当前位置:文档之家› internet上的核心协议是

internet上的核心协议是

竭诚为您提供优质文档/双击可除internet上的核心协议是

篇一:《计算机网络》第一章作业参考答案

第一章作业参考答案

1-02试简述分组交换的要点。

答:分组交换最主要的特点是采用存储转发技术。

通常把要发送的整块数据称为一个报文。在发送报文之前,先把较长的报文划分成一个个更小的等长数据段,在每一个数据段前面添加首部构成分组,每一个分组的首部都含有地址等控制信息。

因特网的核心部分是由许多网络和把它们互连起来的

路由器组成,而主机处在因特网的边缘部分。主机是为用户进行信息处理的,并且可以和其他主机通过网络交换信息。路由器是用来转发分组的,即进行分组交换。路由器每收到一个分组,先暂时存储,再检查其首部,查找转发表,按照首部中的目的地址,找到合适的接口转发出去,把分组转交给下一个路由器。这样一步步地经过若干个路由器,以存储转发的方式,把分组交付最终目的主机。

各路由器之间必须经常交换彼此掌握的路由信息,以便

创建和维持在路由表中的转发表,使得转发表能够在整个网络拓扑发生变化时及时更新。

1-07小写和大些开头的英文名字internet和internet 在意思上有何重要区别?

答:以小写字母i开始的internet(互联网或互连网)是一个通用名词,它泛指由多个计算机网络互连而成的网络。在这些网络之间的通信协议(即通信规则)可以是任意的。

以大写字母i开始的internet(因特网)则是一个专用名词,它指当前全球最大的、开放的、由众多网络相互连接而成的特定计算机网络,它采用tcp/ip协议族作为通信的

规则,其前身是美国的aRpanet。

1-08计算机网络都有哪些类别?各种类别的网络都有

哪些特点?

答:按网络的作用范围划分:

(1)广域网wan,作用范围通常为几十到几千公里,也称为远程网,是internet的核心部分。

(2)城域网man,作用范围一般是一个城市,可跨越几个街区甚至整个城市,其作用距离约为5~50公里。

(3)局域网lan,作用范围局限在较小的范围(如1公里左右)。

(4)个人区域网pan,也称无线个人区域网,作用范围大约在10m左右。

按网络的使用者划分:

(1)公用网:面向公共营运、按规定缴纳费用的人都可使用的网络。

(2)专用网:面向特定机构、不向本单位以外的人提供服务的网络。

1-10试在下列条件下比较电路交换和分组交换。要传送的报文共x(bit),从源点到终点共经过k段链路,每段链路的传播时延为d(s),数据率为b(b/s)。在电路交换时电路的建立时间为s(s)。在分组交换时分组长度为p(bit),且各结点的排队等待时间可忽略不计。问在怎样的条件下,分组交换的时延比电路交换的要小?

解:对于电路交换,先建立连接需要时间是s秒;发送x比特报文的发送时延是x/b秒;k段链路的传播时延是kd 秒。

因此电路交换总时延=连接时间+发送时延+传播时延

=s+x/b+kd。

对于分组交换,不需要先建立连接。先计算分组交换的传播时延,k段链路的传播时延是kd秒。再计算分组交换的发送时延,设共有n个分组,当x>>p时,n约等于x/p。由于采用“存储转发”技术,一个结点发送一个分组的发送时延是p/b。因为分组交换要求将n个分组全部发送给终点,当第n个分组到达终点时,则传输结束。所以可以仅考虑第

n个分组的传输过程。当第n个分组从源点完全进入到第1段链路时,已经过n·p/b的时延。从源点到终点共经过k 段链路,应经过k-1个中间结点,所以第n个分组还要花费(k-1)·p/b个发送时延才能到达终点。

因此分组交换总时延=发送时延+传播时延

=n·(p/b)+(k-1)·(p/b)+kd。

若要分组交换总时延比电路交换总时延小,则:n·(p/b)+(k-1)·(p/b)+kd 当x>>p时,上式即为:(x/p)·(p/b)+(k-1)·(p/b)+kd 解出s>(k-1)·(p/b) 即当s>(k-1)·(p/b)时,分组交换的时延比电路交换的时延小。

1-11在上题的分组交换网中,设报文长度和分组长度分别为x和(p+h)(bit),其中p为分组的数据部分的长度,而h为每个分组所带的控制信息固定长度,与p的大小无关。通信的两端共经过k段链路。链路的数据率为b(b/s),但传播时延和结点的排队时间均可忽略不计。若打算使总的时延为最小,问分组的数据部分长度p应取为多大?

解:本题实际上是假定整个报文恰好可以划分为x/p个分组。

依题意每个分组的发送时延是(p+h)/b,因传播时延和排队时延忽略不计,所以总时延d=发送时延

=(x/p)·(p+h)/b+(k-1)·(p+h)/b。

要求出当p取何值时,d的值为最小,需求d对p的导数,令d′=0,求出此时的p值即可。

d′(p)=((x/p)·(p+h)/b+(k-1)·(p+h)/b)′

=((x/p)·(p+h)/b)′+((k-1)·(p+h)/b)′

=(x/p)·((p+h)/b)′+(x/p)′·(p+h)/b+((k-1)·p/b)′+((k-1)·h/b)′

=x/(pb)-x(p+h)/(p2b)+(k-1)/b=(k-1)/b-xh/(p2b)=0 解出p=(xh/(k-1))1/2

1-12因特网的两大组成部分(边缘部分与核心部分)的特点是什么?他们的工作方式各有什么特点?

答:因特网从其工作方式上看可以分为:

(1)边缘部分:由所有连接在因特网上的主机组成。这部分是用户直接使用的,用来进行通信(传送数据、音频或视频)和资源共享。

(2)核心部分:由大量网络和连接这些网络的路由器组成。这部分是为边缘部分提供服务的(提供连通性和交换)。

在网络边缘的端系统之间的通信方式通常可划分为两大类:客户-服务器方式(c/s方式)和对等方式(p2p方式)。

在网络核心部分起特殊作用的是路由器,因特网核心部分的工作方式其实也就是路由器的工作方式。其工作方式有两种:一种是路由器的转发分组,另一种是路由器之间不断地交换路由信息。

1-15假定网络的利用率到达了90%。试估算一下现在的网络时延是它的最小值的多少倍?

