当前位置:文档之家› 分类讨论是一种重要的数学思想方法

分类讨论是一种重要的数学思想方法

分类讨论是一种重要的数学思想方法
分类讨论是一种重要的数学思想方法

分类讨论是一种重要的数学思想方法,是高考考查的重点和热点问题。对分类讨论思想的考查通常以导数为载体。学生在处理分类讨论问题时,有的不知道分类,有的知道分类但找不到分界点,有的讨论过程中有重复和遗漏,有的讨论之后不会归纳总结,下面结合一教学案例,谈谈我在这方面的教学体会。

一、课堂片段

已知函数,讨论函数的单调区间。

教师:观察函数结构特点,用什么方法求函数的单调区间?

学生:函数式是由对数式与一次式组成,求函数单调区间应用导数的方法。

教师:请A同学来解答这道题。

学生A:首先求导函数

由得,所以;

由得,所以;

所以,函数在区间上单调递增;在区间上单调递减。

这时早有学生按捺不住,有的说忽略了定义域;有的说不等式解的不对,没有分类讨论。于是教师就安排分组讨论解答此题。3分钟后,小组代表发言。

学生B:函数的定义域是,

由得,因为,所以

讨论①当时,,;

②当时,恒成立,所以时,

由得,因为,所以

讨论③当时,;

④当时,不等式不成立,无解。

综上所述:当时,在区间上单调递增,在区间上单调递减;当时,

在区间上单调递增。

教师:同学B的解答规范完整,解答过程的难点在于分类讨论,你为什么要以零为界对进行分类?

学生B:由得出这一步,由于这是解关于的一元一次不等式,要解出必须同除以

系数,当为正数时不改变不等号的方向,当为负数时改变不等号的方向,因此要对系数以零为界分类讨论。

教师:好﹗用导数求函数的单调性应注意什么?

学生C:首先应注意求函数的定义域;若含有参数应注意分类讨论,分类讨论应把握时机,做到不重不漏。教师:同学A你明白了吗?

学生A:哦,好像明白点了。

二、课后访谈

教师:由,得出;你的根据是什么?

学生A:取倒数,大数变小。

教师:这是有条件的,任何数都有倒数吗?下面我举几个例子:给出不等式,,

分别取倒数来检验你的结论,你发现规律了吗?

学生A:零没有倒数。同号两数取倒数,改变不等号的方向;异号两数取倒数,则不改变不等号的方向。教师:想一想哪一种常见函数有这一性质?

学生A:好像反比例函数,它区间在和上都是减函数。

教师:现在你可用上述知识解课上的题.

学生A:由得

当时,所以,

当时,所以,

当时,,所以,

以下学生A比较顺利的完成此题的解答。

教师:现在回到课上的问题,当解到这一步时,你会想到分类讨论吗?你能说说讨论的原因吗?

学生:现在能想到。因为字母可表示任意数,可以是正数,也可以是负数,还可以是零,要解出,必须除以,根据不等式的性质必须对以零为界讨论。

教师:谈谈你解题的体会。

学生A :解这类题首先应注意函数的定义域;其次知识上不能有漏洞,不等式的概念和性质要清晰;再把条件想全,注意各条件之间的关系;然后列出不等式组,解不等式的过程中要合理变形,把握好讨论的时机,合理分类,一类一类的去解决,最后注意归纳总结。

老师:很好,解不等式需要同解变形,下一步必须和上一步等价,讨论是自然而然的产生。你再来谈谈以前解分类讨论题的感受。

学生A :有的时候不知道分类;有的时候知道分类,但分界点找不到;有的时候分类的时机不对,提前或超后了;有的时候分类有遗漏或重复,有的时候过程很乱,怕分类讨论问题。

教师:从今天你做的题来看,相信你通过学习是能够做好分类讨论问题的。做分类讨论问题和其它问题一样,有了入手思路后,正常的运算和推理,当感觉按一个方向进行不下去时,讨论的时机来临了,然后一类一类的处理,自然的进行。注意做到不重不漏,归纳总结。最后我给学生A留了下列一组题目

①讨论函数的单调性;

②讨论函数的单调性;

③讨论函数的单调性;

④函数在区间上是减函数,求实数的取值范围。

学生A做完后和老师作了交流,他说:这几个问题层层递进,①②两个问题解的过程中只涉及只含自变量的分式不等式,只要有解一次、二次不等式的基础就能做出来;③④两个问题在前两问的启发下顺利的完成了。我的体会是对含字母的问题,首先弄清是解谁为元的不等式,把字母看作常数,不能急于讨论,正常的运算,进行到字母取不同数值时有不同的结果时,按一个方向进行时就出错了,讨论的时机到了,讨论时再把字母看作变数来处理,确定好界点,分好类,一类一类的讨论,自然而然的解题就可以了。三、教学反思

