当前位置:文档之家› 神经网络简史

神经网络简史

神经网络简史
神经网络简史

?

?麦卡洛可(McCulloch)?

?

?

?

?

?弗兰克·罗森布拉特

神经网络研究的后一个大突破是1957年。康奈尔大学的实验心理学家弗兰克·罗森布拉特在一台IBM-704计算机上模拟实现了一种他发明的叫作“感知机”(Perceptron)的神经网络模型。这个模型可以完成一些简单的视觉处理任务。这引起了轰动。罗森布拉特在理论上证明了单层神经网络在处理线性可分的模式识别问题时,可以收敛,并以此为基础,做了若干“感知机”有学习能力的实验。罗森布拉特1962年出了本书:《神经动力学原理:感知机和大脑机制的理论》(Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms),这书总结了他的所有研究成果,一时成为“吃啥补啥”派的圣经。罗森布拉特的名声越来越大,得到的研究经费也越来越多。国防部和海军都资助了他的研究工作。媒体对罗森布拉特也表现出了过度的关注。毕竟,能够构建一台可以模拟大脑的机器,当然是一个头版头条的抢眼消息。此时的罗森布拉特也一改往日的害羞,经常在媒体出镜,他开跑车、弹钢琴,到处显摆。这使得另一派的人相当不爽。

明斯基是人工智能的奠基人之一,是达特茅斯会议的组织者。明斯基在一次会议上和罗森布拉特大吵,他认为神经网络不能解决人工智能的问题。随后,明斯基和麻省理工学院的另一位教授佩普特合作,企图从理论上证明他们的观点。他们合作的成果就是那本影响巨大、“是也非也”的书:《感知机:计算几何学》(Perceptrons: An Introduction to Computational Geometry)。在书中,明斯基和佩普特证明单层神经网络不能解决XOR(异或)问题。异或是一个基本逻辑问题,如果这个问题都解决不了,那神经网络的计算能力实在有限。其实罗森布拉特也已猜到“感知机”可能存在限制,特别是在“符号处理”方面,并以他神经心理学家的经验指出,某些大脑受到伤害的人也不能处理符号。但“感知机”的缺陷被明斯基以一种敌意的方式呈现,当时对罗森布拉特是致命打击。所有原来的政府资助机构也逐渐停止对神经网络的研究。1971年,罗森布拉特四十三岁生日那天,在划船时淹死。很多人认为他是自杀。王国维沉湖时遗言“经此世变,义无再辱”,在罗森布拉特,我猜“辱”是明斯基的书,“世变”是随后“神经网络”学科的消沉。不同的是,王静安谓之“世变”是历史潮流,但神经网络学科十年后会逆袭。

表面是科学,但有证据表明明斯基和罗森布拉特以前就有瓜葛。他们是中学同学。布朗克斯(Bronx)科学高中大概是全世界最好的高中,毕业生里出过八个诺贝尔奖、六个普利策奖、一个图灵奖。远的不说,明斯基是1945年毕业生,而罗森布拉特是1946年毕业生。美国高中学制四年,明斯基和罗森布拉特至少有两年重叠,而且彼此认识,互相嫉妒。1956年的达特茅斯会

议定义了“人工智能”这个词,会议的组织者包括明斯基、麦卡锡和香农等,参会者还有司马贺,纽威尔等。这个会议在定义“人工智能”领域时只是提到了神经网络。那时明斯基是神经网络的支持者。他1954年在普林斯顿的博士论文题目是“神经-模拟强化系统的理论,及其在大脑模型问题上的应用”(Theory of Neural-Analog Reinforcement Systems and its Application to the Brain-Model Problem),实际是一篇关于神经网络的论文。他晚年接受采访时开玩笑说,那篇三百多页的博士论文从来没正式发表过,大概只印了三本,他自己也记不清内容了。貌似他想极力开脱自己和神经网络学科的千丝万缕的关系。达特茅斯会议的主题并不是神经网络,而是后来被纽维尔和司马贺称为“物理符号系统”的东西,也就是说达特茅斯会议,“想啥来啥”派是主要基调。

罗森布拉特被比他大一岁的明斯基妒忌是自然的。工作上,明斯基所负责的麻省理工学院的人工智能实验室也在向国防部和海军申请经费。大多数的圈内科学家,对罗森布拉特突然被塑造的明星范儿很反感。明斯基早期也是“吃啥补啥”派出身,但此时已经改为“想啥来啥”派了。由于他和佩普特对感知机的批判,俩人后来被“吃啥补啥”派称为“魔鬼搭档”。其实明斯基认识佩普特结识还是通过麦卡洛克的介绍,历史真是纠结。被称“魔鬼”是因为《感知机》第一版有言:“罗森布拉特的论文大多没有科学价值。”这话跳步确实有点大,但罗森布拉特人缘不好,没有得到同行的支持。

比罗森布拉特小一岁的维德罗(Widrow)是斯坦福大学教授,在罗森布拉特刚提出“感知机”时,就提出了Adaline可适应性算法。Adaline和感知机很相似,也是机器学习的鼻祖模型之一。罗森布拉特享受盛誉时,维德罗也沾了光,但在罗森布拉特死后,他却并没有被非难。维德罗在几十年后回忆说,那是因为他后来主要在电机系(EE)做集成电路的工作,而不是在计算机系里从事派系繁杂的人工智能研究,圈子不同,老死不相往来。

?

