当前位置:文档之家› 宝石学大型仪器原理

宝石学大型仪器原理

现代宝石测试仪器总复习

1紫外-可见吸收光谱仪

1.1基本概念

分子具有的三种不同能级:电子能级、振动能级和转动能级。分子光谱:在辐射能作用下,由分子能级间的跃迁产生的光谱。

能级跃迁:电子能级间跃迁的同时,总伴随着振动和转动能级间的跃迁。即电子光谱中中包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。量子化:选择性吸收,吸收曲线与最大吸收波长入max,用不同波长的单色光照射,测吸收光度。

1.2基本理论

1.2.1基本原理

紫外—可见吸收光谱是在电磁辐射作用下,由宝石中原子、离子、分子的价电子和分子轨道上的电子在电子能级间的跃迁而产生的一种分子吸收光谱。具不同晶体结构的各种彩色宝石,其内所含的致色杂质离子对不同波长的入射光具有不同程度的选择性吸收,由此构成测试基础。按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外一可见分光光度法。

在宝石晶体中,电子是处在不同的状态下,并且分布在不同的能级组中,若晶体中一个杂质离子的基态能级与激发态能级之间的能量差,恰好等于穿过晶体的单色光能量时,晶体便吸收该波长的单色光,使位于基态的一个电子跃迁到激发态能级上,结果在晶体的吸收光谱中产生一个吸收带,便形成紫外可见吸收光谱。

1.2.2宝石测试中常见三种紫外可见吸收光谱类型:

a.d电子跃迁吸收光谱

过渡金属离子为d电子在不同d轨道能级间的跃迁,吸收紫外和可见光能量而形成紫外可见吸收光谱。这些吸收谱峰受配位场影响较大。d—d跃迁光谱有一个重要特点,即配位体场的强度对d轨道能级分裂的大小影响很大,从而也就决定了光谱峰的位置。如红宝石、祖母绿的紫外可见吸收光谱。

b.f电子跃迁吸收光谱

与过渡金属离子的吸收显著不同,镧系元素离子具有特征的吸收锐谱峰。这些锐谱峰的特征与线状光谱颇为相似。这是因为4f轨道属于较内层的轨道,由于外层轨道的屏蔽作用,使4f轨道上的厂电子所产生的f-f跃迁吸收光谱受外界影响:相对较小所致。如蓝绿色磷灰石、人造钇铝榴石(见图2-2-26)、稀土红玻璃等。

c. 电荷转移(迁移)吸收光谱

在光能激发下,分子中原定域在金属M轨道上的电荷转移到配位体L的轨道,或朝相反方向转移。这种导致宝石中的电荷发生重新分布,使电荷从宝石中的一部分转移至另一部分而产生的吸收光谱称为电荷转移光谱。电荷转移所需的能量比d—d跃迁所需的能量多,因而吸收谱带多发生在紫外区或可见光区。如山东蓝宝石。

1.3仪器的用途

可用于结构的鉴定,定量分析以及颜色成因分析。可以获取宝玉石的紫外可见吸收光谱。

1.3.1检测人工优化处理宝石

例如,利用直接透射法或反射法,能有效地区分天然蓝色钻石与人工辐照处理蓝色钻石。前者由杂质B 原子致色,紫外可见吸收光谱表征为,从540nm 至长波方向,可见吸收光谱的吸收率递增。后者则出现GR1心/741nm(辐射损伤心),并伴有N2+N3/415nm(杂质N 原子心)吸收光谱。又例如,利用反射

法,能有效地区分天然绿松石与人工染色处理绿松石,前者由Fe、Cu 水合离子致色,在可见吸收光谱中显示宽缓的吸收谱带(Cu2+:2E→2T2;Fe3+:6A1→4E+4A,),后者则无或微弱。

1.3.2区分某些天然与合成宝石

例如,水热法合成红色绿柱石显示特征的Co、Fe元素致可见吸收光谱。反之,天然红色绿柱石仅显示Fe及Mn元素致可见吸收光谱。

1.3.3探讨宝石呈色机理

例如,山东黄色蓝宝石中Fe3+为主要的致色离子,在其紫外可见吸收光谱中,O2-→Fe3+电荷转移带尾部明显位移至可见光紫区内,并与Fe3+晶体场谱带部分叠加。据此认为,山东黄色蓝宝石的颜色,主要归因为O2-→Fe3+电荷转移与Fe3+的d—d电子跃迁联合作用所致。

1.4优缺点

简单,廉价,无损。

1.5测试方法

用于宝石的测试方法可分为两类,即直接透射法和反射法。

1.5.1直接透射法

将宝石样品的光面或戒面(让光束从宝石戒面的腰部一侧穿过)直接置于样品台上,获取天然宝石或某些人工处理宝石的紫外可见吸收光谱。直接透射法虽属无损测试方法,但从中获得有关宝玉石的相关信息十分有限,特别在遇到不透明宝石或底部包镶的宝石饰品时,则难以测其吸收光谱。由此限

制了紫外可见吸收光谱的进一步应用。

1.5.2反射法

利用紫外一可见分光光度计的反射附件(如镜反射和积分球装置),有助于解决直接透射法在测试过程中所遇到的问题,由此拓展紫外可见吸收光谱的应用范围。

1.6使用范围

紫外吸收光谱::分子间电子能级跃迁。波长范围:100-800nm。远紫外区:100-200nm,近紫外区:200-400nm。可见光区:400-800nm。

1.7数据形式

物质对光的选择性吸收及吸收曲线。以吸收曲线的形式表示出来。关于吸收曲线的讨论:

a)同一种物质对不同波长光的吸收光度不同,吸收最大处对应的波长称为最大吸收波长入max。

b)不同浓度的同一物质,其吸收曲线形状相似,入max不变。而对于不同物质,他们的吸收曲线形状和入max则不同。

c)吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据之一。

d)不同浓度的同一物质,在某一定的波长下吸收光度A有差异。在入max处吸光度A的差异度最大,此特性可以作为物质定量分析的依据。

e)在入max处吸光度A随浓度变化的幅度最大,所以测定最灵敏。吸收曲线是定量分析中选择入射光波长的重复依据。

2红外吸收光谱仪

2.1基本概念

红外光谱:宝石在红外光的照射下,引起晶格(分子)、络阴离子团和配位基的振动能级发生跃迁而吸收相对应的红外光产生的光谱称为红外光谱。

红外光:电磁波谱中介于可见光与无线电波(微波)之间的波段。波长范围:0.78μm-100μm或波数: 12820cm-1-10cm-1,

波数:单位长度内所含的波的数目。表达为波长的倒数,如 1/780nm=107/780cm=12820cm-1。

波长分类:近红外:12820-4000cm-1,中红外:400-4000cm-1,远红外:400-10cm-1. 宝石学中,中红外范围的波长应用较广。

基频峰:分子吸收红外辐射后,由基态振动能级(v=0)跃迁至第一振动激发态(v=1)时,所产生的吸收峰称为基频峰。

泛频峰:振动能级由基态(v=0)跃迁至第二激发态(v=2)、第三激发态(v=3)、……所产生的混合吸收峰称为泛频峰。包括倍频峰,合频峰,差频峰。

2.2基本理论

2.2.1基本原理

红外线的能量与物质分子或基团振动或转动的能量相当,当物质受到红外光的辐射时,分子即吸收辐射能由低能态向高能态跃迁,从而造成特定波长的红外光被吸收(分子吸收),将透过物质的红外光用单色器色散,再按波长或波数排列,测出红外波段内各处的吸收强度,即得红外光谱,纵座标用透过率或吸光度表示,横座标常用波数表示。

在傅里叶变换红外光谱仪中,首先是把光源发出的光经过迈克尔逊干涉仪变成干涉光,再让干涉光照射样品,经过检测器(探测器—放大器—滤波

器)获得干涉图,由计算机将干涉图进行傅里叶转换得到的光谱。

2.2.2红外光谱产生的条件:

①辐射应具有能满足物质产生振动跃迁所需的能量;