对此现象,引起了我的思考。对分讨论问题,有的学生不知道为什么要分类讨论,有的同学知道需要分类讨论;但分类讨论的时机和分界点的确定把握不好;有的同学在分类过程中有重复和遗漏;有的同学分类讨论之后不善于归纳总结。面对解含字母的不等式,学生之所以不会分类讨论,原因是对不等式的概念和性质不清晰。因此要解决好分类讨论问题,必须重视对数学概念、定理、公式、法则的系统学习和掌握。在概念教学上,教师应重视概念的形成过程,从具体事例出发,感知体验,到抽象概括出本质属性得出概念,再应用概念解决问题,建立形成概念的体系;在问题教学上,教师应设计有层次性的问题,在解决问题的过程中注意培养学生逻辑思维和规范表述,解题之后再回到概念、定理、公式上来,从而透彻的理解和掌握数学知识。教师应始终重视学生数学的基础知识、基本技能和基本方法的培养,注重提高学生的数学思维能力,不断增强学生的数学素养,使学生能站在更高的角度上去分析问题和解决问题。

1. 教学设计要设置恰当的起点。

教师应在充分了解学生的已有的基础上,设计教学内容。比如导数的应用一课,学生对导数的概念和几何意义是否清楚,求导公式和法则是否掌握,用导数解函数的单调性问题,实质是解不等式问题。解一元一次,一元二次不等式的基础是否过关。恰倒好处的设置起点,可吸引学生的注意力,激发学生的求知欲。

2. 教学设计要设置恰当的梯度。

教师在课的设计上要有层次,由浅入深,思路清晰。比如导数的应用一课,从函数类型上考虑,设计的层次依次是三次函数,含指数型的函数,含对数型的函数;从函数式结构上考虑,可设计的层次依次是不含字母系数和含有字母系数;从思维的角度考虑,设计的层次依次是正向思维、逆向思维和发散思维。有层

次的设计可以激发学生的潜能,调动学生的积极性。

3. 教学设计要注意归纳总结。

在新授课的设计中,应注意概念、定理、公式的形成过程,总结推导定理、公式的思路和方法。在习题课的设计中,应注意知识与方法的复习,设计有层次的问题。解题之后注意总结题型特点,概括解题方法。在试卷讲评课的设计中,要注意把学生的典型错误归类,分析错因。讲方法、讲思路,总结解题规律、寻求联系,高度概括。

4. 教学设计要有延续性。

学生对某一数学思想方法的理解和掌握,需要一个长期的、潜移默化的过程,教学设计应考虑到学生的可接受程度,在设计上即要考虑近期目标,又要有长远打算。对某一思想方法的渗透不要一步到位,对重要的数学思想方法的渗透应贯穿整个高中阶段。比如对分类讨论思想的教学设计,在高一学习函数、方程和不等式中做一些初步尝试,在高二学习解析几何、导数时重点渗透。在高三总复习的过程中始终要重视分类讨论问题的设计,渗透分类讨论思想,让分类讨论水到渠成。

高中数学解题思想之分类讨论思想

分类讨论思想方法 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。 引起分类讨论的原因主要是以下几个方面: ①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 ②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。 ③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。 解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 Ⅰ、再现性题组: 1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A?B,那么a的范围是_____。 A. 0≤a≤1 B. a≤1 C. a<1 D. 00且a≠1,p=log a (a3+a+1),q=log a (a2+a+1),则p、q的大小关系是 _____。 A. p=q B. pq D.当a>1时,p>q;当0

几种重要的数学思想方法

几种重要的数学思想方法 韩晓荣 数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。 《数学课程标准》在对初中阶段的教学建议中要求“对于重要的数学思想方法应体现螺旋上升的、不断深化的过程,不宜集中体现”。这就要求我们教师能在实际的教学过程中不断地发现、总结、渗透数学思想方法。 一、化归思想, 所谓“化归”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。我们也常把它称之为“转化思想”。例如:解分式方程转化为解整式方程,解“二元”方程转化为解“一元”方程,解多边形问题转化为解三角形问题等等。 二、数形结合的思想方法 数形结合思想是指将数与图形结合起来解决问题的一种思维方式。著名的数学家华罗庚曾经说过:“数缺形时少直观,形少数时难入微。”这就是在强调把数和形结合起来考虑的重要性。在教材《有理数》里面用数轴上的点来表示有理数,就是最简单的数形结合思想的体现。 三、分类讨论的思想方法 在渗透分类讨论思想的过程中,我认为首要的是分类。比如在《有理数》研究相反数、绝对值、有理数的乘法运算的符号法则等都是按有理数分成正数、负数、零三类分别研究的:在《平面图形的认识》一章中,用分类讨论思想进行了角的分类、点和直线的位置关系的分类、两条直线位置关系的分类。这种思想方法主要可以避免漏解、错解。 四、方程思想 方程思想指借助解方程来求出未知量的一种解题策略。我们知道方程是刻画现实世界的一个有效的数学模型。所以方程思想实际上就是由实际问题抽象为方程过程的数学建模思想。例如利用一元一次方程,一元二次方程能解决好多实际问题。 五、从特殊到一般的思想方法