解:根据公式d=d0/(1-u)=d0/(1-0.9)=10d0,所以现在的网络时延是它最小值的10倍。

1-17收发两端之间的传输距离为1000km,信号在媒体

上的传播速率为2×108m/s。试计算以下两种情况的发送时

延和传播时延:

(1)数据长度为107bit,数据发送速率为100kb/s。

(2)数据长度为103bit,数据发送速率为1gb/s。

从以上计算结果中可得出什么结论?

解:(1)发送时延=107/105=100s,传播时延=106/(2×108)=0.005s=5ms

(2)发送时延=103/109=1μs,传播时延=106/(2×108)=0.005s=5ms

结论:若数据长度大而发送速率低,则在总的时延中,发送时延往往大于传播时延。但若数据长度短而发送速率高,则传播时延就可能是总时延中的主要成分。

1-19长度为100字节的应用层数据交给运输层传送,需加上20字节的tcp首部。再交给网络层传送,需加上20字节的ip首部。最后交给数据链路层的以太网传送,加上首

部和尾部18字节。试求数据的传输效率。若应用层数据长

度为1000字节,数据的传输效率是多少?

解:(1)数据长度为100字节的数据传输效率:100/(100+20+20+18)=63.3%

(2)数据长度为1000字节的数据传输效率:1000/(1000+20+20+18)=94.5%,传输效率明显提高了。1-21协议与服务有何区别?有何关系?

答:为进行网络中的数据交换而建立的规则、标准或约定称为网络协议,或简称为协议。一个网络协议由语法、语义和同步三个要素组成。

在协议的控制下,两个对等实体间的通信使得本层能够向上一层提供服务。要实现本层协议,还需要使用下面一层所提供的服务。

协议和服务在概念上是很不一样的。

首先,协议的实现保证了能够向上一层提供服务,使用本层服务的实体只能看见服务而无法看见下面的协议。下面的协议对上面的实体是透明的。

其次,协议是“水平的”,即协议是控制对等实体之间通信的规则。服务是“垂直的”,即服务是由下层向上层通过层间接口提供的。另外,并非在一个层内完成的全部功能都称为服务,只有那些能够被高一层实体“看得见”的功能才能称之为“服务”。

1-24试述五层协议的网络体系结构的要点,包括各层的主要功能。

答:五层协议的网络体系结构是为便于学习计算机网络原理而采用的综合了osi七层模型和tcp/ip的四层模型而得到的五层模型,即应用层、传输层、网络层、数据链路层和物理层。

各层主要功能如下:

(1)应用层:通过应用进程间的交互来完成特定网络应用。

应用层协议包括文件传输协议Ftp、电子邮件协议smtp、超文本传送协议http等。

(2)传输层:向两个主机中进程之间的通信提供通用的数据传输服务。

主要使用两种协议:传输控制协议tcp,提供面向连接的、可靠的数据传输服务,数据传输单位是报文段;用户数据报协议udp,提供无连接的、尽最大努力的数据传输服务,数据传输单位是用户数据报。

(3)网络层:传输层产生的报文段或用户数据报在网络层被封装成分组(ip数据报)或包进行传送;选择合适的路由,使源主机传输层所传下来的分组能够通过网络中的路由器找到目的主机。

最重要的协议是网际协议ip。

(4)数据链路层:将网络层交下来的ip数据报组装成帧,在两个相邻结点间的链路上传送帧。

互联网协议

互联网的核心是一系列协议,总称为"互联网协议"(Internet Protocol Suite)。它们对电脑如何连接和组网,做出了详尽的规定。理解了这些协议,就理解了互联网的原理。 下面就是我的学习笔记。因为这些协议实在太复杂、太庞大,我想整理一个简洁的框架,帮助自己从总体上把握它们。为了保证简单易懂,我做了大量的简化,有些地方并不全面和精确,但是应该能够说清楚互联网的原理。 一、概述 1.1 五层模型 互联网的实现,分成好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。 用户接触到的,只是最上面的一层,根本没有感觉到下面的层。要理解互联网,必须从最下层开始,自下而上理解每一层的功能。 如何分层有不同的模型,有的模型分七层,有的分四层。我觉得,把互联网分成五层,比较容易解释。 如上图所示,最底下的一层叫做"实体层"(Physical Layer),最上面的一层叫做"应用层"(Application Layer),中间的三层(自下而上)分别是"链接层"(Link Layer)、"网络层"(Network Layer)和"传输层"(Transport Layer)。越下面的层,越靠近硬件;越上面的层,越靠近用户。 它们叫什么名字,其实并不重要。只需要知道,互联网分成若干层就可以了。 1.2 层与协议 每一层都是为了完成一种功能。为了实现这些功能,就需要大家都遵守共同的规则。 大家都遵守的规则,就叫做"协议"(protocol)。

互联网的每一层,都定义了很多协议。这些协议的总称,就叫做"互联网协议"(Internet Protocol Suite)。它们是互联网的核心,下面介绍每一层的功能,主要就是介绍每一层的主要协议。 二、实体层 我们从最底下的一层开始。 电脑要组网,第一件事要干什么?当然是先把电脑连起来,可以用光缆、电缆、双绞线、无线电波等方式。 这就叫做"实体层",它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。 三、链接层 3.1 定义 单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义? 这就是"链接层"的功能,它在"实体层"的上方,确定了0和1的分组方式。 3.2 以太网协议 早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做"以太网"(Ethernet)的协议,占据了主导地位。 以太网规定,一组电信号构成一个数据包,叫做"帧"(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。 "标头"包含数据包的一些说明项,比如发送者、接受者、数据类型等等;"数据"则是数据包的具体内容。 "标头"的长度,固定为18字节。"数据"的长度,最短为46字节,最长为1500字节。因此,整个"帧"最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。 3.3 MAC地址 上面提到,以太网数据包的"标头",包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?