?大佬米德(Carver Mead)

感知机的失败导致神经网络研究的式微,用加州理工学院的集成电路大佬米德(Carver Mead)的话说是“二十年大饥荒”。明斯基在《感知机》一书再版时,删除了原版中对罗森布拉特的个人攻击的句子,并手写了“纪念罗森布拉特”(In memory of Frank Rosenblatt)。但其他在“大饥荒”时期受到压迫的科学家认为明斯基不可原谅,后来神经网络得势后,这些人纷纷对明斯基口诛笔伐。美国电气电子工程师协会(IEEE)于2004年设立了罗森布拉特奖,以奖励在神经网络领域的杰出研究。

在信息科学和神经科学的结合部的失败,并没有影响到神经生物学内部。哈佛神经生物学家胡贝尔(Hubel)和威瑟尔(Wiesel)对视网膜和视皮层(visual cortex)中神经细胞的信息处理模式做了深入研究,他们为此获得1981年的诺贝尔医学奖。随后,麻省理工学院英年早逝的大卫·马尔(Marr)为视觉信息处理建立数学模型,影响了后来连接主义的运动。威瑟尔后来离开哈佛去了洛克菲勒大学。1991年洛克菲勒大学时任校长大卫·巴尔的摩出了学术丑闻被迫辞职后,威瑟尔出任洛克菲勒校长,为把那所学校建成生物学的重镇做出贡献。

1974年,哈佛的一篇博士论文证明了在神经网络多加一层,并且利用“后向传播”(Back-propagation)学习方法,可以解决XOR 问题。这篇论文的作者是沃波斯(Werbos),他后来得到了IEEE神经网络学会的先驱奖。沃波斯这篇文章刚发表时并没引起多少重视,那时正是神经网络研究的低谷,文章不合时宜。

?

?霍普菲尔德(Hopfield)

神经网络在1980年代的复兴归功于物理学家霍普菲尔德(Hopfield)。1982年,那时在加州理工担任生物物理教授的霍普菲尔德,提出了一种新的神经网络,可以解决一大类模式识别问题,还可以给出一类组合优化问题的近似解。这种神经网络模型后被称为霍普菲尔德网络。1984年,霍普菲尔德用模拟集成电路实现了自己提出的模型。霍老也培养了一批后起之秀,包括现在在生物学重镇Salk研究所担任计算神经生物学实验室主任的Terry Sejnowski。霍老后转往普林斯顿担任分子生物学教授,现已退休。霍普菲尔德模型的提出振奋了神经网络领域。一帮早期神经网络研究的幸存者,在生物学家克里克(Crick,对,就是发明DNA双螺旋的那位诺贝尔奖得主)和认知科学大佬唐·诺曼(Don Norman)的鼓励下,以加州大学圣地亚哥分校为基地,开始了“连接主义”(Connectionism)运动,这个运动的领导者是两位心理学家鲁梅尔哈特(Rumelhart)和麦克利兰德(McLelland),外加一位计算机科学家辛顿(Geoffrey Hinton)。

连接主义运动的成果之一就是那本著名的被称为PDP(Parallel and Distributed Processing)的文集(分两卷)。此书的出版给认知科学和计算机科学吹了股大风,被后起的神经网络新秀们成为圣经。“神经网络”在八十年代就像九十年代的互联网,后来的Web2.0,和眼下的“大数据”。谁都想套套近乎。一些做理论的大佬也不能免俗,发明RSA算法的R(Rivest)也带了几个学生转做神经网络学习问题的复杂性。一时间红旗不倒,彩旗飘飘,好不热闹。1993年,美国电气电子工程师学会IEEE开始出版《神经网络会刊》,为该领域的高质量文章提供出版渠道。美国国防部和海军、能源部等也加大资助力度。神经网络一下子成了显学。

连接主义运动也培养了一堆新人,并使得加州大学圣地亚哥分校的认知科学系成为同类系科的佼佼者。鲁梅尔哈特后转往斯坦福大学任教,前年不幸死于已挣扎多年的神经退化疾病。乔丹就是他的学生,而Andrew Ng( 吴恩达)又是乔丹的学生,鲁梅尔哈特人虽离世,但香火没灭。他的另一名学生Robert Glushko后来远离本行,跟随硅谷互联网早期英雄马蹄塔南鲍姆(Marty Tennenbaum,据说马蹄的儿子都在麻省理工当教授了),创立了一家XML公司,那家公司后来卖给Commerce One,赚了一票钱。Glushko捐钱设立了“鲁梅尔哈特奖”来奖励神经网络的研究者,辛顿成了第一位获奖者。麦克利兰德则先转往卡内基梅隆担任计算机和心理两系教授,后来也到斯坦福,在那里建立了“心、脑、计算研究中心”,一度还担任心理系主任。

辛顿则先转往卡内基梅隆,最终到加拿大多伦多大学计算机系任教。辛顿现在可是神经网络最牛的人了。他还有一段不太为外人所知的革命家史:他是布尔的外曾曾孙子(对,就是“布尔代数”的那个布尔),他曾祖母Ellen是布尔的女儿。中国革命的参与者、美国铁杆左派韩丁和寒春(William and Joan Hinton)也是Ellen的孙子孙女,照这么说韩丁是辛顿的堂叔,寒春是辛顿的堂姑。布尔的小女儿、Ellen的妹妹伏尼契(Ethel Lilian Voynich)是传遍苏联和中国的小说《牛虻》的作者。《牛虻》西方不亮东方亮,在苏联和中国是几代人的革命加爱情励志畅销书。晚年在纽约生活陷入困顿的伏尼契,靠了苏联和周恩来特批的中国的意外稿费得以善终。这一家子把中国、苏联、革命、逻辑和神经网络都联系起来了,通吃“吃啥补啥”派和“想啥来啥”派。智力题:伏尼契和辛顿是啥关系。

语言学家、公共知识分子斯蒂夫·平克对连接主义不以为然。鲁梅尔哈特和麦克利兰德在PDP圣经中合作了一章,讲神经网络可以学会动词的过去式,比如一看start,就知道started,一看come就知道came等等。平克认为有规则的过去式(直接加ed 的,如started)可以通过简单计算得来;而不规则的(不通过加ed的,如came)则是存在大脑的一个特定区域。平克引用神经心理学的证据指出处理规则的和不规则的操作是在大脑不同部位完成的,他还认为神经网络的行为和一类大脑受伤害患失语症的病人的行为相似。其实这种观察并不深刻,都是罗森布拉特三十年前玩剩下的。符号系统可能比较适合处理规则的情况,而神经网络可能更适合不规则的情况,这个一般人都能想到。对神经网络派的批评也如此:我们可以定义一个规则,可以用符号系统实现也可以用神经网络实现。哪个快用哪个。