②辐射与物质间有相互偶合作用。例对称分子没有偶极矩,辐射不能引起共振,无红外活性,如N2、O2、Cl等。而非对称分子有偶极矩,具红外活性。

2.2.3多原子分子的振动

多原子分子由于原子数目增多,组成分子的键或基团和空间结构不同,其分子真实振动光谱比双原子分子要复杂,但在一定条件下作为很好的近似,分子一切可能的任意复杂的振动方式都可以看成是有限数量的且相互独立的和比较简单的振动方式的叠加,这些相对简单的振动称为简正振动。

2.2.4简正振动的基本形式

一般将简正振动形式分成两类:伸缩振动和弯曲振动(变形振动)。

2.2.4.1伸缩振动

指原子间的距离沿键轴方向发生周期性变化,而键角不变的振动称为伸缩振动,通常分为对称伸缩振动和不对称伸缩振动。对同一基团,不对称伸缩振动的频率要稍高于对称伸缩振动,而官能团的伸缩振动一般出现在高波数区。

2.2.4.2弯曲振动(又称变形振动)

指具有一个共有原子的两个化学键键角的变化,或与某一原子团内各原子间的相互运动无关的、原子团整体相对于分子内其他部分的运动。多表现为键角发生周期变化而键长不变。变形振动又分为面内变形和面外变形振动。面内变形振动又分为剪式和平面摇摆振动。面外变形振动又分为非平面摇摆和扭曲振动。

2.2.5红外光区的划分

红外光谱位于可见光和微波区之间,即波长约为0.78~1000μm范围内的电磁波,通常将整个红外光区分为以下三个部分:

2.2.5.1远红外光区

波长范围为25—1000μm,波数范围为400~10cm-1。该区的红外吸收谱带主要是由气体分子中的纯转动跃迁、振动—转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。在宝石学中应用极少。

2.2.5.2中红外光区

波长范围为2.5—25μm,波数范围为4000—400cm-1。即振动光谱区。它涉及分子的基频振动,绝大多数宝石的基频吸收带出现在该区。基频振动是红外光谱中吸收最强的振动类型,在宝石学中应用极为广泛。通常将这个区间分为两个区域,即称基团频率区和指纹区。基频振动区(又称官能团区),在4000—1500cm-1区域出现的基团特征频率比较稳定,区内红外吸收谱带主要由伸缩振动产生。可利用这一区域特征的红外吸收谱带,去鉴别宝石中可能存在的官能团。指纹区分布在1500—400cm-1区域,除单键的伸缩振动外,还有因变形振动产生的红外吸收谱带。该区的振动与整个分子的结构有关,结构不同的分子显示不同的红外吸收谱带,所以这个区域称为指纹区,可以通过该区域的图谱来识别特定的分子结构。

2.2.5.3近红外光区

波长范围为0.78~2.5μm,波数范围为12820-4000cm-1,该区吸收谱带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收所致。如绿柱石中OH 的基频伸缩振动在3650cm-1,伸/弯振动合频在5250cm-1,一级倍频在7210cm-1处。

2.3仪器的用途

红外吸收光谱是宝石中晶体(分子)结构的具体反映。组成宝石中分子的各种基团或官能团分别具有其特定的红外光谱吸收区,并与宝石晶体中由

晶格(分子)、络阴离子团和配位基的振动相对应。依据红外吸收带的数目、波数、谱形、谱带强度、普带分裂状态等项内容,有助于对宝石红外吸收光谱进行定性表征,并从中获取与宝石鉴定相关的重要信息。

2.3.1宝石中的羟基、水分子

基频振动(中红外区)作为红外吸收光谱中吸收最强的振动类型,在宝石学中的应用最为广泛。通常将中红外区分为基频区(又称官能团区,4000—1500cm-’)和指纹区(1500—400cm-1)两个区域。自然界中,含羟基和H2O 的天然宝石居多,与之对应的伸缩振动导致的中红外吸收谱带主要集中分布在官能团区3800~3000cm-1波数范围内。而弯曲振动导致的红外吸收谱带则变化较大,多数宝石的红外吸收谱带的位1400~17000cm-1波数范围内。通常情况下,羟基或水分子的具体波数位置,亦受控于宝石中氢键力的大小。至于具体的波数位,则主要取决于各类宝石内的氢键力的大小。与结晶水或结构水相比,吸附水的对称和不对称伸缩振动导致的红外吸收宽谱带中心主要位3400cm-1处。

2.3.2钻石中杂质原子的存在形式及类型划分

钻石主要由C原子组成,当其晶格中存在少量的N、B、H等杂质原子时,可使钻石的物理性质如颜色、导热性、导电性等发生明显的变化。基于红外吸收光谱表征,有助于确定杂质原子的成分及存在形式,并作为钻石分类的主要依据之一(见下表)。

2.3.3人工充填处理宝玉石的鉴别

由两个或两个以上环氧基,并以脂肪族、脂环族或芳香族等官能团为骨架,通过与固化剂反应生成三维网状结构的聚合物类的环氧树脂,多以充填物的形式,广泛应用在人工充填处理翡翠、绿松石及祖母绿等宝玉石中。充填处理绿松石的红外吸收光谱。官能团区内,除绿松石中羟基、水分子伸缩振动致红外吸收谱带外,在2930cm-1、2857cm-1处显示由外来高分子聚合物中vas(CH2)、vs(CH2)的不对称和对称伸缩振动,其苯环伸缩振动致红外谱带多被ν(M—OH)吸收谱带所包络。B货翡翠:3000-3100cm-1范围特征吸收峰(常在3050cm-1附近),表现为3040、3060cm-1吸收(树脂苯分子C6H6 );白蜡吸收峰(CH8、CH2),2854,2926,2961 cm-1(羟基峰);不能简单地将2600-3200有吸收峰就定为B货。

2.3.4相似宝石种类的鉴别

不同种属的宝石,在其晶体结构、分子配位基结构及化学成分上存在一定的差异,依据各类宝石特征的红外吸收光谱有助于鉴别之。日常检测过程中,检验人员时常会遇到一些不透明或表面抛光较差的翡翠及其相似玉石的鉴别难题,而红外反射光谱则提供了一个快速无损的测试手段。利用红外反射光谱指纹区内硬玉矿物中Si—Onb伸缩振动和Si—Obr—Si及O—Si—O 弯曲振动致红外吸收谱带(经K—K变换)的波数位置及位移、谱形及谱带强度、谱带分裂状态等特征,极易将它们区分开。

2.3.5仿古玉的红外吸收光谱

一些仿古玉器在制作过程中,常采用诸如强酸(如HF酸)腐蚀或高温烘烤等方法进行老化做旧处理。经上述方法处理的玉器表面或呈白(渣)化、或酸蚀残化(斑)、或呈牛毛网纹状,对其玉质的正确鉴别往往带来一定的难度。利用“漫反射红外附件”有助于对这类老化做旧处理玉器进行鉴别。图2-2-21 显示,由指纹区内Si—O、Si—O—Si的伸缩振动和弯曲振动致红外吸收谱带,足以证实该玉器的主矿物成分为透闪石(标识为软玉)。

2.4优缺点

扫描速度快,适合仪器连用;不需要分光,信号强,灵敏度很高。简捷、准确、无损。

2.5测试方法

用于宝石的红外吸收光谱的测试方法可分为两类,即透射法和反射法。

2.5.1透射法

透射法又可分为粉末透射法和直接透射法。粉末透射法属一种有损测试方法,具体方法是将样品研磨成2FAm以下的粒径,用溴化钾以1:100—1:200的比例与样品混合并压制成薄片,即可测定宝石矿物的透射红外吸收光谱。直接透射法是将宝石样品直接置于样品台上,由于宝石样品厚度较大,表现出2000cm-’以外波数范围的全吸收,因而难以得到宝石指纹区这一重要的信息。直接透射技术虽属无损测试方法(见图2-2—16),但从中获得有关宝玉石的结构信息十分有限,由此限制丁红外吸收光谱的进一步应用。特别对于一些不透明宝玉石、图章石和底部包镶的宝玉石饰品进行鉴定时,则难以具体实施。