3G网络结构和协议

3.3G网络和协议 3.1. 3G网络 UMTS网络是第三代移动通信的主流体系,它分为R99、R4、R5/R6四个阶段,下面主要介绍相对成熟的R99和R4版本的UMTS网络体系 3.1.1.UMTS R99版本网络体系 UMTS R99版本和GSM的区别在于接入网部分,核心网的结构仍以演进的GSM核心网为基础。UMTS R99版本在GSM的基础上引入了全新的5MHz每载频的宽带码分多址接入网,采纳了功率控制、软切换及更软切换等CDMA关键技术,基站只做基带处理和扩频,接入系统智能集中于RNC统一管理,引入了适于分组数据传输的协议和机制,数据速率可支持144Kbit/s 、384Kbit/s ,理论上可达2Mbit/s新的WCDMA无线接口技术。 基站和RNC之间采用基于ATM的Iub接口,RNC分别通过基于ATM AAL2的Iu-CS和AAL5的Iu-PS分别与核心网的CS域和PS域相连。 3.1.2.UMTS R99版本新增网络节点及其功能 3.1.2.1.RNC RNC无线网络控制器主要负责无线资源的管理。一面它通过Iu接口同电路域和分组域核心网相连;一面它负责管理和控制Node B,并负责空中接口与UE之间的L1以上的协议处理。在无线接入网络中,它处于承上启下的关键地位。在逻辑上,它和GSM中的BSC相对应。 RNC的主要担任CRNC、SRNC、DRNC三种角色。 RNC的实现以下功能: ●主要支持对WCDMA Node B的控制和管理。 ●支持包括Iu承载、Iub承载、Iur承载、无线承载等在内的无线接入资源的管 理和分配。 ●支持包括软切换、硬切换、与GSM/GPRS的系统间切换、小区更新、URA更新、 寻呼等各种移动性管理工作,其中包括支持通过Iur接口的宏分集功能。 ●支持各种电路域和分组数据业务数据传输。 ●支持对控制信令的完整性检查以及对用户数据的加密和解密等安全性功能。 ●支持对UE的接入控制、负载过载的拥塞控制等系统接入功能。 ●支持广播域广播信息业务。

internet协议基本原理

3.2.1 Internet协议 1.TCP/IP体系结构 计算机网络是由许多计算机组成的,要实现网络计算机之间数据传输,必须要做两件事,确定数据传输目的地址和保证数据迅速可靠传输的措施,这是因为数据在传输过程中很容易丢失或传错,Internet使用一种专门的计算机协议TCP/IP,以保证数据安全、可靠地到达指定的目的地,TCP/IP主要由传输控制协议TCP(Transmission Control Protocol)和网间协议IP (Internet Protocol)组成。TCP/IP是一个四层协议体系结构,如图3.1所示。 Internet 对应的TCP/IP协议 图3.1 TCP/IP体系结构 在这个结构里,每一层负责不同的功能: 链路层,有时也称作数据链路层或网络接口层,通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡。它们一起处理与电缆(或其他任何传输媒介)的物理接口细节。网间层,有时也称作互联网层,处理分组在网络中的活动,例如分组的路由选择。在TCP/IP 协议组件中,网间层协议包括IP协议(网际协议)、ICMP协议(Internet互联网控制报文协议)等。 传输层主要为两台主机上的应用程序提供端到端的通信。在TCP/IP协议组件中,有两个互不相同的传输协议:TCP(传输控制协议)和UDP(用户数据报协议)。 TCP为两台主机提供高可靠性的数据通信。它所做的工作包括把应用程序交给它的数据分成合适的小块交给下面的网络层,确认接收到的分组,设置发送最后确认分组的超时时钟等。由于传输层提供了高可靠性的端到端的通信,因此应用层可以忽略所有这些细节。 而另一方面,UDP则为应用层提供一种非常简单的服务。它只是把称作数据报的分组从一台主机发送到另一台主机,但并不保证该数据报能到达另一端。任何所需的可靠性必须由应用层来提供。 应用层负责处理特定的应用程序细节。几乎各种不同的TCP/IP实现都会提供一些通用的应用程序,例如,Telnet 远程登录、FTP文件传输协议、SMTP 用于电子邮件的简单邮件传输协议和SNMP 简单网络管理协议。 2.TCP/IP数据传输过程 TCP/IP协议所采用的通信方式是分组交换方式。所谓分组交换,简单说就是数据在传输时分成若干段,每个数据段称为一个数据包,TCP/IP协议的基本传输单位是数据包,TCP/IP协议在数据传输过程中主要完成以下功能: (1)首先由TCP协议把数据分成若干数据包,给每个数据包写上序号,以便接收端把数据还原成原来的格式。 (2)IP协议给每个数据包写上发送主机和接收主机的地址,一旦写上源地址和目的地址,数据包就可以在物理网上传送数据了。IP协议还具有利用路由算法进行路由选择的功能。(3)这些数据包可以通过不同的传输途径(路由)进行传输,由于路径不同,加上其他的原因,可能出现顺序颠倒、数据丢失、数据失真甚至重复的现象。这些问题都由TCP协议来处理,它具有检查和处理错误的功能,必要时还可以请求发送端重发。 简言之,IP协议负责数据的传输,而TCP协议负责数据的可靠传输。 3.2.2 IP地址与域名 无论是从使用Internet的角度还是从运行Internet的角度看IP地址和域名都是十分重要的概念,当你与Internet上其他用户进行通信时,或者寻找Internet的各种资源时,都会用到

中国电信cdma0核心网络接口协议技术规范-OMC北向接口协议规范(网络资源模型-核心网电路域)(V1.0)

-精品文档- 保密等级:公开发放中国电信集团公司技术标准 Q/CT XXXX.1-2008 中国电信cdma2000核心网络接口协议技术规范―OMC北向接口协议规范(网络资源模型核心网电路域) Technical Specification of Interface&Protocol in cdma2000 Core Network of China Telecom-North Interface of OMC(NRM CS Core Network) (V1.0) 2008-07-14发布2008-07-14实施中国电信集团公司发布

目次 前言 ........................................................................................................................................................................ II 1 范围 (3) 2 规范性引用文件 (3) 3 术语、定义与缩略语 (3) 3.1 术语和定义 (3) 3.1.1 采集方式 (3) 3.1.2 族.测量项.子测量项 (3) 3.2 缩略语 (4) 4 网络资源分析 (4) 4.1 通用配置网络资源 (4) 4.1.1 概述 (4) 4.1.2 管理对象类图 (5) 4.1.3 管理对象类定义 (5) 4.1.3.1 SubNetwork信息 (5) 4.1.3.2 Top信息 (6) 4.1.3.3 ManagementNode信息 (6) 4.1.3.4 ManagedElement信息 (7) 4.1.3.5 ManagedFunction信息 (8) 4.1.3.6 VsDataContainer信息 (8) 4.1.3.7 资产管理信息 (9) 4.1.3.8 信令点信息 (10) 4.2 CDMA95/1X核心网电路域配置网络资源 (12) 4.2.1 概述 (12) 4.2.2 核心网电路交换域配置网络资源模型分析 (12) 4.2.2.1 核心网电路交换域配置网络资源对象关系图 (12) 4.2.2.2 核心网电路域配置网络资源对象 (13) 4.3 CDMA95/1X核心网电路交换域性能数据 (20) 4.3.1 概述 (20) 4.3.2 核心网电路域性能数据 (21) 4.3.2.1 MSC性能测量数据 (21) 4.3.2.2 信令链路组性能数据 (38) 4.3.2.3 信令链路性能测量数据 (39) 4.3.2.4 IP承载的信令流量数据 (39) 4.3.2.5 IP承载端到端信令QOS测量数据 (40) 4.3.2.6 AC性能测量数据 (40) 4.3.2.7 HLR性能测量数据 (40) 4.3.2.8 VLR性能测量数据 (41) 参考文档 (42) 修订记录 (43)