符号处理和神经网络的方法论之争有时会被更大地夸张。伟大的乔姆斯基就不认可人工智能领域的最新进展。机器翻译历来是人工智能的试金石之一,就像在1996年之前的计算机下棋。机器翻译的早期实践都源于乔姆斯基的理论,但近来的突破却是基于统计的方法。乔姆斯基认为统计的方法不“优雅”(elegant),只是模仿而不是理解。会骑自行车不算理解,对自行车为什么不倒,能说三道四,才算理解。谷歌的研发总监彼特·诺维格为统计方法辩护时说:简单的模型(如乔姆斯基理论,以及后来的各种改进版本)不能解决复杂的问题,人工智能的进一步发展必须两条腿走路。诺维格在加入谷歌之前曾是加州大学伯克利分校的计算机教授,他对两派都了如指掌,在学术界和工业界都被尊重,他写的《人工智能》是最流行的教科书。他的观点似乎被更多的人接受。

神经网络在八十年代的光芒被后来的互联网掩盖了。但这几年又恰恰是互联网给了神经网络更大的机会。这几年计算机科学最火的词儿就是“深度学习”。神经网络由一层一层的神经元构成。层数越多,就越深,所谓深度学习就是用很多层神经元构成的神经网络达到机器学习的功能。辛顿就是“深度学习”的始作俑者,他2006年的一篇文章开辟了这个新领域。最新的深度神经网络的最后两层的每个节点都可对应于某些概念。这是神经网络的一大进步,貌似为“吃啥补啥”找到了科学根据,调和了与“符号派”

的矛盾。至于符号派买不买账是另一回事。深度学习的实测效果很好。辛顿最早用来做图像识别,而后来微软用深度学习还开发可实用的语音识别和同声翻译系统。

年过六十的辛顿不甘寂寞,和他的两个学生开了家专注深度学习的公司。公司成立没多长时间,谷歌和微软就对这家公司动了收购的念头,后来百度也加入竞标,最终花落谷歌,谷歌出了几千万美元于2013年初收购了这家只有三名员工的公司。为了把辛顿纳入花名册,谷歌还真不差钱。

2012年,斯坦福大学人工智能实验室主任Andrew Ng(吴恩达)和谷歌合作建造了一个当时最大的神经网络,这是谷歌神秘的X实验室的一个计划。网络上一度疯传的谷歌猫脸识别就是用的这个参数多达十七亿的神经网络。后来Ng自己在斯坦福又搞了个更大的神经网络,参数更高达一百一十二亿。人脑的神经连接有一百万万亿个。从计算能力上说,如果这个人工神经网络要是能接近大脑,每个人工神经元必须能达到一万个大脑神经元的功能。这个神经网络会用到大量的图形处理芯片GPU,GPU是模拟神经网络的完美硬件,因为每个GPU芯片内都有大量的小核心。这和神经网络的大规模并行性天然相似。硬件的进步让以往不可能的成为可能。

斯坦福大学人工智能实验室的创办人约翰·麦卡锡,是达特茅斯会议的主要组织者,“人工智能”这个词就是他提出的,也是他把明斯基拉到他当时任教的麻省理工。说他是人工智能之父是名副其实,约翰大叔是铁杆的符号派。但现任的人工智能实验室主任却是神经网络的大拿Andrew Ng。这个转变也许是个“吃啥补啥”派得志的风向标。斯坦福的这个神经网络的目标是模拟人的大脑。这让我们不禁想起了罗森布拉特,那不正是他的梦想吗?

BP神经网络课程设计

《数值分析》与《数学实验》专业实训 报告书 题目基于BP神经网络预测方法的预测 模型 一、问题描述 建立基于BP神经网络的信号回归模型,来预测某一组数据。 二、基本要求 1.熟悉掌握神经网络知识; 2.学习多层感知器神经网络的设计方法和Matlab实现; 3.学习神经网络的典型结构; 4.了解BP算法基本思想,设计BP神经网络架构; 5.谈谈实验体会与收获。 三、数据结构 BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。 BP神经网络算法: 神经网络由神经元和权重构成,神经元即为:输入节点,输出节点和隐层结点三部分;权重是各个神经元相互连接的强度。神经网络通过训练,从样本中学习知识,并且将知识以数值的形式存储于连接权中。神经网络的分类过程分成两部分,首先学习网络的权重,利用一些已知的数据训练网络得到该类数据模型的权重;接着根据现有的网络结构和权重等参数得到未知样本的类别。BP算法被称作反向传播算法,主要思想是从前向后(正向)逐层传播信

息;从后向前(反向)逐层传播输出层的误差,间接算出隐层误差。 四、实验内容 人工神经网络是用来模拟人脑结构及智能特点的一个前沿研究领域,它的一个重要特点是通过网络学习达到其输出与期望输出相符的结果,具有很强的自学习、自适应、鲁棒性、容错性及存储记忆的能力.人工神经网络系统评价方法以其超凡的处理复杂非线性问题的能力独树一帜,这种评价方法忠实于客观实际,不带任何人为干预的成分,是一种较好的动态评 价方法. 近年来,人工神经网络的研究和应用受到了国内外的极大重视. 在人工神经网络中有多种模型,其中BP 神经网络模型最成熟,其应用也最为广泛. BP 神经网络是一种具有两层或两层以上的阶层型神经网络,层间神经元实现全连接,即下层的每个神经元与上层的每个神经元都实现权连接,而层内各神经元间无连接. 典型的BP 网络是三层前馈阶层网络,即:输入层、隐含层和输出层. 源程序: %======原始数据输入======== p=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;... 3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;... 4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;... 2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;... 2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;... 3489 3172 4568;3172 4568 4015;]'; %===========期望输出======= t=[4554 2928 3497 2261 6921 1391 3580 4451 2636 3471 3854 3556 2659 ... 4335 2882 4084 1999 2889 2175 2510 3409 3729 3489 3172 4568 4015 ... 3666]; ptest=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