2.5.2反射法

红外反射光谱是红外光谱测试技术中一个重要的分支,目前在宝玉石的测试与研究中备受关注,根据采用的反射光的类型和附件分为:镜反射、漫反射、衰减全反射和红外显微镜反射法。红外反射光谱(镜、漫反射)在宝石鉴定与研究领域中具有较广.阔的应用前景。根据透明或不透明宝石的红外反射光谱表征,有助于获取宝石矿物晶体结构中羟基、水分子内、外振动,阴离子、络阴离子的伸缩或弯曲振动,分子基团结构单元及配位体对称性等

重要的信息,特别是为某些充填处理的宝玉石中有机高分子充填材料的鉴定提供了一种便捷、准确、无损的测试方法。

考虑到宝石的红外反射光谱中,由于折射率在红外光谱频率范围的变化(异常色散作用)而导致红外反射谱带产生畸变(似微分谱形),要将这种畸变的红外反射光谱校正为正常的并为珠宝鉴定人员所熟悉的红外吸收光谱,可通过Dispersion校正或KramersKronig变换的程序予以消除。(多限于4000—400cm-1范围)。

2.6使用范围

透射法:光、戒面,波数范围:2000-8000cm-1、KBr压片,波数范围:4000-400 cm-1。。

反射法:具有一抛光面的任何性质样品,镜、漫反射,波数范围:4000-400 cm-1。

测试对象:适应于几乎所有的不透明或透明宝玉石,

2.7数据形式

红外光谱仪测定的是分子或基团振动、转动的能量吸收特征。以红外光谱吸收或透过曲线图谱形式表示,纵座标用透过率或吸光度表示,横座标常用波数表示。

3激光拉曼光谱仪

3.1基本概念

1928年,印度物理学家C. V. Raman发现:当光照射到物体时,有按几何规律(反射、折射、吸收)传播的光线;还有散射光,包括瑞利散射、拉曼散射等;激光光子和分子碰撞过程中,除了被分子吸收以外,还会发生散射。由于碰撞方式不同,光子和分子之间存在多种散射形式:瑞利(Rayleigh)散射:又称弹性散射;散射光强与入射光的波长成反比;频率不变;光子和分子之间没有能量交换,仅改变了光子的运动方向,其散射频率等于入射频率,这种类型的散射在光谱上称为瑞利(Rayleigh)散射。

拉曼(Raman)散射:光子和分子之间在碰撞时发生了能量交换,即改变了光子的运动方向,也改变了能量,使散射频率和入射频率有所不同。散射光的能量与入射光能量相比发生改变,光强很弱,反映分子振动频率的信息,散射谱为发射谱。此类散射在光谱上被称为拉曼(Raman)散射。

拉曼位移:拉曼散射光与入射光频率△ν。△ν取决于分子振动能级的改变,所以他是特征的,对不同物质:△ν不同。对同一物质:△ν与入射光频率无关,表征分振动转动能级的特征物理量,定性与结构分析的依据。

拉曼散射的产生:拉曼光谱强渡与分子极化率的成正比关系。分子在光电场E中,分子产生诱导偶极矩u。u=aE。a为极化率。

去偏正度:绝大多数的光谱只有两个基本参数,即频率和强度。但拉曼光谱还有一个参数,即去偏正度。在入射激光的垂直与平行方向置偏振器,分别测得散射光强,两者之比为去偏正度。

红外活性和拉曼活性振动及三大原则。红外活性振动:伴有偶极矩变化的振动可以产生红外吸收光谱带。拉曼活性振动:伴有极化率变化的振动。

互排原则:有对称中心的分子其分子振动对红外和拉曼一有活性,则另一非活性。互允原则:无对称中心的分子其分子振动对红外和拉曼都是活性的。互禁原则:少数分子的振动器红外和拉曼都是非活性的。

拉曼与红外光谱之间的关系:

红外:适用于研究不同原子的极性键振动。拉曼:适用于研究同原子的非极性键振动。互补:对分子的问题可以更周密的研究。

3.2基本理论

3.2.1基本原理

根据拉曼效应对分子结构进行研究,由此确定矿物成分。激光拉曼光谱是一种激光光子与宝石分子发生非弹性碰撞后,改变了原有入射频率的一种分子联合散射光谱,通常将这种非弹性碰撞的散射光谱称之为拉曼光谱。

3.2.2拉曼散射的两种跃迁能量差

当散射光的频率低于入射光的频率,分子能量损失,这种类型的散射线称为斯托克斯(Stokes)线;若散射光的频率高于入射光的频率,分子能量增加,将这类散射线称之为反斯托克斯线。前者是分子吸收能量跃迁到较高能级,后者是分子放出能量跃迁到较低能级。由于常温下分子通常都处在振动基态,所以拉曼散射中以斯托克斯线为主,反斯托克斯线的强度很低,一般很难观察到。斯托克斯线和反斯托克斯线统称为拉曼光谱。一般情况下,拉曼位移由宝石分子结构中的振动能级所决定,而与其辐射光源无关。

3.2.3拉曼光谱的分析方向

定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进行定性分析。

结构分析:对光谱谱带的分析,又是进行物质结果分析的基础。

定量分析:根据物质对光谱的吸收光特点,可以对物质的量有很好的分析能力。

3.3仪器的用途

拉曼光谱能迅速定出分子振动的固有频率,判断分子的对称性、分子内部作用力的大小及一般分子动力学的性质。作为红外光谱的互补技术,LRM能过提供分子成分(非元素成分)、分子配位体结构及对称性、分子集团结构单元、矿物中粒子的有序—无序占位和缺位及缺陷等精细结构。

其主要用途有:

a、鉴定宝石种(特征基团)。

b、包裹体成分(固、气、液相)研究, 确定其矿物相;特别对气液相包裹体测试有独特优势。

c、检测人工优化处理宝石—填充处理,裂隙中成分的确定;

d、检测人工和天然致色因子。

3.4优缺点

3.4.1优点

拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制作过程,避免了一些误差的发生。并且在分析过程中操作简便、测试时间短、灵敏度高等特点。无损、快速、准确、不用制样,透明宝石内仍可测试。拉曼光谱具有分辨率和灵敏度较高且快速无损等优点,特别适于宝石内部1μm大小的单个流体包体(见图2-2-23)及各类固相矿物包体的鉴定与研究。

3.4.2缺点

3.4.2.1分析中的不足:

a拉曼散射面积

b不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响。

c荧光现象对傅里叶变换拉曼光谱分析的干扰。

d在进行傅里叶变换拉曼光谱分析时,常出现曲线的非线性的问题。

e任何以物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析结果产生一定的影响。

3.4.2.2拉曼光谱技术在宝石研究中的局限性

a拉曼光谱仪受到荧光的影响,因此对发荧光宝石的检测会产生一定的影响。

b对不透明或透明的宝石,利用拉曼光谱技术进行检测可能会在宝石表面留下痕迹而成为有损检测。

c应用拉曼光谱鉴定宝石是一种类比法,有时会受到标准拉曼光谱图的限制,尤其是对一些罕见保时更是如此,此外对某些颗粒细小的多晶集合体类玉石,很难得到有效的拉曼光谱(荧光强,如图章石)。