互联网常见协议

竭诚为您提供优质文档/双击可除 互联网常见协议 篇一:几种常用的网络协议 几种常用的网络协议 几种常用的网络协议 一、osi模型 名称层次功能 物理层1实现计算机系统与网络间的物理连接 数据链路层2进行数据打包与解包,形成信息帧 网络层3提供数据通过的路由 传输层4提供传输顺序信息与响应 会话层5建立和中止连接 表示层6数据转换、确认数据格式 应用层7提供用户程序接口 二、协议层次 网络中常用协议以及层次关系 1、进程/应用程的协议 平时最广泛的协议,这一层的每个协议都由客程序和服务程序两部分组成。程序通过服务器与客户机交互来工作。

常见协议有:telnet、Ftp、smtp、http、dns等。 2、主机—主机层协议 建立并且维护连接,用于保证主机间数据传输的安全性。这一层主要有两个协议:tcp(transmissioncontro lprotocol:传输控制协议;面向连接,可靠传输udp (userdatagramprotocol):用户数据报协议;面向无连接,不可靠传输 3、internet层协议 负责数据的传输,在不同网络和系统间寻找路由,分段和重组数据报文,另外还有设备寻址。些层包括如下协议:ip(internetprotocol):internet协议,负责tcp/ip 主机间提供数据报服务,进行数据封装并产生协议头,tcp 与udp协议的基础。 icmp(internetcontrolmessageprotocol):internet 控制报文协议。icmp协议其实是ip协议的的附属协议,ip 协议用它来与其它主机或路由器交换错误报文和其它的一 些网络情况,在icmp包中携带了控制信息和故障恢复信息。aRp(addressResolutionprotocol)协议:地址解析协议。 RaRp(ReverseaddressResolutionprotocol):逆向地 址解析协议。 osi全称(opensysteminterconnection)网络的osi七层结构20xx年03月28日星期五14:18(1)物理层——

(完整版)LTE知识点梳理(一):网络架构及协议修改版

目录 LTE知识点梳理(一):LTE网络架构及协议 (2) 1.1 移动通信系统的发展 (2) 1.2 LTE概述 (2) 1.2.1 LTE的主要技术特点 (2) 1.2.2 LTE设计目标 (3) 1.3 LTE网络架构 (3) 1.3.1 E-UTRAN(接入网) (4) 1.3.2 EPC核心网 (5) 1.3.3 LTE网络特点 (6) 1.4 LTE无线接口协议栈 (6) 1.4.1 LTE协议栈的三层 (6) 1.4.2 LTE协议栈的两个面: (7) 1.4.3 协议栈架构 (8) 1.5网络接口 (8)

LTE知识点梳理(一):LTE网络架构及协议 1.1 移动通信系统的发展 在学习LTE技术之前,我们需要简单了解一下移动通信系统的发展过程, 第一代移动通信技术(1G)是指采用蜂窝技术组网、仅支持模拟语音通信的移动电话标准,其制定于上世纪80 年代,主要采用的是模拟技术和频分多址技术。 第二代移动通信技术(2G)区别于第一代,使用了数字传输取代模拟传输,根据其特点主要分为两大类,分别是起源于欧洲基于TDMA的GSM系统和起源于美国基于CDMA技术的IS95系统。在技术的不断推进下,又出现了以GPRS、CDMA20001X为特征的2G升级版2.5G,它的业务包括了语音业务、低速数据业务。 第三代移动通信技术(3G)的最大特点是在数据传输中使用分组交取代了电路交换,电路交换使手机与手机之间进行语音等数据传输,而分组交换则将语音等转换为数字格式并通过互联网进行包括语音、视频和其他多媒体内容在内的数据包传输。高度数据业务则是3G的主要特征,它能够在全球范围内更好地实现无线漫游,并处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。 但是,随着社会的发展,2/3G 网络语音收入下降,网络成本高。营运商需要在吸引用户、增加收入的同时,大幅度降低网络建设和营运成本。话费赚钱时代结束,流量经营正成为核心。LTE 通过提升带宽,发掘新业务来弥补语音业务的下降;降低每 bit 成本来控制网络成本。而LTE 能带来更加流畅和便利的移动业务,大宽带确保了用户体验。 下面将给大家介绍4G LTE技术。 1.2 LTE概述 LTE是Long Term Evolution的缩写,全称应为3GPP Long Term Evolution,中文一般译为3GPP长期演进技术,为第三代合作伙伴计划(3GPP)标准。 3GPP 发布的第一个LTE版本为R8版本,实际为 3.9G ,并不是真正意义上的4G技术,而是3G向4G技术发展过程中的一个过渡技术,是被称为3.9G的全球化标准,它通过采用OFDM(正交频分复用)和MIMO(多输入多输出)作为无线网络演进的标准,改进并且增强了3G的空中接入技术。这些技术的运用,使其能获得更高的峰值速率。对于LTE技术的研究历来已久,我国的LTE项目是基于3G时代的TD-SCDMA技术和WCDMA技术发展起来的,那么,其对应的也将发展成为TD-LTE和FD-LTE技术。后续的 R9/R10 版本为 LTE Advanced 才是实际的 4G 网络。 1.2.1 LTE的主要技术特点 LTE有如下主要技术特点: (1)实现灵活的频谱带宽配置,支持1.25-20MHz的可变带宽; (2)采用OFDM,MIMO等先进技术支持更高的用户传输速率,20M带宽时,实现下行峰值速率100Mbps和上行峰值速率50Mbps; (3)频谱利用率是HSPA(高速分组接入,是WCDMA的其中一种规范)的2-4倍,用户平均吞吐量(吞吐量指上下行流量)是HSPA的2-4倍;