初中数学分类讨论思想在教学中的应用

初中数学分类讨论思想在教学中的应用 新课标指出:“通过义务教育阶段的数学学习,学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能”。所以在数学教学中有效地渗透,培养数学思想方法,已逐渐成为数学、课改的热点。所谓数学思想,是指人们对数学科学研究的本质及规律的理性认识。数学思想是数学的精髓。初中阶段常见的数学思想包括:函数与方程思想,化归思杨,分类讨论思想、数形结合思想等。其中分类讨论思想是初中数学中最常见、最重要的一种数学思想,它贯穿于整个初中数学,它有利于考查学生的综合数学基础知识和灵活运用能力。 本文从分类讨论思想的概念和特点,引起分类讨论的原因,以及分类讨论思想在数学教学中的应用举例等内容展开,比较系统全面地介绍了分类讨论思想。 一、分类讨论思想的概念 分类讨论思想是一种最基本的解决问题的思维策略,就是把要研究的数学对象按照标准划分为若干不同的类别,然后逐类进行研究,求解的一种数学解题思想。它是问题不能以统一的同一种方法处理或同一形式来表述、概括时,根据数学对象的本质属性的相同点和不同点,再按照一定的原则或某一确定的标准,在比较的基础上,将对象划分为若干个既有

联系又有区别的部分,进行逐类讨论,最后把几类结论汇总,从而得出问题的答案。分类讨论的实质是化繁为简,将一个复杂的问题分为几个简单的问题,分而治之。 二、引起分类讨论的原因 分类讨论思想贯穿于整个中学数学的全部内容中。初中阶段数学运用分类讨论思想解决的数学问题,其引起分类的原因主要可以归结为以下几个方面: 1.概念本身是分类定义的。如绝对值等。 2.问题中涉及的数学定理、公式或运算性质、法则是有条件或范围是限制的,或者是分类给出的。 3.含有字母系数(参数)的问题,有时需对该字母的不同取值范围进行讨论。 4.某些不确定的数量、不确定的图形的形状或位置,不确定的结论等都要进行分类讨论。 三、解答分类讨论型问题的步骤 分类讨论型问题常与开放探究型问题综合在一起,不论是在分类中探究,还是在探究中分类,都需要具备扎实的基础知识,和灵活的思维方式,对问题进行全面衡量、统筹兼顾,切忌以偏概全。解答分类讨论型问题的关键是要有分类讨论的意识,克服想当然的错误习惯。 通常解答分类讨论型问题的一般步骤是: 1.确定分类对象。

初中数学中的主要数学思想方法

初中数学中的主要数学思想方法 初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等. (1) 转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容 易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、 陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题. 初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形 的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用 的最为广泛.

(2) 数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究 是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数” ) 与直观的图象(“形“ ) 结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”, 以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形” 两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用. 譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的 应用.再比如,用数形结合的思想学习相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度. (3) 分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的 种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、

数学思想与方法作业

数学思想与方法作业一 一、简答题 1、分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。 答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。 代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。 它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。 2、比较决定性现象和随机现象的特点,简单叙述确定数学的局限。 二、论述题 1.论述社会科学数学化的主要原因。 2、论述数学的三次危机对数学发展的作用。 答:第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。 第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。 第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。 由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的 历史,斗争的结果就是数学领域的发展。 三、分析题 1.分析《几何原本》思想方法的特点,为什么? 2、分析《九章算术》思想方法的特点,为什么? 答:(1)开放的归纳体系 从《九章算术》的内容可以看出,它是以应用问题解法集成的体例编纂而成的书,因此它是一个与社会实践紧密联系的开放体系。 在《九章算术》中通常是先举出一些问题,从中归纳出某一类问题的一般解法;再把各类算法综合起来,得到解决该领域中各种问题的方法;最后,把解决各领域中问题的数学方法全部综 合起来,就得到整个《九章算术》。 另外该书还按解决问题的不同数学方法进行归纳,从这些方法中提炼出数学模型,最后再以数学模型立章写入《九章算术》。因此,《九章算术》是一个开放的归纳体系。 (2)算法化的内容 《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。因此,内容的算法化是《九章算术》思想方法上的特点之一。 (3)模型化的方法 《九章算术》各章都是先从相应的社会实践中选择具有典型意义的现实原型,并把它们表述成问题,然后通过“术”使其转化为数学模型。当然有的章采取的是由数学模型到原型的过程,即先给出数学模型,然后再举出可以应用的原型。