一种新的在线训练神经网络算法

一种新的在线训练神经网络算法 速度估计和PMSG风力发电系统的自适应控制 最大功率提取* B Fernando Jaramillo Lopez,Francoise Lamnabhi Lagarrigue *,godpromesse肯尼, 一个该DES signaux等系统,Supelec高原都moulon Gif sur伊维特,91192,法国 B该d'automatique等信息学系的精灵appliquee,电气,iut-fv Bandjoun,Universite de姜村,喀麦隆 这是一个值得注意的问题。 有一个房间 文章历史: 在本文中,自适应控制系统最大功率点跟踪单机PMSG风 涡轮系统(WTS)了。一种新的程序来估计风速导出。实现 这一神经网络识别?ER(NNI)是为了近似的机械转矩设计 WTS。有了这些信息,风速计算的基础上的最佳机械扭矩点。 NNI接近实时的机械转矩信号,它不需要离线训练 得到其最佳参数值。这样,它可以真正接近任何机械扭矩值 精度好。为了将转子转速调节到最优转速值,采用块反推 控制器导出。使用Lyapunov证明了一致渐近稳定的跟踪误差来源 争论。一个标准的被动为基础的控制器的数值模拟和比较

为了显示所提出的自适应方案的良好性能。 三月20日收到2014 以书面形式收到 2015七月4 接受25七月2015 可在线8月13日2015 关键词: 风力发电系统 风速估计 非线性系统 人工神经网络人工? 反推控制 ?2015 Elsevier公司保留所有权利。 1。介绍 使风产业的趋势是设计和建造变量— 高速涡轮机的公用事业规模安装[ 2 ]。 可再生能源发电的兴趣增加 由于污染排放,在其他原因。风 能源是各种可再生能源中最为成熟的能源之一技术,并得到了很多的青睐,在世界的许多地方[ 1 ]。 根据风速、VST可以在3区域操作,因为它

神经网络工具箱

神经网络工具箱 版本6.0.4(R2010a版本)25-JAN-2010 图形用户界面的功能。 nctool - 神经网络分类的工具。 nftool - 神经网络拟合工具。 nprtool - 神经网络模式识别工具。 nntool - 神经网络工具箱的图形用户界面。 nntraintool - 神经网络训练工具。 视图- 查看一个神经网络。 分析功能。 混乱- 分类混淆矩阵。 errsurf - 单输入神经元的误差表面。 maxlinlr - 最大的学习率的线性层。 鹏- 受试者工作特征。 距离函数。 boxdist - 箱距离函数。 DIST - 欧氏距离权重函数。 mandist - 曼哈顿距离权重函数。 linkdist - 链路距离函数。 格式化数据。 combvec - 创建载体的所有组合。 con2seq - 转换并行向量连续载体。 同意- 创建并发偏载体。 dividevec - 创建载体的所有组合。 ind2vec - 转换指数为载体。 最小最大- 矩阵行范围。 nncopy - 复印基质或细胞阵列。 normc - 规格化矩阵的列。 normr - 规格化行的矩阵的。 pnormc - 矩阵的伪规格化列。 定量- 值离散化作为数量的倍数。 seq2con - 转换顺序向量并发载体。 vec2ind - 将矢量转换成指数。 初始化网络功能。 initlay - 层- 层网络初始化函数。 初始化层功能。

initnw - 阮层的Widrow初始化函数。 initwb - 从重量和- 偏置层初始化函数。 初始化的重量和偏见的功能。 initcon - 良心的偏见初始化函数。 initzero - 零重量/偏置初始化函数。 initsompc - 初始化SOM的权重与主要成分。 中点- 中点重初始化函数。 randnc - 归一列重初始化函数。 randnr - 归行重初始化函数。 兰特- 对称随机重量/偏置初始化函数。 学习功能。 learncon - 良心的偏见学习功能。 learngd - 梯度下降重量/偏置学习功能。 learngdm - 梯度下降W /气势重量/偏置学习功能。 learnh - 赫布重学习功能。 learnhd - 赫布衰变重学习功能。 learnis - 重量龄学习功能。 learnk - Kohonen的重量学习功能。 learnlv1 - LVQ1重学习功能。 learnlv2 - LVQ2重学习功能。 learnos - Outstar重学习功能。 learnsomb - 批自组织映射权重学习功能。 learnp - 感知重量/偏置学习功能。 learnpn - 归感知重量/偏置学习功能。 learnsom - 自组织映射权重学习功能。 learnwh - 的Widrow - 霍夫重量/偏置学习规则。 在线搜索功能。 srchbac - 回溯搜索。 srchbre - 布伦特的结合黄金分割/二次插值。 srchcha - Charalambous“三次插值。 srchgol - 黄金分割。 srchhyb - 混合二分/立方搜索。 净输入功能。 netprod - 产品净输入功能。 netsum - 求和净输入功能。 网络创造的功能。 网络- 创建一个自定义的神经网络。 NEWC - 创建一个有竞争力的层。 newcf - 创建级联转发传播网络。

BP神经网络原理及应用

BP神经网络原理及应用 1 人工神经网络简介 1.1生物神经元模型 神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相 互信息传递的基本单元。据神经生物学家研究的结果表明,人的大脑一般有1011 个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突1010 和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单地处理后由轴突输出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触。 1.2人工神经元模型 神经网络是由许多相互连接的处理单元组成。这些处理单元通常线性排列成组,称为层。每一个处理单元有许多输入量,而对每一个输入量都相应有一个相关 联的权重。处理单元将输入量经过加权求和,并通过传递函数的作用得到输出量,再传给下一层的神经元。目前人们提出的神经元模型已有很多,其中提出最早且影 响最大的是1943年心理学家McCulloch和数学家Pitts在分析总结神经元基本特