Internet的核心协议

tcp/ip 要使计算机连成的网络能够互通信息,需要有一组共同遵守的通信标准,这就是网络协议,不同的计算机之间必须使用相同的通讯协议才能进行通信。在Internet中TCP/IP协议是使用最为广泛的通讯协议。TCP/IP是英文Transmission Control Protocol/Internet Protocol的缩写,意思是“传输控制协议/网际协议”。TCP/IP是Internet使用的一组协议(Protocol)。 在Internet上传输控制协议和网际协议是配合进行工作的。网际协议(IP)负责将消息从一个主机传送到另一个主机。为了安全消息在传送的过程中被分割成一个个的小包。 传输控制协议(TCP)负责收集这些信息包,并将其按适当的次序放好传送,在接收端收到后再将其正确地还原。传输协议保证了数据包在传送中准确无误。 尽管计算机通过安装IP软件,从而保证了计算机之间可以发送和接收数据,但IP协议还不能解决数据分组在传输过程中可能出现的问题。因此,若要解决可能出现的问题,连上Internet 的计算机还需要安装TCP协议来提供可靠的并且无差错的通信服务。 TCP协议被称作一种端对端协议。这是因为它为两台计算机之间的连接起了重要作用:当一台计算机需要与另一台远程计算机连接时,TCP协议会让它们建立一个连接、发送和接收数据以及终止连接。 传输控制协议TCP协议利用重发技术和拥塞控制机制,向应用程序提供可靠的通信连接,使它能够自动适应网上的各种变化。即使在Internet 暂时出现堵塞的情况下,TCP也能够保证通信的可靠。 众所周知,Internet 是一个庞大的国际性网络,网路上的拥挤和空闲时间总是交替不定的,加上传送的距离也远近不同,所以传输数据所用时间也会变化不定。TCP协议具有自动调整"超时值"的功能,能很好地适应Internet 上各种各样的变化,确保传输数值的正确。 因此,从上面我们可以了解到:IP协议只保证计算机能发送和接收分组数据,而TCP协议则可提供一个可靠的、可流控的、全双工的信息流传输服务。 综上所述,虽然IP和TCP这两个协议的功能不尽相同,也可以分开单独使用,但它们是在同一时期作为一个协议来设计的,并且在功能上也是互补的。只有两者的结合,才能保证Internet 在复杂的环境下正常运行。凡是要连接到Internet 的计算机,都必须同时安装和使用这两个协议,因此在实际中常把这两个协议统称作TCP/IP协议。

网络协议名词解释

TCP/IP协议: Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网 互联协议,又名网络通讯协议,是Internet最基本的协议、Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP协议组成。TCP/IP 定义了电子设备如何连入因特网, 以及数据如何在它们之间传输的标准。协议采用了4层的层级结构,每一层都呼叫它的下 一层所提供的网络来完成自己的需求。通俗而言:TCP负责发现传输的问题,一有问题就 发出信号,要求重新传输,直到所有数据安全正确地传输到目的地。而IP是给因特网的每一台电脑规定一个地址。 TCP协议: Transmission Control Protocol 传输控制协议TCP是一种面向连接(连接导向)的、可靠的、基于字节流的运输层(Transport layer)通信协议,由IETF的RFC 793说明(specified)。在简化的计算机网络OSI模型中,它完成第四层传输层所指定的功能, UDP协议: UDP 是User Datagram Protocol的简称,中文名是用户数据报协议,是 OSI(开放式系统互联)参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务,IETF RFC 768是UDP的正式规范。UDP是同一层内另一个重要的传输协议。 DNS协议: DNS 是域名系统 (Domain Name System) 的缩写,是因特网的一项核心服务,它作为可以将域名和IP地址相互映射的一个分布式数据库,能够使人更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。 PPP协议: 点对点协议(PPP)为在点对点连接上传输多协议数据包提供了一个标准方法。PPP 最初设计是为两个对等节点之间的 IP 流量传输提供一种封装协议。在 TCP-IP 协议集中 它是一种用来同步调制连接的数据链路层协议(OSI 模式中的第二层),替代了原来 非标准的第二层协议,即 SLIP。除了 IP 以外 PPP 还可以携带其它协议,包括 DECnet 和 Novell 的 Internet 网包交换(IPX)。

网络体系结构与网络协议.

网络体系结构与网络协议 《易经》说:“天地万物 , 阴阳五行 , 相生相克 , 周而复始 , 皆有规律可循”。为了使世间各种事情有条不紊、规律的朝着人们所期待的方向行进, 我们总是喜欢发现规律、总结规律、创造规定、利用规律。如此一来,当前人在考虑计算机网络的通信与资源交互时,必然要创造出统一遵守的计算机通信与资源交互的规定,以方便人们使用计算机进行有条不紊的大规模的数据、资源交换。 如此,人们就制定了大量的标准,这些标准规定了计算机网络通信与数据交换所需的共同遵守的条规, 这些标准就是协议。大量的各种各样的协议共同构成了一套完整的体系。由于大量的协议体系过于复杂, 于是人为的将这套协议体系划分为几个层次, 这样一来, 大量的协议就容易分门别类的化整为零, 将协议一层一层的实现。由计算机互联通信所需的功能,,划分成定义明确的层次,规定了同层次进程通信的协议和相邻层之间的接口服务 (接口可理解为下层与上层交互的门户,下层通过接口向上层提供特定的服务。这些层、同层进程通信的协议及相邻层接口统称为网络体系结构。 在学习网络体系结构和协议时,不免要和 RFC 打交道。 RFC 是 tcp/ip协议族 的标准文档,里面写有 4000多个协议的定义。在那么多的协议中, tcp 、 ip 协议可以说是互联网最基本的两个通信协议, tcp/ip的五层分层原理应用十分常见。这五层,从上往下依次是:应用层、传输层、网络层、数据链路层和物理层。它们之间的通信服务类型可分为面向连接服务和无连接服务, 混合上确认机制, 共有四种服务类型。分别是面向连接确认服务、无连接确认服务、面向连接不确认服务和无连接不确认服务。根据通信要求, 权衡效率与可靠性后, 可选择合适的通信服务类型。 在最高层应用层里,有 FTP 协议、 Telnet 协议、 HTTP 协议、 DNS 协议等等。在传输层中,有著名的 TCP 和 UDP 协议。 在下层网络层里面,有 IP 协议、 ICMP 协议、 IGMP 协议、 ARP 协议、 RARP 等协议。