浅谈数学解题中的分类讨论思想

浅谈数学解题中的分类讨论思想 洪湖市第一中学 付志刚 分类讨论的数学思想方法就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此有关分类讨论的数学命题在高考试题中占有重要位置。本文想就分类讨论的原则、方法和步骤等作一些阐述,不妥之处,敬请斧正。 一、科学合理的分类 把一个集合分成若干个非空真子集(、、? ? ?)(≥,∈),使集合中的每一个元素属于且仅属于某一个子集。即 ①∪∪∪?? ? ?∪= ②∩=φ(∈,且≠)。 则称对集进行了一次科学的分类(或称一次逻辑划分) 科学的分类满足两个条件:条件①保证分类不遗漏;条件②保证分类不重复。在此基础上根据问题的条件和性质,应尽可能减少分类。 二、确定分类标准 在确定讨论的对象后,最困难是确定分类的标准,一般来讲,分类标准的确定通常有三种: ()根据数学概念来确定分类标准 例如:绝对值的定义是: 所以在解含有绝对值的不等式 (-)≥时,就必须根据确定 , (-)正负的值和将定义域(,)分成三个区间进行讨论,即<<, ≤<,≤<三种情形分类讨论。 例、 已知动点到原点的距离为,到直线:=的距离为,且= ()求点的轨迹方程。 ()过原点作倾斜角为α的直线与点的轨迹曲线交于两点,求弦长||的最大值及对应的倾斜角α。 解:()设点的坐标为(),依题意可得: 根据绝对值的概念,轨迹方程取决于>还是≤,所以以为标准进行分类讨论可 得轨迹方程为: 解()如图,由于,的位置变化, 弦长||的表达式不同,故必须分点, 都在曲线()以及一点 在曲线() 上而另一点在曲线-(-)上可求得: 从而知当 或 时 ()根据数学中的定理,公式和性质确定分类标准。 数学中的某些公式,定理,性质在不同条件下有不同的结论,在运用它们时,就要分类讨论,分类的依据是公式中的条件。 ()()()?????-==0000< >a a a a a a 3131 314 222=-++x y x ???()() 3221<

小学数学中常见的数学思想方法有哪些.

小学数学中常见的数学思想方法有哪些? 1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。 2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 4、符号化思想方法 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化

及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。 5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

中考数学专题复习专题三大数学思想方法第一节分类讨论思想训练

专题三 5大数学思想方法 第一节 分类讨论思想 类型一 由概念内涵分类 (2018·山东潍坊中考)如图1,抛物线y 1=ax 2 -12x +c 与x 轴交于点A 和点B(1,0),与y 轴交于 点C(0,3 4),抛物线y 1的顶点为G ,GM⊥x 轴于点M.将抛物线y 1平移后得到顶点为B 且对称轴为直线l 的 抛物线y 2. (1)求抛物线y 2的表达式; (2)如图2,在直线l 上是否存在点T ,使△TAC 是等腰三角形?若存在,请求出所有点T 的坐标;若不存在,请说明理由; (3)点P 为抛物线y 1上一动点,过点P 作y 轴的平行线交抛物线y 2于点Q ,点Q 关于直线l 的对称点为R.若以P ,Q ,R 为顶点的三角形与△AMG 全等,求直线PR 的表达式. 【分析】(1)应用待定系数法求表达式; (2)设出点T 坐标,表示出△TAC 三边,进行分类讨论; (3)设出点P 坐标,表示出Q ,R 坐标及PQ ,QR ,根据以P ,Q ,R 为顶点的三角形与△AMG 全等,分类讨论对应边相等的可能性即可. 【自主解答】

此类题型与概念的条件有关,如等腰三角形有两条边相等(没有明确哪两条边相等)、直角三角形有一个角是直角(没有明确哪个角是直角)等,解决这类问题的关键是对概念内涵的理解,而且在分类讨论后还要判断是否符合概念本身的要求(如能否组成三角形). 1.(2018·安徽中考改编)若一个数的绝对值是8,则这个数是( ) A .-8 B .8 C .±8 D .-18 类型二 由公式条件分类 (2018·浙江嘉兴中考)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫

小学数学常见数学思想方法归纳与整理

小学数学常见数学思想方法归纳与整理 1、对应思想方法 对应是人们对两个集合元素之间的联系的一种思想方法。小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线(数轴)上的点与表示具体大小的数的一一对应,又如分数应用题中一个具体数量与一个抽象分数(分率)的对应等。对应思想也是解答一般应用题的常见方法。 2、转化思想方法: 这是解决数学问题的重要策略。是由一种形式变换成另一种形式的思想方法。如几何形体的等积变换、解方程的同解变换、公式的变形等。在计算中也常常用到转化,如甲÷乙(零除外)=甲×,又如除数是小数的除法可以转化成除数是整数的除法来计算。在解应用题时,常常对条件或问题进行转化。通过转化达到化难为易、化新为旧、化繁为简、化整为零、化曲为直等。 3.符号化思想方法: 数学的思维离不开符号的形式(图、表),这样可大大地简化和加速思维的进程。符号化语言是数学高度抽象的要求。如定律a.b=b.a,公式S=vt等都是用字母表示数和量的一般规律,而运算的本身就是符号化的语言。所以说,符号化思想方法是数学信息的载体,也是人们进行定量分析和系统分析的一种载体。 4、分类思想方法: 分类的思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如对自然数的分类,若按能否被2整除可分为奇数和偶数,若按约数的个数分则可分为质数、合数和1。又如三角形既可按角分,也可按边分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性。数学知识的分类有助于学生对知识的梳理和建构。 5、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 6、类比思想方法