性的基础上首先提出的M-P 模型,它是大多数神经网络模型的基础。 )()(1∑=-=n i j i ji j x w f t Y θ (1.1) 式(1.1)中为神经元单元的偏置(阈值),ji w 为连接权系数(对于激发状态, ji w 取正值,对于抑制状态,ji w 取负值) ,n 为输入信号数目,j Y 为神经元输出,t 为时间,f()为输出变换函数,有时叫做激发或激励函数,往往采用0和1二值函数或S形函数。 1.3人工神经网络的基本特性 人工神经网络由神经元模型构成;这种由许多神经元组成的信息处理网络具有并行分布结构。每个神经元具有单一输出,并且能够与其它神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个连接权系数。严格地说,人工神经网络是一种具有下列特性的有向图: (1)对于每个节点存在一个状态变量xi ; (2)从节点i 至节点j ,存在一个连接权系数wji ; (3)对于每个节点,存在一个阈值; (4)对于每个节点,定义一个变换函数(,,),j i ji j f x w i j θ≠,对于最一般的情况,此函数取()j ji i j i f w x θ-∑形式。 1.4 人工神经网络的主要学习算法 神经网络主要通过两种学习算法进行训练,即指导式(有师)学习算法和非指导式(无师)学习算法。此外,还存在第三种学习算法,即强化学习算法;可把它看做有师学习的一种特例。 (1)有师学习 有师学习算法能够根据期望的和实际的网络输出(对应于给定输入)间的差来调整神经元间连接的强度或权。因此,有师学习需要有个老师或导师来提供期望或目标输出信号。有师学习算法的例子包括规则、广义规则或反向传播算法以及LVQ 算法等。 (2)无师学习 无师学习算法不需要知道期望输出。在训练过程中,只要向神

神经网络——五个基本学习算法

五个基本的学习算法:误差—修正学习;基于记忆的学习;Hebb 学习;竞争学习和Boltzmann 学习。误差修正学习植根于最优滤波。基于记忆的学习通过明确的记住训练数据来进行。Hebb 学习和竞争学习都是受了神经生物学上的考虑的启发。Boltzmann 学习是建立在统计学力学借来的思想基础上。 1. 误差修正学习 神经元k 的输出信号)(n y k 表示, )(n d k 表示的是期望响应或目标 输出比较。由此产生)(n e k 表示的误差信号,有 )()()(n y n d n e k k k -= 这一目标通过最小化代价函数或性能指标 )(n ξ来实现。定义如下 )(2 1)(2 n e n k = ξ 也就是说)(n ξ是误差能量的瞬时值。这种对神经元k 的突触权值步步逼近的调节将持续下去,直到系统达到稳定状态。这时,学习过程停止。根据增量规则,在第n 时间步作用于突触权值的调节量)(n w kj ?定义如下: )()()(n x n e n w j k kj η=? 2. 基于记忆的学习 在一个简单而有效的称作最近邻规则的基于记忆的学习类型中, 局部邻域被定义为测试向量test X 的直接邻域的训练实例,特别,向量 {}N N X X X X ,,,21' ???∈ 被称作test X 的最邻近,如果 ),(),(min ' test N test i i X X d X X d = 这里,),(test i X X d 是向量i X 和test X 的欧几里德距离。与最短距离相关的类别,也 就是向量'N X 被划分的类别。 3. Hebb 学习 我们定义Hebb 突触为这样一个突触,它使用一个依赖时间的、 高度局部的和强烈交互的机制来提高突触效率为前突触和后突触活动间的相互关系的一个函数。可以得出Hebb 突触特征的4个重要机制:时间依赖机制;局部机制;交互机制;关联或相关机制。 4. 竞争学习 获胜神经元k 的输出信号k y 被置 为1;竞争失败的所有神经元 输出信号被置为0。这样,我们有 ?? ?≠>=否则对于所有如果, 0,,1k j j v v y j k k 其中,诱导局部域k v 表示结合所有达到神经元k 的前向和反馈输入的动作。 令kj w 表示连接输入节点j 到神经元k 的突触权值。假定每个神经元被分配固定 量的突触权值,权值分布在它的节点之中;也就是 k w kj j 对于所有的 ,1=∑ 然后神经元通过将突触权值从它的不活跃 输入移向活跃输入来进行学习。如果神经元对一个特定输入模式不响应,那么没有学习发生在那个神经元上。如果一个特定神经元赢得了竞争,这个神经元的每个输入节点经一定的比例释放它的突触权值,释放的权值然后平均分布到活跃输入节点上。作用于突触权值kj w 的改变量kj w ?定

一个神经网络控制系统的稳定性判据的方法

摘要:本文讨论了基于李雅普诺夫方法分析神经网络控制系统的稳定性。首先,文章指出神经网络系统的动态可以由视为线性微分包含(LDI)的一类非线性系统表示。其次,对于这类非线性系统的稳定条件是推导并利用单神经系统和反馈神经网络控制系统的稳定性分析。此外,用图形方式显示非线性系统参数位置的这种参数区域表示方法(PR)提出了通过引入新的顶点和最小值的概念。从这些概念上可以推导出一个能有效地找到李雅普诺夫函数的重要理论。单个神经的神经系统的稳定性标准时由参数区域来决定的。最后,分析了包括神经网络设备和神经网络控制器为代表的神经网络控制系统的稳定性。 1.介绍 最近,已经有很多关于神经网络的自适应控制的研究,例如:在机器人领域,川户提出了一种使用的学习控制系统,控制系统的一项关键指标就是他的稳定性,然而分析像基于神经网络的控制系统这样的非线性系统的稳定性是非常难的。 Nguyen和Widrow 设计了一种在电脑上模拟卡车拖车的神经网络控制器。这个设计主要分为两大部分。第一部分是通过神经网络来学习设备的动态,这一部分被称为“仿真器”。第二部分是通过最小化的性能函数来计算出神经网络网络控制器的参数(权值)。但是,他们没有分析神经网络控制系统的稳定性。一项稳定性分析标准工具讲有利于神经网络控制应用到许多实际问题中。 最近,这类可被视为线性微分包含(LDI)的非线性系统的稳定条件已经被作者推导出来,再引用的[7][8]中讨论了。其中一项保证LDI稳定的充分条件与李雅普诺夫稳定性定理是相一致的。本文应用LDI的稳定条件和Nguyen与Widrow的方法来分析神经网络系统的稳定性。文中选取了一种代表神经网络状态的方法。此外,我们表明包含由近似于神经网络设备和神经网络控制器组成的神经网络反馈控制系统也可以分析神经网络是否能稳定。这意味着,本文提出的稳定条件可以分析神经网络反馈控制系统。本文的构成如下:第二节展示了一种文中的神经网络系统。第三节给出了LDI的稳定条件。第四节提出了一个以图形方式显示LDI参数的参数区域表示方法(PR)并推导出一个有效导出李雅普诺夫函数的重要定理。第五节阐述了神经网络系统的LDI表示方法。第六节介绍了用PR方法表示单神经系统和神经网络反馈系统的稳定标准。 2.神经控制系统 假设一个神经网络函数是 x(k + I) =P( x ( k )u, (k)), 他的神经网络反馈控制系统的函数是:x(k + 1) = P(x(k),u(k)) 和 u(k) = C(x(k)),其中x(k)是实属范围内的状态向量,u(k)是实属范围内的输入向量。P和C分别表示神经网络设备和神经网络控制器的非线性传递函数。如图1,显示了一个单一的神经网络系统和神经网络反馈控制系统。假设每个神经元的输出函数f ( u )都是可微分的,在k > 0的情况下,我们可以得到:f ( 0 ) = 0, f(v)∈[-k,k],对于所有的v都成立 此外,假设所有的传递权重都已经被学习方法所确定了,例如反向传播神经网络在神经网络控制稳定性分析之前。在一个单一的神经网络系统中,因为我们分析神经网络系统的动态平衡稳定性,所以设定. u(k) = 0。