核心战略合作伙伴协议标准版三篇

核心战略合作伙伴协议标准版三篇 篇一:核心战略合作伙伴协议标准版 甲方:(以下简称甲方) 乙方:(以下简称乙方) 一、本协议双方本着友好合作,互利互惠,共同发展的原则,经友好协商达成共同发展湖南计算机网络安全市场及应用的核心战略合作伙伴协议 二、行业合作背景 Internet的发展给政府机构、企事业单位带来了革命性的改革性的改革和变化。互联网技术的迅猛发展使企业通过利用Internet来提高办事效率和市场反应速度,以便更具竞争力。通过使用Internet技术,任何一个单位的数据资料的传输和存取都变得方便、快捷,但同时也面对Internet开放带来的数据安全的新挑战和新危险:即客户、销售商、移动用户、异地员工和内部人员的安全访问:以及保护国家机关、企事业的机密信息不受黑客和商业间谍的入侵。众所周知,与互联网技术的迅猛发展的同时,越来越多的无控制,不良的网页内容在通过Internet传播和渗透到几乎每一台在网络上的计算机。这些都要求每一个拥有计算机或通信网络的政府机关,军队学校,以及商业企业都必须对与Internet互连所带来的安全性问题,内容健康性问题以及如何高效合理的利用公共Internet网络带宽资源予以越来越多的重视。 三、博华科技的产品市场(国内/国外)定位为--生产和销售在计算机网络,电子、通信领域的网络安全,管理及流量控制方面的软、硬件技术和系统,其中具体包括了网络防火墙系统,VPN虚拟专用网络系统,防病毒网关系统,网络内容,行为控制管理系统和VPN虚拟专用网络系统。根据市场的调查显示,当前全球的互联网网络正以平均每年65%的高速推广和普及。其中来自于各类企业和政府部门的互联网网络的发展更是占了全部增长的85%。而所有新建和已建的互联网网络对于网络安全和控制管理

3G网络结构和协议

3.3G网络和协议 3.1.3G网络 UMTS网络是第三代移动通信的主流体系,它分为R99、R4、R5/R6四个阶段,下面主要介绍相对成熟的R99和R4版本的UMTS网络体系 3.1.1.UMTS R99版本网络体系 UMTS R99版本和GSM的区别在于接入网部分,核心网的结构仍以演进的GSM核心网为基础。UMTS R99版本在GSM的基础上引入了全新的5MHz每载频的宽带码分多址接入网,采纳了功率控制、软切换及更软切换等CDMA关键技术,基站只做基带处理和扩频,接入系统智能集中于RNC统一管理,引入了适于分组数据传输的协议和机制,数据速率可支持144Kbit/s 、384Kbit/s ,理论上可达2Mbit/s新的WCDMA无线接口技术。 基站和RNC之间采用基于A TM的Iub接口,RNC分别通过基于A TM AAL2的Iu-CS 和AAL5的Iu-PS分别与核心网的CS域和PS域相连。 3.1.2.UMTS R99版本新增网络节点及其功能 3.1.2.1.RNC RNC无线网络控制器主要负责无线资源的管理。一面它通过Iu接口同电路域和分组域核心网相连;一面它负责管理和控制Node B,并负责空中接口与UE之间的L1以上的协议处理。在无线接入网络中,它处于承上启下的关键地位。在逻辑上,它和GSM中的BSC 相对应。 RNC的主要担任CRNC、SRNC、DRNC三种角色。 RNC的实现以下功能: ●主要支持对WCDMA Node B的控制和管理。 ●支持包括Iu承载、Iub承载、Iur承载、无线承载等在内的无线接入资源的管 理和分配。 ●支持包括软切换、硬切换、与GSM/GPRS的系统间切换、小区更新、URA更 新、寻呼等各种移动性管理工作,其中包括支持通过Iur接口的宏分集功能。 ●支持各种电路域和分组数据业务数据传输。 ●支持对控制信令的完整性检查以及对用户数据的加密和解密等安全性功能。 ●支持对UE的接入控制、负载过载的拥塞控制等系统接入功能。 ●支持广播域广播信息业务。

internet上的核心协议是

竭诚为您提供优质文档/双击可除internet上的核心协议是 篇一:《计算机网络》第一章作业参考答案 第一章作业参考答案 1-02试简述分组交换的要点。 答:分组交换最主要的特点是采用存储转发技术。 通常把要发送的整块数据称为一个报文。在发送报文之前,先把较长的报文划分成一个个更小的等长数据段,在每一个数据段前面添加首部构成分组,每一个分组的首部都含有地址等控制信息。 因特网的核心部分是由许多网络和把它们互连起来的 路由器组成,而主机处在因特网的边缘部分。主机是为用户进行信息处理的,并且可以和其他主机通过网络交换信息。路由器是用来转发分组的,即进行分组交换。路由器每收到一个分组,先暂时存储,再检查其首部,查找转发表,按照首部中的目的地址,找到合适的接口转发出去,把分组转交给下一个路由器。这样一步步地经过若干个路由器,以存储转发的方式,把分组交付最终目的主机。 各路由器之间必须经常交换彼此掌握的路由信息,以便

创建和维持在路由表中的转发表,使得转发表能够在整个网络拓扑发生变化时及时更新。 1-07小写和大些开头的英文名字internet和internet 在意思上有何重要区别? 答:以小写字母i开始的internet(互联网或互连网)是一个通用名词,它泛指由多个计算机网络互连而成的网络。在这些网络之间的通信协议(即通信规则)可以是任意的。 以大写字母i开始的internet(因特网)则是一个专用名词,它指当前全球最大的、开放的、由众多网络相互连接而成的特定计算机网络,它采用tcp/ip协议族作为通信的 规则,其前身是美国的aRpanet。 1-08计算机网络都有哪些类别?各种类别的网络都有 哪些特点? 答:按网络的作用范围划分: (1)广域网wan,作用范围通常为几十到几千公里,也称为远程网,是internet的核心部分。 (2)城域网man,作用范围一般是一个城市,可跨越几个街区甚至整个城市,其作用距离约为5~50公里。 (3)局域网lan,作用范围局限在较小的范围(如1公里左右)。 (4)个人区域网pan,也称无线个人区域网,作用范围大约在10m左右。

internet的网络协议的基础是

竭诚为您提供优质文档/双击可除internet的网络协议的基础是 篇一:internet的核心协议 就像人类的语言一样,要使计算机连成的网络能够互通信息,需要有一组共同遵守的通信标准,这就是网络协议,不同的计算机之间必须使用相同的通讯协议才能进行通信。在internet中tcp/ip协议是使用最为广泛的通讯协议。 tcp/ip是英文 transmissioncontrolprotocol/internetprotocol的缩写,意思是“传输控制协议/网际协议”。tcp/ip是internet使 用的一组协议(protocol)。 在internet上传输控制协议和网际协议是配合进行工 作的。网际协议(ip)负责将消息从一个主机传送到另一个主机。为了安全消息在传送的过程中被分割成一个个的小包。 传输控制协议(tcp)负责收集这些信息包,并将其按 适当的次序放好传送,在接收端收到后再将其正确地还原。传输协议保证了数据包在传送中准确无误。 尽管计算机通过安装ip软件,从而保证了计算机之间 可以发送和接收数据,但ip协议还不能解决数据分组在传