初一数学分类讨论思想例题分析及练习

分类讨论思想 在数学中,如果一个命题的条件或结论不唯一确定,有多种可能情况,难以统一解答,就需要按可能出现的各种情况分门别类的加以讨论,最后综合归纳出问题的正确答案,这种解题方法叫做分类讨论。 在数学学习中,我们不仅要分阶段学习知识,还要适时的总结一下数学思想方法。初中常见的数学思想有:分类讨论思想、数形结合思想、转化思想、方程思想等。分类讨论思想是大家在中学阶段需要掌握的重要思想方法。特别就中考而言,经常出现带有这种思想的考题。几乎可以这么说:“分类讨论一旦出现,就是中高档次题”。今天,我们就带着大家把初一一年常见的分类讨论问题大致整理一下。 在分类讨论的问题中有三个重要的注意事项。 1. 什么样的题会出现分类讨论思想--往往是在题目中的基本步骤中出现了“条件不确定,无法进行下一步”(如几何中,画图的不确定;代数中,出现字母系数等)。 2. 分类讨论需要注意什么----关键是“不重、不漏”,特别要注意分类标准的统一性。 3. 分类讨论中最容易错的是什么--总是有双重易错点“讨论有重漏,讨论之后不检验是否合题意”。 【例1】解方程:|x-1|=2 分析:绝对值为2 的数有2个 解:x-1=2或x-1=-2, 则x=3或x=-1 说明应该说,绝对值问题是我们在上学期最初见过的“难题”。其实归根究底,一般考察绝对值的问题有三。 1. 化简(如当a<0b即a-b>0 ②a=b即a-b=0 ③a0时,2a>0,即(1+a)-(1-a)>0,即1+a>1-a ②当a=0时,2a=0,即(1+a)-(1-a)=0,即1+a=1-a ③当a<0时,2a<0,即(1+a)-(1-a)<0,即1+a<1-a

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础 高考把函数与方程思想作为七种重要思想方法重点来考查 第二:数形结合思想: (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系 在二维空间,实数对与坐标平面上的点建立一一对应关系 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法 (2)从具体出发,选取适当的分类标准 (3)划分只是手段,分类研究才是目的 (4)有分有合,先分后合,是分类整合思想的本质属性 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性 第四:化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题

(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化 第五:特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论 (3)由特殊到一般,再由一般到特殊的反复认识过程 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向 第六:有限与无限的思想: (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查 第七:或然与必然的思想: (1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性 (2)偶然中找必然,再用必然规律解决偶然 (3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、

数学总复习之数学思想第2讲《分类讨论》

数学总复习之数学思想第2讲《分类讨论》 题型一 根据数学概念分类讨论 【例题1】在△ABC 中,已知sin B =154,a =6,b =8,求边c 的长.. 题型二 根据公式、定理、性质的条件分类讨论 【例题2】数列{}n a 的前n 项和为221n S n n =+-,则其通项n a = . 题型三 根据变量或参数的取值情况分类讨论 【例题3】解关于x 的不等式01)1(2 <++-x a ax . 题型四 根据图形位置或形状变化分类讨论 【例题4】在△ABC 中,AB =(2,3),AC =(1,k ),若△ABC 是Rt △,求k 的值.

1. 等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是 ( ) A .1 B .-12 C .1或-12 D .-1或12 2.设集合A ={x |x 2+x -12=0},集合B ={x |kx +1=0},如果A ∪B =A ,则由实数 k 组成的集合中所有元素的和与积分别为 ( ) A .-112,0 B.112,-112 C.112,0 D.14,-112 3.一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这直线方程为( ) A. x y +-=70 B. 250x y -= C. x y x y +-=-=70250或 D. x y y x ++=-=70250或 4.不等式2 (2)2(2)40a x a x -+--<对一切x ∈R 恒成立,则a 的取值范围是 ( ) A .(-∞,2] B .[-2,2] C .(-2,2] D .(-∞,-2) 5.若圆柱的侧面展开图是边长为4和2的矩形,则圆柱的体积是 . 6.函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是 . 7.已知a ∈R ,若关于x 的方程2104 x x a a ++- +=有实根,求a 的取值范围. 8. 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式; (2)设b n =(4-a n )q n -1 (q ≠0,n ∈N *),求数列{b n }的前n 项和S n .