3.5测试方法

水可以作为溶剂,样品可盛于玻璃瓶,毛细管等容器中直接测定。固体样品可以直接测定。

3.6使用范围

光谱范围为40-4000cm-1,拉曼的激发波长可以是可见光区的任一激发源,因此其色散系统比较简单,(可见光区),不具有偶极矩的分子,不产生红

外吸收,但可产生拉曼散射。

3.7数据形式

拉曼是发射光谱。拉曼光谱图式分子骨架测定,同原子的非极性键的振动光谱的机理。

各种仪器分析的基本原理

紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

WYA-2S数字阿贝折射仪

1.仪器用途 本仪器广泛使用于石油、化学、制药、制糖、食品工业等及有关高等院校和科研机构测定透明、半透明液体或固体的折射率n D,还可按糖品统一分析国际委员会 (ICUMSA)1974年公布的蔗糖溶液折射率n D和该蔗糖溶液质量分数(锤度Brix)的转换公式直接显示被测蔗糖溶液质量分数(锤度Brix)的数值,并能自动校正温度对蔗糖溶液质量的分数(锤度Brix)值的影响。仪器还可显示样品的温度。 2.主要技术参数和规格 1 测量范围 折射率n D 1.3000-1.7000 2 测量准确度(平均值) 折射率n D±0.0002 3 蔗糖质量分析数 (锤度Brix)显示范围0~95% 4 温度显示范围0℃~50℃ 5 仪器外形尺寸330㎜3180㎜3380㎜ 6 仪器重量10kg 7 电源220V~240V 频率50Hz±1Hz 8 输入功率或电源30W 9使用温度范围室温~35℃ 10灯泡规格(FANELL328-340)6.5V,0.3A 11保险丝规格F/A250V 1A 12防护等级1P20

3.仪器工作原理 1)原理方块图 2)原理 数字阿贝折射仪测定透明或半透明物质的折射率原理是基于测定临界角,由目视望远镜部件和色散校正部件组成的观察部件来瞄准明暗两部分的分界线,也就是瞄准临界的位置,并由角度---数字转换部件将角度置换成数字量,输入微机系统进数据处理,而后数字显示出被测样品的折射率或锤度。

4.仪器结构 1目镜 2 色散手轮 3 显示窗4“POWER”电源开关 5 “READ”读数显示键6“BX-TC”经温度修正锤度显示键 7 “n D”折射率显示键8“BX”未经温度修正锤度显示键9调节手轮10 聚光照明部件 11 射棱镜部件12“TEMP”温度显示键 13 RS232接口

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法!!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e 分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e 的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG 分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态

阿贝折射仪WAYW标准操作规程

阿贝折射仪W A Y W标准操作规程 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

福建中合医药股份有限公司GMP文件 1 目的:制定一个阿贝折射仪操作规程,保证其正确使用 2 依据:WYA-2W阿贝折射仪说明书 3 适用范围:阿贝折射仪的使用操作 4 责任者:QC主管、QC检验员 5 规程内容: 5.1 准备工作 5.1.1 在开始测定前,必须先用蒸馏水或用标准试样校对读数。如用标准试样则对折射棱镜抛光面加1-2滴溴代萘。再贴上标准试样的抛光面,当读数视场指示标准试样上之值时,观察望远镜内明暗分界线是否在十字线中间,若有偏差则用螺丝刀微量旋转。5.1.2 开始测定之前必须将进光棱镜及折射棱镜擦洗干净,以免留有其他物质影响测定精度。(若用乙醚或酒精清洗必须等干后再加入被测液体。) 5.2 测定工作 5.2.1 将棱镜表面擦干净后把待测液体用滴管加在进光棱镜的磨砂面上,旋转棱镜锁紧手柄,要求液体均匀无气泡并充满视场。(若被测液体为易挥发物则在测定过程中须用针筒在棱镜组侧面的一小孔内加以补充)。 5.2.2 调节两反光镜使二镜筒视场明亮。 5.2.3 旋转手轮使棱镜组转动,在望远镜中观察明暗分界线上下移动,同时旋转阿米西棱镜手轮使视场中除黑白二色外无其他颜色,当视场中无色且分界线在十字线中心时观察读书镜视场右边所指示刻度值。 5.2.4 测量固体时,固体上需有二个互成垂直的抛光面。测定时,不用反光镜及进光棱镜,将固体一抛光面用溴代萘粘在折射棱镜上,另一抛光面向上,其他操作与上同。若被测固体的折射率大于1.66,则不应用溴代萘粘固体而改用二碘甲烷。 5.2.5 当测量半透明固体时,固体上需有一个抛光面,测量时将固体的一个抛光面用溴代萘粘在折射棱镜上,取下保护罩作为进光面,利用反射光来测量,具体操作同上。5.2.6 测量糖溶液内含糖量浓度时,操作与测量液体折射率时,应以从读数镜视场左边所指示值读出,即为糖溶液含糖量浓度的百分数。 5.2.7 测定色散值时,转动阿米西棱镜手轮,直到视场中明暗分界线无颜色为止,此时 在色散值刻度圈记下所指示出的刻度值Z再记下其折射率n D 。根据折射率n D 值,在色散 表的同一行中找出A和B值,若n D 为1.351则可以由n D 为1.350和1.360之A,B值之差 数用内插法求得其A,B值。

宝石学大型仪器原理分析

现代宝石测试仪器总复习 仪器名称1基本概念2基本原理3仪器的用途4优缺点5测试方法6使用范围7数据形式 重点仪器(80%) 1紫外-可见吸收光谱仪2红外吸收光谱仪 3拉曼光谱仪 4X荧光光谱仪 5X射线粉晶衍射仪 次重点仪器(15%±) 6激光诱导离解光谱仪7阴极发光仪 8扫描电镜 9电子探针 10绪论 非重 点 (5% ±) 11剩余仪器

1紫外-可见吸收光谱仪 1.1基本概念 分子具有的三种不同能级:电子能级、振动能级和转动能级。分子光谱:在辐射能作用下,由分子能级间的跃迁产生的光谱。 能级跃迁:电子能级间跃迁的同时,总伴随着振动和转动能级间的跃迁。即电子光谱中中包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。量子化:选择性吸收,吸收曲线与最大吸收波长入max,用不同波长的单色光照射,测吸收光度。 1.2基本理论 1.2.1基本原理 紫外—可见吸收光谱是在电磁辐射作用下,由宝石中原子、离子、分子的价电子和分子轨道上的电子在电子能级间的跃迁而产生的一种分子吸收光 谱。具不同晶体结构的各种彩色宝石,其内所含的致色杂质离子对不同波长的入射光具有不同程度的选择性吸收,由此构成测试基础。按所吸收光的波 长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外一可见分光光度法。 在宝石晶体中,电子是处在不同的状态下,并且分布在不同的能级组中,若晶体中一个杂质离子的基态能级与激发态能级之间的能量差,恰好等于 穿过晶体的单色光能量时,晶体便吸收该波长的单色光,使位于基态的一个电子跃迁到激发态能级上,结果在晶体的吸收光谱中产生一个吸收带,便形 成紫外可见吸收光谱。 1.2.2宝石测试中常见三种紫外可见吸收光谱类型:

GIC系统宝石学考试重点资料

一、名词解释 1、牛眼状干涉图和螺旋状干涉图形成的原理、现象、对于某一种宝石的特殊意义以及画法 牛眼状干涉图原理现象:一轴晶正光性,无对称中心,具有独特的左旋或右旋旋光性,在正交偏光镜下偏振光围绕光轴旋转,形成中空的黑十字牛眼状干涉图。 鉴定意义:只出现在水晶或无色水晶之中。 螺旋桨状干涉图原理现象:紫晶大多数都呈聚片双晶状产出,并且平行于菱面体的晶面,两相邻的双晶一层属于左旋光性,一层属于右旋光性。全部抵消或部分抵消旋光作用,使紫晶的干涉图呈变形的螺旋桨状的黑十字。 鉴定意义:只出现在天然的紫水晶中 2、⑴变色效应:在不同的光源照射下,样品呈现明显颜色变化的现象。如:变石、变色石榴石 ⑵变彩效应:光从某些特殊的结构反射出时,由于干涉或衍射作用而产生的颜色或一系列颜色,随观察方向不同而变化的现象。如:欧泊、拉长石 ⑶猫眼效应:在平行光的照射下,以弧面形切磨得某些珠宝玉石表面呈现的一条明亮光带,随样品随光线的转动而移动的现象,称为猫眼效应。如:金绿宝石猫眼、玻璃猫眼 3、⑴临界角:当光线从光密介质进入光疏介质时,光线偏离法线发生折射,折射角大于入射角;当继续增大入射角,是折射线沿两介质之间的分界面通过时,即产生一个90°折射角,这时的入射角就叫做临界角。 ⑵全反射:所有从光密介质进入到光疏介质的光线,当入射角小于临界角时发生折射,当入射角大于临界角时发生全反射。 4、脆性:宝石在外力打击作用下易破碎的性质。 翠性:指翡翠中主要组成矿物硬玉(辉石)的两组解理造成的闪闪发光的现象,即‘苍蝇翅膀 5 翡翠处理:、(1)漂白处理(漂白充填,漂白侵蜡)(2)染色处理(A加热染色B辐射致色)(3)覆膜处理 龟裂纹(酸蚀纹)指经过酸处理过的翡翠在强光源下观察,表面显龟裂纹,结构松散,在裂隙处可见胶的存在,在紫外荧光下可能有白色荧光。 6、(1)、解理:指晶体在外力的作用下沿一定的结晶方向裂开呈光滑平面的性质。 (2)、裂理:指晶体在外力的作用下沿一定的结晶方向(如双晶结合面)产生破裂的性质。(3)、断口:指晶体在外力的作用下产生不规则的破裂面的性质。 它们之间的差异:解理和裂理都只能出现在单晶体矿物内,而断口既可以出现在单晶体矿物也可以出现在集合体矿物中,解理和裂理是有一定方向的而断口是没有方向性的是随机的。解理是由内因决定的,是晶体固有不变的性质,裂理是有外因决定的对于同一种物质可能出现也可能不出现。 7、异常双折射原理现象:指均质体宝石在正交偏光镜下转动360°出现不规则的消光现象。 产生条件:由于晶格的变形,使光线穿过晶体时某些晶格的传播速率出现差异,使晶体表现出有双折射的现象。. 8、a、红光效应:又叫红色闪光,指人造YAG、合成蓝色尖晶石或某些绿色合成祖母绿在强光源的光纤灯照射下,刻面出现反光整体泛红的现象。如人造YAG、合成蓝色尖晶石或某些绿色

各种仪器原理及应用

紫外可见分光光度计的原理与应用 1.原理 物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。 紫外可见分光光度法的定量分析基础是朗伯-比尔 (Lambert-Beer)定律。即物质在一定浓度的吸光度与它的吸收介质的厚度呈正比 2 应用 2.1 检定物质 根据吸收光谱图上的一些特征吸收,特别是最大吸收波长虽ax 和摩尔吸收系数是检定物质的常用物理参数。这在药物分析上就有着很广泛的应用。在国内外的药典中,已将众多的药物紫外吸收光谱的最大吸收波长和吸收系数载入其中,为药物分析提供了很好的手段。 2.2 与标准物及标准图谱对照 将分析样品和标准样品以相同浓度配制在同一溶剂中,在同一条

件下分别测定紫外可见吸收光谱。若两者是同一物质,则两者的光谱图应完全一致。如果没有标样,也可以和现成的标准谱图对照进行比较。这种方法要求仪器准确,精密度高,且测定条件要相同。 2.3 比较最大吸收波长吸收系数的一致性 2.4 纯度检验 2.5 推测化合物的分子结构 2.6 氢键强度的测定 实验证明,不同的极性溶剂产生氢键的强度也不同,这可以利用紫外光谱来判断化合物在不同溶剂中氢键强度,以确定选择哪一种溶剂。 2.7 络合物组成及稳定常数的测定 2.8 反应动力学研究 2.9 在有机分析中的应用 有机分析是一门研究有机化合物的分离、鉴别及组成结构测定的科学,它是在有机化学和分析化学的基础上发展起来的综合性学科。 原子吸收分光光度计工作原理

系统宝石学——部分

晶体与非晶体 晶体是指具有格子构造的固体。如水晶、红宝石、祖母绿。基本性质:1自限性,指晶体在适当的条件下可以自发地形成几何多面体的性质。2均一性,晶体是具有格子构造的固体,因此在同一晶体的不同部分,质点的分布是相同的。3异向性,在晶体格子构造中,除对称原因外,往往不同方向上质点的排列是不一样的,因此晶体的性质也会随方向的不同而有所差异,这就是晶体的各向异性。如不同方向上硬度和解理的差异等都是晶体异向性的表现。4对称性,晶体具有格子构造本身就是对称的表现,从外部形态来看,晶体的晶面、晶棱和角顶在晶体的不同方向和部位有规律地重复出观便是晶体对称的直观体观。5最小内能,指在相同的热力学条件下,晶体与同种成分物质的非晶质体、液体、气体相比较,其内能最小。5稳定性,,晶体具有最小内能,因而结晶状态是一种相对稳定的状态,这就是晶体的稳定性。6晶体可分为单晶体和多晶体。大部分是单晶体,如钻石、蓝宝石、祖母绿、海蓝宝石、紫晶。部分是多晶体,如玉石是由许多细小同种或不同种晶体构成的集合体。根据构成集合体矿物颗粒的大小,可将其分为显晶质和隐晶质;隐晶质分为显微显晶质和显微隐晶质。显晶质,直接用肉眼或10倍放大镜可辨认其中单个矿物晶体颗粒的集合体,如结构比较粗松的翡翠和石英岩等。隐晶质,用肉眼或10倍放大镜不能观察分辨出单个矿物颗粒的集合体。如果隐晶质在光学显微镜下可以观察到其颗粒,可称其为显微显晶质,如部分软玉和结构比较细腻的翡翠如在光学显微镜下也不能观察其颗粒或只有微弱的光性显示,则称其为显微隐晶质,如玉髓和软玉等。 非晶质体 与晶体相反有些物质内部质点不作规则排列不具格子构造,没有规则几何外形。称非晶质体。内部结构看,非晶质体中质点分布类似于液体。这类宝石材料包括火山玻璃、蛋白石和琥珀。非晶质体不具晶体所具有的自限性各向异性对称性最小内能和稳定性等基本性质。 晶体的对称对称面(P) 对称轴(L) 对称中心(C) 晶体分类根据晶体对称性特点,可把晶体分成七大晶系。低、中、高级三个晶族。低级晶族没有高次轴,它包括三斜晶系(无对称轴和对称面)、单斜晶系(二次轴或对称面不多于一个)和斜方晶系(二次轴或对称面多于一个,无高次轴),中级晶族(只有一个高次轴)包括四方晶系(有一个四次轴)、三方晶系(有一个三次轴)和六方晶系(有一个六次轴),高级晶族只有等轴晶系,它有一个以上的高次轴(如都具有四个三次轴)。 等轴晶系有三个等长且相互垂直的结晶轴,即a=b=c,α=β=γ=90。最高对称型3L44L36L29PC。常见单形为立方体、八面体、菱形十二面体、五角十二面体、四角三八面体和四面体。等轴晶系有钻石、石榴石、尖晶石、萤石和方钠石等。四方晶系有三相互重直的结晶轴,两个水平轴(x,r)等长,与纵轴(z)不等长,即a=b±c,α=β=γ=90。最高对称型L44L25PC。唯一的一个高次轴四次轴(L4)相当于纵轴(Z轴),另两竹目互重直的二次轴(L2)或对称面的法线(若无L2或P,X、Y轴平行晶棱选取)分别相当于X轴和Y轴。常见单形为四方柱和四方双锥。有锆石、金红石、锡石、方柱石和符山石等。六方晶系有四个结晶轴,纵轴(Z)与其他三个水平轴(X、Y、U)不相等;三个水平轴等长且呈120°交角,a=b±c,α=β=90°,γ=120°。最高对称型L66L27PC。唯一一个高次轴六次轴(L6)相当于纵轴(Z),三个彼此相交为120°角L2或P的法线相当于三个水平轴。若无L2,P,则三个水平轴平行晶棱选取。常见单形为六方柱和六方双锥。有磷灰石、绿柱石,蓝锥矿。三方晶系有四个结晶轴,纵轴(Z)与其他三个水平轴(X、Y、U)不相等;三个水平轴等长呈120交角,a=b±c,α=β=90,γ=120。高对称型L33L23PC。高次轴,三次轴(L3)相当于纵轴(Z),三个相交成120角的二次轴(L3)或P的