输过程中可能出现的问题。因此,若要解决可能出现的问题,连上internet的计算机还需要安装tcp协议来提供可靠的并且无差错的通信服务。 tcp协议被称作一种端对端协议。这是因为它为两台计算机之间的连接起了重要作用:当一台计算机需要与另一台远程计算机连接时,tcp协议会让它们建立一个连接、发送和接收数据以及终止连接。 传输控制协议tcp协议利用重发技术和拥塞控制机制,向应用程序提供可靠的通信连接,使它能够自动适应网上的各种变化。即使在internet暂时出现堵塞的情况下,tcp也能够保证通信的可靠。 众所周知,internet是一个庞大的国际性网络,网路上的拥挤和空闲时间总是交替不定的,加上传送的距离也远近不同,所以传输数据所用时间也会变化不定。tcp协议具有自动调整"超时值"的功能,能很好地适应internet上各种各样的变化,确保传输数值的正确。 因此,从上面我们可以了解到:ip协议只保证计算机能发送和接收分组数据,而tcp协议则可提供一个可靠的、可流控的、全双工的信息流传输服务。 综上所述,虽然ip和tcp这两个协议的功能不尽相同,也可以分开单独使用,但它们是在同一时期作为一个协议来设计的,并且在功能上也是互补的。只有两者的结合,才能

网络协议体系结构:优点和缺点

第10章网络协议体系结构:优点和缺点 2 0世纪早期,社会学家G e o r ge Herbert Mead研究了语言对人类的影响,最终得出结论:人类的理解力之所以能够活跃起来,主要是因为我们有语言。语言帮助我们发现周围环境的内涵并搞清它的意义。网络协议对网络起类似的作用,它为完全不同的系统提供共同的用于通信的环境。L A N协议使得网络通信电缆上传递的简单的电子信号变得有意义。没有协议,网络通信是不可能存在的。为了让两个工作站能够充分地进行通信,他们必须使用相同的协议,就像两个人如果使用相同的语言,才能够更好地进行交流。使用协议也能够使网络设备能够更多地了解它们所在的网络环境,并且从大量的网络电缆、连接器以及其他连接设备中了解它们的意义。如果你对于协议如何使得网络有意义方面有疑问的话,则可以想一想当你的工作站上的一个关键的协议被删除时,对你的通信能力所产生的影响就会知道了。你将注意到你的工作站不能再像以前那样进行通信了,它甚至看不见使用已被删除的协议的其他设备了。 阅读完本章并完成练习后,您将能够: ? 解释在小型和大型L A N中使用的关键协议。 ? 判断在一个给定的L A N中使用哪一个协议,以及在同一个L A N中实现多个协议。 ? 在一个工作站上安装L A N协议。 ? 解释关键的WA N协议。 ? 判断哪一个WA N协议会与一个L A N上使用的协议兼容。 L A N协议就像一个本地语言或方言,它们使得你不需要做任何努力就可以在相互连接的设备之间进行交换。WA N协议就像一个国际语言,它使得通信能够跨越一个L A N的边界到处旅游,使得一个远程工作站或L A N能够与另一个L A N进行通信。本章研究最常用的L A N和WA N协议,说明每一个协议的优点和缺点。一些协议,包括T C P/I P和AT M,在前面的章节已经讨论过了,在这里只概括一下。其他协议对于你而言都是新的,如N e t B E U I,它是用在小型L A N上的,还有点到点协议,它是一个WA N协议,通常被个人用来连接到他们的公司或者学术L A N上。 10.1 LAN协议 一个局域网可以单独传输多个网络协议,或者组合两个、三个或多个协议。网络设备,例如路由器,通常建立起来后能够自动配置自己,这是通过辨认不同的协议完成的(根据该路由器使用的操作系统)。例如,一个以太网L A N可能为一个大型机计算机提供一个协议,而为N o v e l l服务器提供一个不同的协议,又为Windows NT服务器提供另外一个协议(见图1 0-1)。可能建立一个桥式路由器为自己自动识别并配置它自己,这样它传递一些协议并作为其他设备的一个桥梁。在一个网络上拥有多个L A N协议的优点是这样一个网络可以在同一个L A N上完成许多不同的功能,如使得I n t e r n e t访问成为可能,以及访问大型机计算机及服务器。缺点是一些协议是以广播的方式进行操作的,这意味着它们经常发送包,以便识别网络上的设备,

常见的网络协议

常见的网络协议 摘要:网络协议是操纵计算机在网络介质上进行信息交换的规则和约定。网络协议是网络上所有设备(网络服务器、计算机及交换机、路由器、防火墙等)之间通信规则的集合,它规定了通信时信息必须采纳的格式和这些格式的意义。大多数网络都采纳分层的体系结构,每一层都建立在它的下层之上,向它的上一层提供一定的服务,而把如何实现这一服务的细节对上一层加以屏蔽。在网络的各层中存在着许多协议,接收方和发送方同层的协议必须一致,否则一方将无法识不另一方发出的信息。网络协议使网络上各种设备能够相互交换信息。常见的协议有:TCP/IP协议、IPX/SPX协议、NetBEUI协议等。 1 IP协议 1.1 IP协议简介

IP是英文Internet Protocol(网络之间互连的协议)的缩写,中文简称为“网协”,也确实是为计算机网络相互连接进行通信而设计的协议。在因特网中,它是能使连接到网上的所有计算机网络实现相互通信的一套规则,规定了计算机在因特网上进行通信时应当遵守的规则。任何厂家生产的计算机系统,只要遵守 IP协议就能够与因特网互连互通。正是因为有了IP协议,因特网才得以迅速进展成为世界上最大的、开放的计算机通信网络。因此,IP协议也能够叫做“因特网协议”。通俗的讲:IP地址也能够称为互联网地址或Internet地址。是用来唯一标识互联网上计算机的逻辑地址。每台连网计算机都依靠IP地址来标识自己。就专门类似于我们的电话号码样的。通过电话号码来找到相应的使用电话的客户的实际地址。全世界的电话号码差不多上唯一的。