小学数学思想方法有哪些整理完整版

小学数学思想方法有哪 些整理 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

小学数学思想方法有哪些 《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验。 “基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果。在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想,但最上位的思想还是演绎和归纳。之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别。每一个具体的方法可能是重要的,但它们是个案,不具有一般性。作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了。这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法。 史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论。我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力。而这正是归纳推理的能力。 就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容。与演绎推理相反,归纳推理是一种“从特殊到一般的推理”。 借助归纳推理可以培养学生“预测结果”和“探究成因”的能力,是演绎推理不可比拟的。从方法论的角度考虑,“双基教育”缺少归纳能力的培养,对学生未来走向社会不利,对培养创新性人才不利。 一、什么是小学数学思想方法 所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。 所谓的数学方法,就是解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。

分类讨论的思想方法

分类讨论的思想方法 慕泽刚 (重庆市龙坡区渝西中学 401326) 一、知识要点概述 1.分类讨论的思想方法的原理及作用:在研究与解决数学问题时,如果问题不能以统一的同一种方法处理或同一种形式表述、概括,可根据数学对象的本质属性的相同和不同点,按照一定的原则或某一确定的标准,在比较的基础上,将数学对象划分为若干既有联系又有区别的部分,然后逐类进行讨论,再把这几类的结论汇总,从而得出问题的答案,这种研究解决问题的思想方法就是分类讨论的思想方法.分类讨论的思想方法是中学数学的基本方法之一,在近几年的高考试题中都把分类讨论思想方法列为重要的思想方法来考查,体现出其重要的位置.分类讨论的思想方法不仅具有明显的逻辑性、题型覆盖知识点较多、综合性强等特点,而且还有利于对学生知识面的考查、需要学生有一定的分析能力、一定分类技巧,对学生能力的考查有着重要的作用.分类讨论的思想的实质就是把数学问题中的各种限制条件的制约及变动因素的影响而采取的化整为零、各个突破的解题手段. 2.引入分类讨论的主要原因 (1)由数学概念引起的分类讨论:如绝对值的定义、直线与平面所成的角、定比分点坐标公式等; (2)由数学运算要求引起的分类讨论:如除法运算中除数不为零、对数中真数与底数的要求等; (3)由函数的性质、定理、公式的限制引起的分类讨论; (4)由图形的不确定引起的分类讨论; (5)由参数的变化引起的分类讨论; (6)按实际问题的情况而分类讨论. 二、解题方法指导 1.分类讨论的思想方法的步骤:(1)确定标准;(2)合理分类;(3)逐类讨论;(4)归纳总结. 2.简化分类讨论的策略:(1)消去参数;(2)整体换元;(3)变更主元;(4)考虑反面;(5)整体变形; (6)数形结合;(7)缩小范围等. 3.解题时把好“四关” (1)要深刻理解基本知识与基本原理,把好“基础关”; (2)要找准划分标准,把好“分类关”; (3)要保证条理分明,层次清晰,把好“逻辑关”; (4)要注意对照题中的限制条件或隐含信息,合理取舍,把好“检验关”. 三、范例剖析 例1解关于x 的不等式:a(x-1)x-2 >1(a ≠1) 解析:原不等式等价于:(a-1)x-(a-2)x-2>0,即(a ﹣1)(x ﹣a-2a-1 )(x ﹣2)>0 ① 若a>1,则①等价于(x ﹣a-2a-1 )(x ﹣2)>0. 又∵2﹣a-2a-1=﹣1a-1﹣1<0,∴a-2a-1 <2 ∴原不等式的解集为;(﹣∞,a-2a-1 )∪(2,+∞); 若a<1时,则①等价于(x ﹣a-2a-1)(x ﹣2)<0.由于2﹣a-2a-1=a a-1, 当02,∴原不等式的解集为(2,a-2a-1 ). 当a<0时,a-2a-1<2,∴原不等式的解集为(a-2a-1 ,2).

分类讨论的数学思想方法

一模试卷课后作业 一、“分类讨论”概述 二、巩固练习: 1、(2013?河西区一模)如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,P 是斜边AB 上一动点(不与点A 、B 重合),PQ ⊥AB 交△ABC 的直角边于点Q ,设AP 为x ,△APQ 的面积为y ,则下列图象中,能表示y 关于x 的函数关系的图象大致是( ) 2、△ABC 中,AB=AC ,AB 的中垂线与AC 所在的直线相交所得的锐角为40度,则底角B 的度数为 __________ 三、方法探究: 1、 在下图三角形的边上找出一点,使得该点与三角形的两顶点构成等腰三角形. 2、在平面直角坐标系中,已知点P (-2,-1). (1)点T (t ,0)是x 轴上的一个动点。当t 取何值时,△TOP 是等腰三角形? (2) 过P 作y 轴的垂线PA,垂足为A.点T 为坐标系中的一点。以点A.O.P.T 为顶点的四边形为平行四边形,请写出点T 的坐 (3) 过P 作y 轴的垂线PA,垂足为A.点T 为坐标轴上的一点。以P.O.T 为顶点的三角形与△AOP 相似,请写出点T 的坐标? _____________________,25-,63-.3则这个函数的解析式为是相应的函数的取值范围的自变量的取值范围是一次函数-≤≤≤≤+=y x b kx y ( ) 的坐标为(两点,且点、轴交于两点,与、直线交于与,抛物线轴交于点,与轴交于点与已知,直线、综合练习:0,12 1y 12132 B C B x B A c bx x y D x A x y ++=+=C A B C A B C A B B A C D