仪器分析原理_第一阶段练习

江南大学现代远程教育第一阶段练习题 考试科目:《仪器分析原理》第1章至第3章(总分100分) 一、名词解释(每小题3分,共计30分) 1、非光谱分析法:基于辐射与物质相互作用时,测量辐射的某些性质,如折射、散射、干涉、衍射和偏振等变化的分析方法。 2、精密度:是指在相同的条件下,多次平行分析结果相互接近的程度。它表明测定数据的再现性。精密度用偏差來表示。偏差数值越小,说明测定结果的精密度越高。 3、光致激发:分子或离子等吸收紫外或可见光后,再以紫外或可见光的形式发射能量,这种现象称为光致发光。 4、紫外—可见光光谱:也叫分子吸收光谱,利用某些物质的分子吸收10~800nm光谱区的辐射来进行分析测定的方法。 5、选择性地吸收:物质的电子结构不同,所能吸收光的波长也不同,这就是物质对光选挥性吸收的基础。 6、试剂空白:当试剂、显色剂有吸收而试液无色时,以不加试液的试剂、显色剂按照操作步骤配成参比溶液,即为试剂空白。 7、配对池:吸收池由于在使用过程中受化学腐蚀或受摩擦的程度不同,因此在相同条件下测定的本底吸光度有差异,差异最小的同一规格的吸收池称之为配对池。 8、原子线:原子外层电子吸收激发能后产生的谱线。 9、自吸变宽:在空心阴极灯中,激发态原子发射出的光,被阴极周围的同类基态原子所吸收的自吸现象,也会使谱线变宽,同时也使发生强度减,弱致使标准曲线弯曲。 10、所谓光谱通带:光谱通带是指单色器出射光谱所包含的波长范围。选择光谱通带,实际上就是选择单色器的狭缝宽度,这在待测元素共振线附近存在干扰时尤为重更。 11、光谱分析法:是物质于光相互作用时,物质内部发生了量子化的能级间的跃迁从而测定光谱的波长,和强度而进行的分析方法,包括发射光谱法和吸收光谱法。 12、灵敏度:被测组分在低浓度区,当浓度改变一个单位时,所引起的测定信号的该变量。 13、分子的振动能:与光谱的产生有关,相邻两个振动能级相距,可以给出价健特性等结构信息。 14、红外光谱:如果一个分子获得的能量小于,只能发生转动能级的跃迁,如果分子吸收红外光线,则能引起分子的振动能级和转动能级的跃迁,这样得到的光谱就是红外光谱。 15、线光谱:又处于气相的单个原子发生电子能级跃迁所产生的锐线,线宽大约为10-4A 16、溶剂空白:当显色剂,试剂在测定波长下都无吸收时,用纯溶剂作参比溶液。 17、吸收池:放式样的由透明材料制成的容器械,常用石英或熔融石英、玻璃。 18、离子线:离子的外层电子从到能级跃迁到低能级时所发射的谱线。 19、压力变宽:气体压力升高,粒子之间相互碰撞的机会越高,碰撞引起原子或分子的能级稍

《珠宝玉石鉴定Ⅰ》课程标准

江门职业技术学院珠宝首饰工艺及鉴定专业 《珠宝玉石鉴定Ⅰ》 课程标准 江门职业技术学院艺术设计系 二〇一二年十二月

《珠宝玉石鉴定Ⅰ》课程标准 一、课程基本信息 课程代码:063BJZ306 适用专业:珠宝首饰鉴定与工艺专业学时数:90 学分:5 先修课程:宝石学基础后续课程:珠宝玉石鉴定Ⅱ 课程归口: 二、课程性质 《珠宝玉石鉴定Ⅰ》是高等职业技术学校珠宝专业的核心专业课程,是学生学习、掌握珠宝玉石鉴定知识、培养和掌握珠宝玉石职业技能的主干课程。 本课程是一门研究首饰的构成形态和首饰创意设计理念的学科,属于设计艺术学的一个分支,授课对象是我院珠宝首饰工艺与鉴定专业的高职学生。 本课程以培养学生掌握常见宝石的基本将划定特征及实践操作能力为目标,使其珠宝玉石鉴定水平得到一定程度的提高,以适应当前和今后在工作、学习以及研究中的实际需要。 1.与前续课程的联系 通过宝石学基础的学习,学生具备了珠宝玉石鉴定的基本能力。 2.与后续课程的关系 为学生后续课程珠宝玉石鉴定Ⅱ、珠宝首饰营销、珠宝首饰评估等课程学习打下基础,以及对学生今后从事珠宝玉石鉴定提供前期技能准备。 三、课程的基本理念 依据高等职业技术教育的珠宝首饰工艺及鉴定专业学生培养的国家职业标准要求,以及国内外实施课程标准改革的理论和实践,课程以培养学生在工作中的实用鉴定能力为主旨,突出与职业性、能力训练相结合,使学生掌握珠宝首饰鉴定领域中常用的基本技法和鉴定能力,使其实际鉴定水平得到一定程度的提高,以满足当前和今后在工作、学习以及研究中的实际需要。 四、课程设计

本课程是珠宝首饰工艺与鉴定专业学生的一门必修课,非常重要。不但要传授珠宝鉴定理论知识给学生,更重要的是要培养和训练学生的珠宝玉石鉴定实际操作能力。因此,本课程采用理论和实际相结合的教学方法,每次课讲的理论内容当场消化吸收,是学生的学习效率大大提高。 结合市场上常见的宝石的种类,本课程主要围绕高档宝石、中低档宝石和人造宝石这三单元进行展开,是学生对于单晶宝石的种类及鉴定特征有一个系统的了解。 五、课程的目标 本课程的总目标是以学生为主体,以学生的学习为中心,通过实践、实训为主导的教学与操作,使高等职业学校珠宝首饰专业的学生了解珠宝首饰设计的流程及其各种设计方案的侧重点和内容,培养学生具有一定的创新思维和创意能力,从多方面提高设计意识、艺术修养和审美情趣,并能制定具体的首饰市场调研策划、产品的设计规划、产品上市及珠宝品牌规划等方面的技能,切实提高学生的实际动手能力和处理实际问题的综合素质能力,为其将来从事专业活动和未来的职业生涯打下基础。 课程内容以“学其所用,用其所学”为基础,突出高职教育特点,注重贴近市场与企业对岗位的需求,确保人才培养目标的实现。通过本课程的学习,使学生具备珠宝首饰设计的基础知识和基本设计方法,并培养学生的自学能力和动手解决问题的能力,增强学生进入社会的竞争能力。 具体的教学目标:培养学生掌握珠宝玉石的物理性质和化学性质等基本性质;掌握珠宝玉石的鉴定特征,能够熟练地利用常规的宝石鉴定仪器鉴定市场上,常见的珠宝玉石制品,同时能够运用大型仪器对较难鉴定的天然宝石、合成宝石和优化处理宝石进行鉴定。对某些稀少宝石的鉴定方法也要有所了解,为走向社会参加工作打下坚实的珠宝玉石鉴定理论基础,并积累一定的实际鉴定经验。六、课程内容与学时分配