(完整版)BP神经网络的基本原理_一看就懂

5.4 BP神经网络的基本原理 BP(Back Propagation)网络是1986年由Rinehart和 McClelland为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。 5.4.1 BP神经元 图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本 也是最重要的功能:加权、求和与转移。其中x 1、x 2 …x i …x n 分别代表来自神经元1、2…i…n 的输入;w j1、w j2 …w ji …w jn 则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权 值;b j 为阈值;f(·)为传递函数;y j 为第j个神经元的输出。 第j个神经元的净输入值为: (5.12) 其中: 若视,,即令及包括及,则

于是节点j的净输入可表示为: (5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出: (5.14) 式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 BP网络 BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 5.4.2.1 正向传播 设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f (·), 1 (·),则隐层节点的输出为(将阈值写入求和项中): 输出层的传递函数为f 2

神经网络控制修订稿

神经网络控制 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量

BP神经网络课程设计

BP神经网络课程设 计

《数值分析》与《数学实验》专业实训 报告书 题目基于BP神经网络预测方法的预测 模型 一、问题描述 建立基于BP神经网络的信号回归模型,来预测某一组数据。 二、基本要求 1.熟悉掌握神经网络知识; 2.学习多层感知器神经网络的设计方法和Matlab实现; 3.学习神经网络的典型结构; 4.了解BP算法基本思想,设计BP神经网络架构; 5.谈谈实验体会与收获。 三、数据结构 BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,经过反向传播来不断调整网络的权值和阈值,使网络

的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。 BP神经网络算法: 神经网络由神经元和权重构成,神经元即为:输入节点,输出节点和隐层结点三部分;权重是各个神经元相互连接的强度。神经网络经过训练,从样本中学习知识,而且将知识以数值的形式存储于连接权中。神经网络的分类过程分成两部分,首先学习网络的权重,利用一些已知的数据训练网络得到该类数据模型的权重;接着根据现有的网络结构和权重等参数得到未知样本的类别。BP算法被称作反向传播算法,主要思想是从前向后(正向)逐层传播信息;从后向前(反向)逐层传播输出层的误差,间接算出隐层误差。 四、实验内容 人工神经网络是用来模拟人脑结构及智能特点的一个前沿研究领域,它的一个重要特点是经过网络学习达到其输出与期望输出相符的结果,具有很强的自学习、自适应、鲁棒性、容错性及存储记忆的能力.人工神经网络系统评价方法以其超凡的处理复杂非线性问题的能力独树一帜,这种评价方法忠实于客观实际,不带任何人为干预的成分,是一种较好的动态评价方法. 近年来,人工神经网络的研究和应用受到了国内外的极大重视. 在人工神经网络中有多种模型,其中BP 神经网络模型最成熟,其应用也最为广泛. BP 神经网络是一种具有两层或两层以上的阶层型神经网络,层

基于神经网络的全局稳定性分析

Computer Knowledge and Technology电脑知识与技术第6卷第16期(2010年6月) 神经网络模型平衡点的全局稳定性 高艳超,程毅,刘天宝,孙佳慧 (空军航空大学数学教研室,吉林长春130022) 摘要:该文介绍了一类Hopfield神经网络模型问题,证明了此类系统的平衡点是全局指数稳定的。 关键词:Hopfield神经网络;平衡点;矩阵 中图分类号:O175.21文献标识码:A文章编号:1009-3044(2010)16-4477-01 The Global Exponential Stability of Equilibrium for a Class of Hopfield Neural Networks GAO Yan-chao,CHENG Yi,LIU Tian-bao,SUN Jia-hui (Teaching and Research Section of Mathematics,Aviation University of Air Force,Changchun130022,China) Abstract:It introdces a class of Hopfield Neural Networks,which the global exponential stability of equilibrium for a class of Hopfield Neural Networks is proved. Key words:hopfield neural network;equilibrium;matrix 1引言和预备知识 在20世纪80年代初期神经网络研究重新兴起,这在很大程度上归功于美国生物物理学家J.J.Hopfield的工作,他提出了以他的名字命名的Hopfield神经网络。Hopfield神经网络及其众多变形之所以受到众多学者的关注,是因为它们在模式识别、联想记忆、并行计算和解决困难的最优化问题上都具有极其优越的潜能。 本论文研究下面具有初值条件x(0)=x0的神经网络模型: (*)其中x=(x1,x2,…,x n)T∈R n是状态向量,x觶表示x(t)关于t的导数, 是外部输入常数向量,T=(t ij)∈R n×n是关联(状态反馈)矩阵, 是一个映射,为输出向量,I=(I1,…,I2)T∈R n是外部输入常数向量。 2主要结果 讨论具有初值条件x(0)=x0的神经网络模型:,其中B,I满足系统(*)中的条件,证明存在惟一的平衡点。对g,B,T作以下假设: (H1)假设g∈GLC,即:常数L j,其中 。这里考虑的激励函数可以是无界的、不可微的、不单调的。 (H2)假设B,T满足:,其中λmax(TT T)为矩阵TT T的最大特征值,。 因为TT T是半正定的,所以可以取λmax(TT T),并且,我们可以找到L max=max{L1,L2,…,L n},使 定理:若g满足假设(H1),B,T满足假设(H2),则神经网络模型(*)是全局指数稳定的。 证明:为了讨论系统(4-1)的平衡点ξ=(ξ1,ξ2,…,ξn)T的稳定性问题,我们作平移变换。令 于是,系统可化为有初值条件z(0)=x0-ξ的神经网络模型。 z觶(t)=Bz(t)+Tg(z(t)) 其中g(z(t))=g(z(t)+ξ)-g(ξ)。而且,存在L max=(L1,L2,…,L n),使。 我们构造以下Lyapunov函数: 由链式法则知: (下转第4481页)收稿日期:2010-03-17 ISSN1009-3044 Computer Knowledge and Technology电脑知识与技术 Vol.6,No.16,June2010,pp.4477,4481 E-mail:eduf@https://www.doczj.com/doc/db13821114.html, https://www.doczj.com/doc/db13821114.html, Tel:+86-551-56909635690964