2020高考数学分类讨论思想

难点38 分类讨论思想 分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.” ●难点磁场 1.(★★★★★)若函数514121)1(31)(23+-+-= x ax x a x f 在其定义域内有极值点,则a 的取值为 . 2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值. ●案例探究 [例1]已知{a n }是首项为2,公比为 21的等比数列,S n 为它的前n 项和. (1)用S n 表示S n +1; (2)是否存在自然数c 和k ,使得21>--+c S c S k k 成立. 命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目. 知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质. 错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-22 3. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案. 解:(1)由S n =4(1–n 21),得 221)2 11(411+=-=++n n n S S ,(n ∈N x ) (2)要使21 >--+c S c S k k ,只要0)223(<---k k S c S c 因为4)2 11(4<-=k k S 所以0212)223(>- =--k k k S S S ,(k ∈N x ) 故只要2 3S k –2<c <S k ,(k ∈N x )

数学总复习之数学思想《分类讨论》

数学总复习之数学思想《分类讨论》 【例题1】在△ABC 中,已知sin B =154,a =6,b =8,求边c 的长.. 题型二 根据公式、定理、性质的条件分类讨论 【例题2】数列{}n a 的前n 项和为221n S n n =+-,则其通项n a = . 题型三 根据变量或参数的取值情况分类讨论 【例题3】解关于x 的不等式01)1(2<++-x a ax . 题型四 根据图形位置或形状变化分类讨论 【例题4】在△ABC 中,AB =(2,3),AC =(1,k ),若△ABC 是Rt △,求k 的值. 二、课后 1. 等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是 ( ) A .1 B .-12 C .1或-12 D .-1或12 2.设集合A ={x |x 2+x -12=0},集合B ={x |kx +1=0},如果A ∪B =A ,则由实数

k 组成的集合中所有元素的和与积分别为 ( ) A .-112,0 B.112,-112 C.112,0 D.14,-112 3.一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这直线方程为( ) A. x y +-=70 B. 250x y -= C. x y x y +-=-=70250或 D. x y y x ++=-=70250或 4.不等式2(2)2(2)40a x a x -+--<对一切x ∈R 恒成立,则a 的取值范围是 ( ) A .(-∞,2] B .[-2,2] C .(-2,2] D .(-∞,-2) 5.若圆柱的侧面展开图是边长为4和2的矩形,则圆柱的体积是 . 6.函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是 . 7.已知a ∈R ,若关于x 的方程2104 x x a a ++- +=有实根,求a 的取值范围. 8. 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式; (2)设b n =(4-a n )q n -1 (q ≠0,n ∈N *),求数列{b n }的前n 项和S n .

浅谈初中数学中的分类讨论思想

浅谈初中数学分类讨论思想在解题中的应用摘要:在初中数学解题中,分类讨论不仅是一种非常重要的数学思想,而且它还也是一种非常有效的解题策略,其主要体现在“集零为整,化整为零”思想和归类整理思想这两个部分。在初中数学教学中,如果教师在进行初中数学的教学时,对分类讨论思想加以运用,可以使学生对数学知识有更加深入的认识和理解,同时它能够进一步的培养学生的思维能力。本文主要是对分类讨论在初中数学解题的应用进行探讨。 关键词:分类讨论思想初中数学教学应用 俗话说的好,“数学是思维的体操”,要想进行数学学习,就一定是离不开思维运用,在对数学进行每一步探索,都是需要思维来完成。因此,在初中的数学教学中,教师要对学生慢慢的进行数学思想方法的渗透,使学生的思维能力得到进一步的提升,使其能够形成一个良好的数学思维习惯,这样不仅符合了新课改的新要求,而且其还是实施数学素质教育的一个很好的切入点。 一、分类讨论思想在初中数学解题中的重要作用 简单的来说,分类讨论起本质上就是一种逻辑上划分的思维方式。其在教学中的具体表现为对题目“化整为零”,一个一个的进行逐步击破,这样的就实现了积零为整的教学方式。在目前,分类讨论思想已经成为一种非常重要的数学思想,其在我国数学教学中得到了广泛的应用。它不仅只是一种独特的数学逻辑方法,而且在进行数学知识教学时其更是一种有效的解题策略。由于分类讨论在对不同的问题进