折光仪使用说明

WAY(2WAJ)阿贝折射仪 ?仪器用途 阿贝折射仪是能测定透明、半透明液体或固体的折射率n D和平均色散n F-n C的仪器(其中以测透明液体为主),如仪器上接恒温器,则可测定温度为0℃-70℃内的折射率n D。 折射率和平均色散是物质的重要光学常数之一,能借以了解物质的光学性能、纯度、及色散大小等。本仪器能测出蔗糖溶液的质量分数(锤度Brix)(0-95%,相当于折射率为1.333-1.531)。故此仪器使用范围甚广,是石油工业、油脂工业、制药工业、制漆工业、日用化学工业、制糖工业和地质勘察等有关工厂、学校及有关科研单位不可缺少的常用设备之一。 ?主要技术参数和规格 1.折射率测量范围(n D): 1.3000-1.7000 2.测量示值误差(n D)±0.00002 3.蔗糖溶液质量分数(锤度Brix)读数范围:0~95% 4.仪器外形尺寸:100×200×240mm 5.仪器重量: 2.6kg ?操作步骤及使用方法 ●准备工作: 1.在开始测定前,必须先用蒸馏水或用标准试样校对读数。如用标准试样则对折射棱镜的 抛光面加1-2滴溴代萘,再贴上标准试样的抛光面,当读数视场指示于标准试样上之值时,观察望远镜内明暗分界线是否在十字线中间,若有偏差则用螺丝刀微量旋转小孔内的螺钉,带动物镜偏摆,使分界线相位移至十字线中心。通过反复地观察与校正。使示值的起始误差降至最小(包括操作者的瞄准误差)。校正完毕后,在以后的测定过程中不允许随意再动此部位。 在日常的测量工作中一般不需校正仪器,如对所测的折射率示值有怀疑时,可按上述方法进行检验,是否有起始误差,如有误差应进行校正。 2.每次测定工作之前及进行示值校准时必须将进光棱镜的毛面,折射棱镜的抛光面及标准 试样的抛光面,用无水酒精与乙醚(1:1)的混合液和脱脂棉花轻擦干净,以免留有其他物质,影响成相清晰度和测量准确度。

光学仪器基本原理习题及答案

第四章 光学仪器基本原理 1.眼睛的构造简单地可用一折射球面来表示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于1。试计算眼球的两个焦距。用右眼观察月球时月球对眼的张角为1°,问视网膜上月球的像有多大? 解;眼球物方焦距;当s ’=∞时,f=﹣5.55/﹙4/3﹣1﹚=﹣16.65㎜=﹣1.665㎝ 眼球的象方焦距:f '=s '=m m 2.2213455.534 =-? 当u=1°时,由折射定律n 1sinu 1=n 2sinu 2 U 1=1°n 1=1,n 2=4∕3 像高l '=f 'tanu 2=f 'sinu 2=f '×3∕4 sin1o =22.2×3∕4×0.01746=0.29mm 2.把人眼的晶状体看成距视网膜2㎝的一个简单透镜。有人能看清距离在100㎝到300㎝ 间的物体。试问:⑴此人看清远点和近点时,眼睛透镜的焦距是多少?⑵为看清25㎝远的物体,需配戴怎样的眼镜? 解:人眼s '=2cm. S 1=100cm.s 2=300cm 近点时透镜焦距'f =21002 100+?=1.961cm 远点时透镜焦距f '=23002 300+? =1.987cm 当s =﹣25cm 时s '=﹣100cm ﹦﹣1m 34125.0100.1111=+-=---=-'= Φs s D 300=度 3.一照相机对准远物时,底片距物镜18㎝,当镜头拉至最大长度时,底片与物镜相距20 ㎝,求目的物在镜前的最近距离? 解:.18.0m f =' m s 20.0=' 照相机成像公式: f s s '=-'1 11 556.020.01 18.01111-=+-='+'-=s f s m s 8.1-= 目的物在镜前的最近距离为m 8.1

地大考研复试班-中国地质大学(北京)宝石学考研复试经验分享

地大考研复试班-中国地质大学(北京)宝石学考研复试经验分享中国地质大学的前身是1952年由北京大学、清华大学、天津大学和唐山铁道学院等院校的地质系(科)合并组建的北京地质学院。1960年被评为“北京市文教战线红旗学院”,跻身于64所全国重点高校行列。1970年迁校,1978年在邓小平同志直接关怀下,在北京原校址恢复办学。1987年成立中国地质大学,在京汉两地相对独立办学,是我国首批试办研究生院的33所高校之一,并首批进入"211工程"、"985"优势学科创新平台建设行列。2000年2月,中国地质大学由国土资源部整体划转教育部管理。2005年3月,大学总部撤销,京汉两地独立办学。2006年9月,教育部和国土资源部共建中国地质大学。2017年9月,学校入选世界一流学科建设高校。 学校现有中国科学院院士8人。在数十万名毕业生中,有37人成为两院院士,200余人成为省部级以上劳动模范。经过60余年的建设,学校逐步成为以地质、资源、环境、地学工程技术为主要特色,理、工、文、管、经、法相结合的多科性全国重点大学,成为我国地学人才培养的摇篮和地学研究的重要基地。学校现有17个教学单位,42个本科专业,2个国家一级重点学科,8个国家二级重点学科,14个省部级重点学科,16个一级学科博士学位授权点,33个一级学科硕士学位授权点,14个工程硕士领域和MBA、MPA等11个类型的专业学位授权点,13个博士后流动站。在职教职工1400余人,全日制在校生15000余人,继续教育和网络远程教育在读生10万余人。现任党委书记马俊杰,校长邓军。 启道考研复试班根据历年辅导经验,编辑整理以下关于考研复试相关内容,希望能对广大复试学子有所帮助,提前预祝大家复试金榜题名! 专业介绍 研究珠宝玉石的学科。又称为宝玉石学、珠宝玉石学。是以矿物学和岩石学为基础,并与材料学、工艺美术学等一些学科互相渗透发展起来的一个新的学科。 复试科目与人数 ①101思想政治理论②201英语一③610高等数学④839结晶学与矿物学 招生人数25人 复试时间地点 宝石学矿物学、岩石学、矿床学材料工程专业面试定于4月8日下午13:00开始,地调楼-411。

阿贝折射仪 WAY-2W标准操作规程

福建中合医药股份有限公司GMP文件 文件名称: WYA-2W阿贝折射仪标准操作规程文件编号: ********* 起草人日期年月日第 1 页,共2页 审核人日期年月日分发号 QA审核日期年月日生效日期年月日 批准人日期年月日颁发部门*** 分发部门*** 1 目的:制定一个阿贝折射仪操作规程,保证其正确使用 2 依据:WYA-2W阿贝折射仪说明书 3 适用范围:阿贝折射仪的使用操作 4 责任者:QC主管、QC检验员 5 规程内容: 5.1 准备工作 5.1.1 在开始测定前,必须先用蒸馏水或用标准试样校对读数。如用标准试样则对折射棱镜抛光面加1-2滴溴代萘。再贴上标准试样的抛光面,当读数视场指示标准试样上之值时,观察望远镜内明暗分界线是否在十字线中间,若有偏差则用螺丝刀微量旋转。 5.1.2 开始测定之前必须将进光棱镜及折射棱镜擦洗干净,以免留有其他物质影响测定精度。(若用乙醚或酒精清洗必须等干后再加入被测液体。) 5.2 测定工作 5.2.1 将棱镜表面擦干净后把待测液体用滴管加在进光棱镜的磨砂面上,旋转棱镜锁紧手柄,要求液体均匀无气泡并充满视场。(若被测液体为易挥发物则在测定过程中须用针筒在棱镜组侧面的一小孔内加以补充)。 5.2.2 调节两反光镜使二镜筒视场明亮。 5.2.3 旋转手轮使棱镜组转动,在望远镜中观察明暗分界线上下移动,同时旋转阿米西棱镜手轮使视场中除黑白二色外无其他颜色,当视场中无色且分界线在十字线中心时观察读书镜视场右边所指示刻度值。 5.2.4 测量固体时,固体上需有二个互成垂直的抛光面。测定时,不用反光镜及进光棱镜,将固体一抛光面用溴代萘粘在折射棱镜上,另一抛光面向上,其他操作与上同。若被测固体的折射率大于1.66,则不应用溴代萘粘固体而改用二碘甲烷。 5.2.5 当测量半透明固体时,固体上需有一个抛光面,测量时将固体的一个抛光面用溴代萘粘在折射棱镜上,取下保护罩作为进光面,利用反射光来测量,具体操作同上。 5.2.6 测量糖溶液内含糖量浓度时,操作与测量液体折射率时,应以从读数镜视场左边所指示值读出,即为糖溶液含糖量浓度的百分数。 5.2.7 测定色散值时,转动阿米西棱镜手轮,直到视场中明暗分界线无颜色为止,此时在 色散值刻度圈记下所指示出的刻度值Z再记下其折射率n D 。根据折射率n D 值,在色散表的 同一行中找出A和B值,若n D 为1.351则可以由n D 为1.350和1.360之A,B值之差数用 内插法求得其A,B值。