人工神经网络例题

人工神经网络例题 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

1、什么是 BP 网络的泛化能力?如何保证 BP 网络具有较好的泛化能力?(5分) 解: (1)BP网络训练后将所提取的样本对中的非线性映射关系存储在权值矩阵中,在其后的工作阶段,当向网络输入训练时未曾见过的非样本数据时,网络也能完成由输入空间向输出空间的正确映射。这种能力称为多层感知器的泛化能力,它是衡量多层感知器性能优劣的一个重要方面。 (2)网络的性能好坏主要看其是否具有很好的泛化能力,而对泛化能力的测试不能用训练集的数据进行,要用训练集以外的测试数据来进行检验。在隐节点数一定的情况下,为 ,训练时将训练与测试交替进行,每训获得更好的泛化能力,存在着一个最佳训练次数t 练一次记录一训练均方误差,然后保持网络权值不变,用测试数据正向运行网络,记录测试均方误差,利用两种误差数据得出两条均方误差随训练次数变化的曲线,测试、训练数 称为最佳训练次数,当超过这个训练次数后,据均方误差曲线如下图1所示。训练次数t 训练误差次数减小而测试误差则开始上升,在此之前停止训练称为训练不足,在此之后称为训练过度。 图1. 测试、训练数据均方误差曲线 2、什么是 LVQ 网络?它与 SOM 网络有什么区别和联系?(10 分) 解: (1)学习向量量化(learning vector quantization,LVQ)网络是在竞争网络结构的基础上提出的,LVQ将竞争学习思想和监督学习算法相结合,减少计算量和储存量,其特点是网络的输出层采用监督学习算法而隐层采用竞争学习策略,结构是由输入层、竞争层、输出层组成。 (2)在LVQ网络学习过程中通过教师信号对输入样本的分配类别进行规定,从而克服了自组织网络采用无监督学习算法带来的缺乏分类信息的弱点。自组织映射可以起到聚类的作用,但还不能直接分类和识别,因此这只是自适应解决模式分类问题中的第一步,第二

基于数据数量对支持向量机和BP神经网络性能分析

基于数据数量对支持向量机和BP神经网络性能分析 摘要 本文在阐述创新型预测模型理论的基础上,分别利用基于BP神经网络和支持向量机的玉米开盘预测模型,在样本大小不同情况下对玉米开盘价格指数进行了研究和预测。研究结果表明,基于支持向量机的预测模型在预测精度、运算时间、最优性等方面均优于基于BP神经网络的预测模型。 近年来,以GARCH类模型、SV类模型等为代表的预测模型在资产价格预测方面获得了广泛的应用,但是这些模型在研究中往往受到样本数据分布、样本容量等方面的限制。因此,包括以神经网络、支持向量机等智能算法为基础的创新型预测模型,在金融资产价格预测方面得到了广泛的应用。本文在阐述创新型预测模型理论的基础上,分别利用基于神经网络、支持向量机的预测模型,在不同样本大小的基础上,就玉米开盘价格分别用支持向量机和单隐层和双隐层的BP神经网络做预测,比较预测结果,对比分析支持向量机和BP神经网络在样本大小不同的情况下两者的性能分析。 关键词:支持向量回归BP神经网络libsvm工具箱

一、模型介绍 1、模型介绍1.1 支持向量机回归 1.1.1 支持向量机回归模型的介绍 在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。给定一组训练样本,每个标记为属于两类,一个SVM 训练算法建立了一个模型,分配新的实例为一类或其他类,使其成为非概率二元线性分类。一个SVM 模型的例子,如在空间中的点,映射,使得所述不同的类别的例子是由一个明显的差距是尽可能宽划分的表示。新的实施例则映射到相同的空间中,并预测基于它们落在所述间隙侧上属于一个类别。 除了进行线性分类,支持向量机可以使用所谓的核技巧,它们的输入隐含映射成高维特征空间中有效地进行非线性分类。1.1.2 支持向量回归求解过程图 1.1.3核函数的介绍 利用支持向量机解决回归问题时,需要根据求解问题的特性,通过使用恰当的核函数来代替内积。这个核函数不仅要在理论上要满足Mercer 条件,而且在实际应用中要能够反映训练样本数据的分布特性。因此,在使用支持向量机解决某一特定的回归问题时,选择适当的核函数是一个关键因素。在实际的应用中,最常用的核函数有4种:线性核、多项式核、径向基(简称RBF)核、多层感知机核等。函数关系表达式分别如下: (1)线性核函数 ) (),(x x x x K i i ?=