行综合考虑时,其在逻辑上具有优势,特别是在培养学生的学习能力以及提升学生的思维严谨性有很好的促进作用。在对数学题进行解答时,如果因为题目的题意中存在着一些不确定因素,进而导致无法解答出来,这样的情况下,就可以将题目分为若干个小问题,对其进行分类讨论,使相对复杂的问题变得简单化,方便对其进行解答。 二、分类讨论思想在初中数学解题的应用 1.在不等式中的运用 不等式在初中数学中是一种比较基础和普遍的内容。因为不等式要涉及到绝对值,所以就要进行转换符号,同时一个不等式可能会存在不止一个绝对值问题,遇到这样的情况,学生往往会变得无所适从,这也就影响着学生的学习成绩的提升,运用分类谈论思想,就能够对不等式进行很好的解答。因此,教师要注重在课堂上教授学生如何运用分类讨论来解答难题,例如:解方程 | x - 5| +| x + 4 | = 9 ,这个题目就要求对 x 的值进行求解.为了更好的对学生进行引导,培养学生运用分类谈论的良好习惯,在学生的心里树立这样一种观点:在解答关于绝对值的数学题时,应该要把绝对值符号里的数分为正数、零和负数三种情况来进行分类讨论。教师也应该抓住好时机,可以向学生提出相关的问题,对学生进行引导,加深学生对问题的印象,进而使学生的学习效率得到提升。对于这个方程来说可以分为当x>4、-5x《4和x<-5这三种情况,若当x>4时,原方程就可以表示为x - 4 + 5 + x = 9,通过计算可以求出x=4,所以它与假设是互相矛盾的,故不成立;若当x <-5时,原方程可以被看为- x + 4

初中数学分类讨论思想例题分析

分类讨论思想例题分析 [线段中分类讨思想的应用]——线段及端点位置的不确定性引发讨论。 例1已知直线AB 上一点C ,且有CA=3AB ,则线段CA 与线段CB 之比为_3:2_或_3:4____。 练习:已知A 、B 、C 三点在同一条直线上,且线段AB=7cm ,点M 为线段AB 的中点,线段BC=3cm ,点N 为线段BC 的中点,求线段MN 的长. 解析:(1)点C 在线段AB 上: (2)点C 在线段AB 的延长线上 M 例2下列说法正确的是( ) A 、 两条线段相交有且只有一个交点。 B 、如果线段AB=A C 那么点A 是BC 的中点。 C 、两条射线不平行就相交。 D 、不在同一直线上的三条线段两两相交必有三个交点。 [ OM 平分∠AOB ,ON 平分∠[练习] 已知o AOB 60∠=,过O 作一条射线OC ,射线OE 平分AOC ∠,射线OD 平分 这两种情况下,都有o o AOB 60 DOE= 3022 ∠∠== A B C1 C2

小结:(对分类讨论结论的反思)——为什么结论相同?虽然AOC ∠的大小不确定,但是所求的DOE ∠与AOC ∠的大小无关。我们虽然分了两类,但是结果是相同的!这也体现了分类讨论的最后一个环节——总结的重要性。 [三角形中分类讨论思想的应用] 一般有以下四种类型:一是由于一般三角形的形状不确定而进行的分类;二是由于等腰三角形的腰与底不确定而进行的分类;三是由于直角三角形的斜边不确定而进行的分类;四是由于相似三角形的对应角(或边)不确定而进行的分类。 1、三角形的形状不定需要分类讨论 例4、 在△AB C 中,∠B=25°,AD 是BC 上的高,并且 AD BD DC 2=·,则∠BCA 的度数为_____________。 解析:因未指明三角形的形状,故需分类讨论。 如图1,当△ABC 的高在形内时, 由AD BD DC 2=·, 得△ABD∽△CAD,进而 可以证明△ABC 为直角三角形。由 ∠B=25°。可知∠BAD=65°。所以∠BCA=∠BAD=65°。 如图2,当高AD 在形外时,此时 △ABC 为钝角三角形。 由 AD BD DC 2=·,得△ABD∽△CAD 所以∠B=∠CAD=25° ∠BCA=∠CAD+∠ADC=25°+90°=115° 2、等腰三角形的分类讨论: a 、在等腰三角形中求边:等腰三角形中,对给出的边可能是腰,也可能是底边,所以我们要进行分类讨论。 例5、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。 [练习]若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。 简析:已知条件并没有指明哪一部分是9cm ,哪一部分是12cm ,因此,应有两种情形。 若设这个等腰三角形的腰长是x cm ,底边长为y cm ,可得???????=+=+,1221,921y x x x 或???????=+=+.921,122 1y x x x 解 得???==,9,6y x 或???==.5, 8y x 即当腰长是6cm 时,底边长是9cm ;当腰长是8cm 时,底边长是5cm 。 b 、在等腰三角形中求角:等腰三角形的一个角可能指底角,也可能指顶角,所以必须分情况讨论。 例6、已知等腰三角形的一个内角为75°则其顶角为( )

相关主题
文本预览
相关文档 最新文档