仪器分析原理及参考解答

江南大学现代远程教育考试大作业 考试科目:《仪器分析原理》 一、大作业题目(内容): 1、光谱分析法。 利用光谱学的原理和实验方法以确定物质的结构和化学成分的分析方法。 2、紫外—可见光谱仪器进行定性定量分析的机理和测量条件的选择。 1)分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别其测定该物质的含量,这就是分光光度定性鉴别和定量分析的基础。 其基本原理是朗伯-比尔吸收定律,即在一定的吸收光程下,物质的浓度与吸光度成正比。2)测量条件的选择如下: (1)入射波长:通常选择被测物质的最大吸收波长作为入射波长——最大吸收原则。若有干扰,采用“干扰最小,吸收最大”原则。 (2)狭缝宽度:狭缝太小,入射光强减弱,测定灵敏度降低;狭缝太宽,入射光的单色性降低。一般为试样吸收峰的半宽度的十分之一。 (3)吸光度值:一般选A:0.2-0.8,当T=36.8% A-0.434时,吸光度测量误差最小。调整A的方法:A=εbc ①选择不同的吸收池厚度(改变b)。 ②改变称样量,稀释浓度(改变c)。 3、单色器构成和作用。 将光源发出的光分离成所需要的单色光的器件称为单色器。 单色器由入射狭缝、准直镜、色散元件、物镜和出射狭缝构成。 入射狭缝用于限制杂散光进入单色器,准直镜将入射光束变为平行光束后进入色散元件。色散元件是关键部件,作用是将复合光分解成单色光。 物镜将出自色散元件的平行光聚焦于出口狭缝。 出射狭缝用于限制通带宽度。 将光源发射的复合光分解成单色光并可从中选出一任意波长单色光的光学系统。 1入射狭缝:光源的光由此进入单色器; 2准光装置:透镜或返射镜使入射光成为平行光束; 3色散元件:将复合光分解成单色光,如棱镜或光栅;

WAY-2W型阿贝折射仪.

1、 目的 明确WAY-2W型阿贝折射仪使用、维护保养操作方法,使质量部检验人员有章可循。 2、 适用范围 本规程适用于公司WAY-2W型阿贝折射仪使用、维护保养操作。 3、 内容 1. 制定依据 1.1. WAY-2W型阿贝折射仪使用说明书。 2. 基本原理简述 光线在两种介质的交界面发生折射两现象:遵守折射定律n1 sinα1= n2sinα2。 图1中n1,n2为交界面两侧的二介质的折射率,α1为入射角,α2为折射角,若光线从密介质进入光疏介质,入射角小于折射角,改变入射角可以使折射为90?°,此时入射角称为临界角,阿贝折射仪测定折射率就是基于测定临界角的原理。 当不同角度光线射入折射棱镜时,如果用望远镜在出射方向观察,可以看到视场一半暗一半亮的明暗分界线(见图2)。 使用时将液体放置在进光棱镜和折射棱镜中间。如果测透明固体时,必须有二个互成90?°角的抛光面,加折射液后在折射棱镜AB面上进行测量,如图3所示。 3. 仪器结构 3.1. 光学系统 3.1.1. 由两部份组成:望远系统与读数系统(见图4)

3.1.2. 望远系统:光线由反光镜(1)进入进光棱镜(2)及折射棱镜 (3),被测定液体放在(2)、(3)之间,经阿米西棱镜(4)使抵消由于折射棱镜及被测物体所产生的色散。由物镜(5)将明 暗分界线成象于场镜(6)的平面上,经场镜(6)目镜(7)放 大后成象于观察者眼中。 3.1.3. 读数系统:光线由小反光镜(13)经过毛玻璃(12)照明度盘 (11),经转向棱镜(10)及物镜(9)将刻度成象于场镜(8) 的平面上,经场镜(8)目镜(7)放大后成象于观察者眼中。3.2. 机械结构(见图5) 底座,立柱(1)是仪器的支承座,也是轴承座,连接二镜筒的支架(5)与外轴相连,支架上装有圆盘(3)此支架能绕主轴(17)旋转便于操作者选择适当的工作位置,在无外力作用时应是静止的。圆盘(3)内有有扇形齿轮板,玻璃度盘就固定在齿轮板上,主轴(17)联接棱镜组(13)与齿轮板当旋转手轮(2)时扇形板带动主轴,而主轴带动棱镜组(13)同时旋转使明暗分界线位于视场中央。 棱镜组(13)内有恒温水槽,因测量时的温度对折射率有影响,为了保证测定精度在必要时可加恒温器。 如发现棱镜组(13)的二只棱镜座互相不能自锁,可将保护罩(16)下方铰链上二只螺钉适当拧紧。 4. 使用方法

各种仪器测试原理

各种仪器分析的基本原理及谱图表示方法!!(补图中......) 化学专业学生必备:各种仪器分析的基本原理及谱图表示方法!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息

红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离 谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关 反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力 谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线 提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数 裂解气相色谱法PGC

8.第八节 方钠 石

第八节方钠石 方钠石是似长石类矿物,是含氟化物的钠铝硅酸盐。方钠石因颜色与青金石相似,商业上也称之为“加拿大青金石”或“蓝纹石”。 一、方钠石的基本性质 (一)矿物名称 主要矿物为方钠石(Sodalite),共生矿物有钙霞石、黑榴石、方解石等。 (二)化学成分 Na8(A1SiO4)6C12,其中Na可被K和Ca少量替代,一般不超过1%。 (三)晶系及结晶习性 方钠石属等轴晶系,晶体少见,有时呈菱形十二面体,通常呈块状、结核状集合体(见图3-2-119)。 (四)结构构造 粗晶质结构,块状、结核状构造。 (五)光学性质 1.颜色 方钠石多为蓝色(深蓝至紫蓝),少见灰色、绿色、黄色、白色或粉红色。常含白色(也可为黄色或粉红色)条纹或色斑(见图3-2-120)。 2.光泽及透明度 方钠石多呈玻璃光泽、断口呈油脂光泽,解理面上可具珍珠光泽。集合体多为半透明一微透明。 3.光性 均质集合体。 4.折射率 折射率为1.483(±0.004)。 5.多色性 无。 6.发光性 长波紫外光下为无至弱的橙红色斑块状荧光。 加拿大安大略产方钠石,短波紫外线下具明亮的浅粉色荧光,长波紫外线下见明亮的黄至橙色荧光。白色的方钠石长时间暴露于短波紫外光下可变成“莓红色”,但在日光中又能很快褪色。 7.吸收光谱 无特征吸收光谱。 (六)力学性质 1.解理 具{110}方向的菱形十二面体中等解理,集合体不易见。 2.硬度 摩氏硬度为5~6。 3.密度 方钠石的密度一般为2.25(+0.15,-0.10)g/cm3。 (七)放大检查 方钠石内常含白色脉,也可含少量黄铁矿,外观与青金石极为相似。

(八)特殊光学效应 无。 (九)其他 方钠石在滤色镜下呈红褐色,受热可熔化成玻璃,遇盐酸可分解。 二、方钠石与相似玉石的鉴别 1.青金石 方钠石常含有白色矿物斑块或纹理,很少含有黄铁矿包体;青金石密度2.75g/cm3左右,高于方钠石;方钠石通常结构较粗,而青金石结构较细。 2.硅孔雀石 硅孔雀石是隐晶质、非晶质的,不显示解理。硅孔雀石多呈绿色、浅蓝绿色,硬度为2~4,明显低于方钠石。 三、方钠石的产地简介 方钠石一般产于富钠贫硅的碱性岩中,如霞石正长岩、霞石正长伟晶岩。常与霞石、钙霞石、长石等伴生。 美国缅因州和加拿大安大略产出优质蓝色方钠石,此外俄罗斯的乌拉尔山、意大利的威苏威山、挪威、德国和玻利维亚均有方钠石产出,在西南非洲发现了一种鲜蓝色几乎透明的方钠石。

相关主题
文本预览
相关文档 最新文档