BP神经网络的学习

BP神经网络的学习 王贵腾 摘要:人工神经网络是近年来的热点研究领域,是人类智能研究的重要组成部分。BP神经网络作为目前应用较多的一种神经网络结构,具有良好的逼近性能,且结构简单,性能优良。但仍存在收敛速度慢,易陷入局部极小值的问题,通过附加动量项法、自适应学习率法、数据归一化法、遗传算法等,可大幅度改善其性能,可广泛应用于多输入多输出的非线性系统。 关键词:BP神经网络;BP算法;动量项;自适应学习率;归一化;遗传算法 1.绪论 1.1人工神经网络概述 人工神经网络(Artificial Neural Network),简称神经网络(NN),是由大量处理单元(神经元)组成的非线性大规模自适应系统。它具有自组织,自适应和自学习能力,以及具有非线性、非局域性,非定常性和非凸性等特点。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理,记忆信息的方式设计一种新的机器使之具有人脑那样的信息处理能力。 神经网络作为计算智能与控制的重要分支,在控制领域具有如下优点: 1)能逼近任意L2范数上的非线性函数; 2)信息分布式存储与处理,鲁棒性和容错性强; 3)便于处理多输入多输出问题; 4)具有实现高速并行计算的潜力;

5)具有学习能力,对环境变化具有自适应性,对模型依赖性不强,主要用于解决非线性系统的控制问题。 同时,神经网络控制在多种控制结构中得到应用,如PID控制、模型参考自适应控制、前馈反馈控制、内模控制、逆系统控制、预测控制等。 目前神经网络的研究主要集中在三个方面:理论研究、实现技术研究、应用研究。 1.2 BP神经网络概述 BP神经网络是1986年由Rumelhart和McClelland一同提出的一种多层前馈神经网络。该网络采用BP算法——一种误差反向传播(Back Propagation)算法,其方法是依据负梯度下降方向迭代调整网络的权值和阀值以实现训练误差目标函数的最小化。 由于BP神经网络在实际应用中存在着收敛速度慢、网络结构难以确定、容易陷入局部极小值、泛化能力不强的缺陷,近年来,许多学者为满足实际应用中需要提出了许多改进方法,在网络自身性能的改善方面做了大量而有实际意义的工作,并且在BP神经网络的理论方面的研究和实际问题上应用也取得了丰硕的成果。对BP神经网络的理论研究,概括起来大致分为三个方面:改进激励函数,权值选取优化和网络拓扑结构。 1.3本文研究内容 本文从神经网络出发,研究其中应用最为广泛的BP神经网络模型,分析其缺点和不足,提出改进措施,并探讨其应用。具体研究内

神经网络的基本原理

神经网络的基本原理 在神经网络系统中,其知识是以大量神经元互连和各互连的权值表示。神经网络映射辨识方法主要通过大量的样本进行训练,经过网络内部自适应算法不断调整其权值,以达到目的。状态识别器就隐含在网络中,具体就在互连形式与权值上。在网络的使用过程中,对于特定的输入模式,神经网络通过前向计算,产生一输出模式,通过对输出信号的比较和分析可以得到特定解。目前,神经网络有近40多种类型,其中BP 网络是最常用和比较重要的网络之一,本文就应用BP 网络进行齿轮计算中相应数据图表的识别映射。 BP 网络模型处理信息的基本原理是:输入信号X i 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k ,网络训练的每个样本包括输入向量X 和期望输出量t ,网络输出值Y 与期望输出值t 之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij 和隐层节点与输出节点之间的联接强度T jk 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 BP 网络的学习过程是通过多层误差修正梯度下降法进行的,称为误差逆传播学习算法。误差逆传播学习通过一个使误差平方和最小化过程完成输入到输出的映射。在网络训练时,每一个输入、输出模式集在网络中经过两遍传递计算:一遍向前传播计算,从输入层开始,传播到各层并经过处理后,产生一个输出,并得到一个该实际输出和所需输出之差的差错矢量;一遍反向传播计算,从输出层至输入层,利用差错矢量对连接权值和阀值,进行逐层修改。 经过训练好的BP 网络即可付诸应用。学习后的网络,其连接权值和阀值均已确定。此时,BP 模型就建立起来了。网络在回想时使用正向传播公式即可。 BP 网络由输入层结点,输出层结点和隐含层结点构成,相连层用全互连结构。图1为典型的三层结构网络模型。 图1 三层网络结构图 神经网络的工作过程主要分为两个阶段:一个是学习期,通过样本学习修改各权值,达到一稳定状态;一个是工作期,权值不变,计算网络输出。 BP 网络的学习过程由正向传播和反向传播两部分组成。在正向传播过程中,输入信息从输入层经隐含层单元逐层处理,并传向输出层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的路径返回,通过修改各层神经元的权值,使得误差信号最小。当给定一输入模式 12(,,...,)m X x x x =和希望输出模式12(,,...,)n Y y y y = 时,网络的实际输出和实际误差,可用下列公式求出:

神经网络的应用及其发展

神经网络的应用及其发展 来源:辽宁工程技术大学作者:苗爱冬 [摘要] 该文介绍了神经网络的发展、优点及其应用和发展动向,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、专家系统、模糊控制、小波分析的结合。 [关键词]遗传算法灰色系统专家系统模糊控制小波分析 一、前言 神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts 合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP 网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个高潮。神经网络具有以下优点: (1) 具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。 (2) 并行处理方法,使得计算快速。 (3) 自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。 (4) 可以充分逼近任意复杂的非线性关系。 (5) 具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。 二、神经网络应用现状 神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下: (1) 图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。 (2) 信号处理。能分别对通讯、语音、心电和脑电信号进行处理分类;可用于海底声纳信号的检测与分类,在反潜、扫雷等方面得到应用。 (3) 模式识别。已成功应用于手写字符、汽车牌照、指纹和声音识别,还可用于目标的自动识别和定位、机器人传感器的图像识别以及地震信号的鉴别等。 (4) 机器人控制。对机器人眼手系统位置进行协调控制,用于机械手的故障诊断及排除、智能自适应移动机器人的导航。 (5) 卫生保健、医疗。比如通过训练自主组合的多层感知器可以区分正常心跳和非正常心跳、基于BP网络的波形分类和特征提取在计算机临床诊断中的应用。 (6) 焊接领域。国内外在参数选择、质量检验、质量预测和实时控制方面都

相关主题
文本预览
相关文档 最新文档