IP地址也是一样。 1.2 IP地址(IP v4) 所谓IP地址确实是给每个连接在Internet 上的主机分配的一个32bit地址。 按照TCP/IP(Transport Control Protocol/Internet Protocol,传输操纵协议/Internet协议)协议规定,IP地址用二进制来表示,每个IP地址长32bit,比特换算成字节,确实是4个字节。例如一个采纳二进制形式的IP 地址是“00001010000000000000000000000001”,这么长的地址,人们处理起来也太费劲了。为了方便人们的使用,IP地址经常被写成十进制的形式,中间使用符号“.”分开不同的字节。因此,上面的IP地址能够表示为“10.0.0.1”。IP地址的这种表示法叫做“点分十进制表示法”,这显然比1

网络体系结构与网络协议

网络体系结构与网络协议 《易经》说:“天地万物,阴阳五行,相生相克,周而复始,皆有规律可循”。为了使世间各种事情有条不紊、规律的朝着人们所期待的方向行进,我们总是喜欢发现规律、总结规律、创造规定、利用规律。如此一来,当前人在考虑计算机网络的通信与资源交互时,必然要创造出统一遵守的计算机通信与资源交互的规定,以方便人们使用计算机进行有条不紊的大规模的数据、资源交换。 如此,人们就制定了大量的标准,这些标准规定了计算机网络通信与数据交换所需的共同遵守的条规,这些标准就是协议。大量的各种各样的协议共同构成了一套完整的体系。由于大量的协议体系过于复杂,于是人为的将这套协议体系划分为几个层次,这样一来,大量的协议就容易分门别类的化整为零,将协议一层一层的实现。由计算机互联通信所需的功能,,划分成定义明确的层次,规定了同层次进程通信的协议和相邻层之间的接口服务(接口可理解为下层与上层交互的门户,下层通过接口向上层提供特定的服务)。这些层、同层进程通信的协议及相邻层接口统称为网络体系结构。 在学习网络体系结构和协议时,不免要和RFC打交道。RFC是tcp/ip协议族的标准文档,里面写有4000多个协议的定义。在那么多的协议中,tcp、ip协议可以说是互联网最基本的两个通信协议,tcp/ip的五层分层原理应用十分常见。这五层,从上往下依次是:应用层、传输层、网络层、数据链路层和物理层。它们之间的通信服务类型可分为面向连接服务和无连接服务,混合上确认机制,共有四种服务类型。分别是面向连接确认服务、无连接确认服务、面向连接不确认服务和无连接不确认服务。根据通信要求,权衡效率与可靠性后,可选择合适的通信服务类型。 在最高层应用层里,有FTP协议、Telnet协议、HTTP协议、DNS协议等等。在传输层中,有著名的TCP和UDP协议。 在下层网络层里面,有IP协议、ICMP协议、IGMP协议、ARP协议、RARP 等协议。 在数据链路层,这个层次为待传送的数据加入一个以太网协议头,并进行CRC 编码,为最后的数据传输做准备。PPP协议、Ethernet协议、HDLC(高级链路控制协议)等协议在这一层。 最低层物理层,属于硬件层次。负责网络的传输,这个层次的定义包括网线的制式,网卡的定义等等。所以有些书并不把这个层次放在tcp/ip协议族里面,因为它几乎和tcp/ip协议的编写者没有任何的关系。 发送协议的主机从上自下将数据按照协议封装,而接收数据的主机则按照协议从得到的数据包解开,最后拿到需要的数据。 为了便于理解网络体系结构层次与协议,以下从最底层开始向最高层依次作出说明。 物理层确保原始的数据可在各种物理媒体上传输,主要为数据端设备提供传送数据通路、传输数据。这一层的媒介有:光纤、电缆、信道、路由器、中继器、交换机、网卡(也工作在数据链路层)甚至插头和双绞线等,都属于物理层的媒介。传输时数据单位为比特。物理层的设计解决了所有物理接口特性不一致的问题。 数据链路层有三个目的:1为IP模块发送和接收IP数据报;2为ARP模块发送ARP请求和接收ARP应答;3为RARP发送RARP请求和接收RARP应答。

网络体系结构与网络协议

网络体系结构与网络协议 网络体系结构与网络协议是网络技术中两个最基本的概念。本章将从层次、服务与协议的基本概念出发,对OSI参考模型、TCP/IP 协议与参考模型,以及网络协议标准化与制定国际标准的组织进行介绍。 学习要求: ●掌握:协议、层次、接口与网络体系结构的基本概念。 ●掌握:网络体系结构的层次化研究方法。 ●掌握:OSI参考模型及各层的基本服务功能。 ●掌握:TCP/IP参考模型的层次划分、各层的基本服务 功能与主要协议。 ●了解:OSI参考模型与TCP/IP参考模型的比较。 ●了解:网络协议标准组织,RFC文档、Internet草案与 Internet 协议标准的制定过程。 计算机网络的四个重要的概念 协议(protocol) 层次(layer) 接口(interface) 体系结构(architecture) 计算机网络是由多个互联的结点组成的,结点之间需要不断地交换数据与控制信息。要做到有条不紊地交换数据,每个结点都必须遵守一些事先约定好的规则。一个协议就是一组控制数据

通信的规则。这些规则明确地规定了所交换数据的格式和时序。 哲学家-翻译-秘书结构 网络协议的概念 网络协议是为网络数据交换而制定的规则、约定与标准; 网络协议的三要素:语义、语法与时序: 语义:用于解释比特流的每一部分的意义; --表示做什么 语法:语法是用户数据与控制信息的结构与格式,以及数据出现的顺序的意义; --表示要怎么做

时序:事件实现顺序的详细说明。 --表示什么时候做 社会上存在的邮政系统 协议(Protocol) ●协议是一种通信规约。 ●为了保证计算机网络中大量计算机之间要有条不紊地交换 数据,必须制定一系列的通信协议。 层次(layer) 层次是人们对复杂问题处理的基本方法; 将总体要实现的很多功能分配在不同层次中; 对每个层次要完成的服务及服务要求都有明确规定; 不同的系统分成相同的层次; 不同系统的最低层之间存在着“物理”通信; 不同系统的对等层次之间存在着“虚拟”通信;

相关主题
文本预览
相关文档 最新文档