-directionwavenumberinfreespace
intheseries(1)–(4)shouldbechosenproperlytosat-
isfytheexponentialgrowthconditionofthespace-waveleakage
inthepositive-direction,andthissquarerootisattheimproper
Riemannsheet.Thesimilarchoiceofbranchisdefinedin[25].
Resortingtotheorthogonalityoftheeigenfunctionindi-
rection,boundaryconditionsinspectraldomainareusedtode-
terminetheunknowns
Onthegroundconductor
(5)
Ontheboundarybetweenthesubstrateandtheair(6)
(7)Onthestrip(8)
(9)wherearetheFouriertransformsofthecurrentden-sity,onthestrip.From(1)–(4)and(5)–(9)withsomealgebraicoperations,
aresolvedandweobtaintherelationshipsbetweenand(10)
(11)
Thecurrentdensities,areexpandedintermsofbasisfunctions,as
(12)
withunknowncoefficients.Thebasisfunctionsusedinthecomputationsare(13a)
(13b)
consideringthatz-componentand-componentcurrentsareoddandevenandfunctionsof,respectively.Thenumbersofbasisfunctionsand,areand,respectively.TakingtheinverseFouriertransformof(10)–(11),wecanob-tainthetangentialfieldinRegionII.Thenweapplythere-mainingboundaryconditionsthatthetangentialfieldsvanishonthestrip(14)
(15)
Fornumericalcomputation,wetaketheinnerproductoftheaboveequationswiththebasisfunctionsandastestingfunctions(Galerkin’smethod)overthestrip
(16)