当前位置:文档之家› 汽车发动机可变排量机油泵

汽车发动机可变排量机油泵

汽车发动机可变排量机油泵
汽车发动机可变排量机油泵

汽车发动机可变排量机油泵

1 范围

本标准规定了汽车发动机可变排量机油泵的术语和定义、基本要求、技术要求、试验方法、检验规则、标识、包装、运输、贮存及质量承诺。

本标准适用于汽车发动机可变排量机油泵(以下简称油泵)。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 2828.1 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划

GB/T 3821 中小功率内燃机清洁度限值和测定方法

GB/T 9439 灰铸铁件

GB/T 15115 压铸铝合金

GB/T 30512 汽车禁用物质要求

JB/T 8413.7-2015 内燃机机油泵第7部分:总成产品可靠性考核方法

ISO 3746-2010 声学用声压进行噪音源的声功率级测定在反射面上使用包围测量表面的调查方法 (Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Survey method using an enveloping measurement surface over a reflecting plane)

ISO 5755-2012 烧结金属材料规范(Sintered metal materials –Specifications)3 术语和定义

下列术语和定义适用于本文件。

3.1

流量 flow

在给定的泵出口压力、转速和温度条件下,单位时间从油泵的出口处输出的液体体积。单位为升每分钟(L/min)。

3.2

泵出口压力 outlet pressure of oil pump

油泵出口处的压力,单位为千帕(kPa)。

3.3

主油道压力 pressure of engine main oil gallery

发动机缸体主油道的压力,单位为千帕(kPa)。

3.4

调节压力 regulation pressure

油泵排量开始调节时的主油道压力,单位为千帕(kPa)。

3.5

安全阀开启压力 cracking pressure of safety valve

使油泵安全阀打开并开始泄油的泵出口压力,单位为千帕(kPa)。

3.6

排量displacement

油泵旋转一圈能够输出的理论液体体积,单位为立方米每转(m3/r)。

3.7

容积效率 volume efficiency

油泵实际流量与理论流量的比值,用%表示。

3.8

试验流阻 test hydraulic resistance

在规定机油温度和规定机油流量的条件下对应的泵出口压力和主油道压力之差,单位为千帕(kPa)。

3.9

占空比 duty cycle

在一个脉冲循环内,通电时间相对于总时间所占的比例,用%表示。

4 技术要求

4.1 总则

油泵技术要求应满足总成图样或有关技术文件的规定。

4.2 材料

4.2.1 铸铁件材质应采用HT200及以上材料牌号,其性能指标应符合GB/T 9439的规定。

4.2.2 铝合金压铸件材料性能指标应符合GB/T 15115规定。

4.2.3 粉末冶金件材料性能指标应符合ISO 5755-2012规定。

4.2.4 油泵及零部件禁用物质应符合GB/T 30512规定。

4.3 性能要求

4.3.1 流量性能

油泵热怠速流量应满足总成图样要求,齿轮泵容积效率不小于78%,叶片泵容积效率不小于80%。

4.3.2 启动时间

内部干燥无机油的油泵启动至建立规定压力的时间不大于8s,内部有残留机油的油泵启动至建立规定压力时间不大于5s。

4.3.3 调节压力

油泵变排后的调节压力值应满足图样或相关技术文件的要求,调节压力应在规定压力的±10%以内。

4.3.4 调节压力迟滞

设有比例电磁阀的油泵,在相同主油道压力的条件下,电磁阀占空比差值范围在±10%以内。

4.3.5 安全阀开启压力

设有安全阀的油泵,其安全阀开启压力应在名义压力的±100kPa以内。

4.3.6 压力脉动

油泵的泵出口压力脉动波峰与波谷差值应在400kPa以内。

4.3.7 冷启动时间

油泵冷启动开始至建立规定压力的时间不大于15s。

4.3.8 冷启动最大压力

油泵冷启动最大压力应低于1300kPa。

4.3.9 NVH性能

油泵的噪声值应满足相关技术文件的要求,总声功率不大于90dB (A)。

4.4 产品可靠性

4.4.1 抗污染试验

油泵试验过程中无卡滞、卡死,无失效。

4.4.2 耐久性能

油泵耐久试验过程无明显异响产生,耐久试验后泵腔、转子应无明显异常磨损,流量衰减应小于10%,且满足总成图样的流量要求。

4.5 产品清洁度

安装在发动机内部的油泵,总成杂质质量应不超过10mg,其中内部应不超过5mg,最大颗粒长度应不大于800μm;安装在发动机外部的油泵,总成内部杂质质量应不超过5mg,最大颗粒长度应不大于800μm。

5 试验方法

5.1 试验设备

试验所用的设备满足油泵所有试验项目的要求,不应对试验样品功能产生不利的影响。

试验设备能够检测转速、扭矩、泵出口压力、主油道压力、机油流量、机油温度等参数。

5.2 试验用油

按客户指定油品。

5.3 试验台流阻设置

试验台流阻的设置应符合相关技术文件的要求,试验前将油泵安装在试验台上,调节油泵转速使流量达到规定值,在流量固定的条件下调节主油道节流阀,使主油道压力达到规定压力值,然后调节泵出口节流阀,使泵出口压力和主油道压力之差达到试验流阻要求值,待流量、压力稳定后记录泵出口节流阀和主油道节流阀的开度。

5.4 性能试验

5.4.1 流量性能

按表1所示的条件或按照客户要求,在规定的试验油品、油温、油泵速度、泵出口压力条件下测试油泵出口的机油流量,记录各工况下流量,并按照附录A计算油泵的容积效率。

表1 流量性能测试条件

5.4.2 启动时间

在规定的试验油品、油温和试验流阻条件下,将油泵安装在试验台上测试,在规定时间内将油泵由静止升至规定转速,总运行时间不少于30s,测量并记录从启动至建立规定压力所用的时间,该时间即为启动时间,试验规范如图1所示。

图1 启动时间试验规范示意图

5.4.3 调节压力

调节压力试验规范见图2,在规定的试验油品、油温、试验流阻、电磁阀信号条件下,将油泵由静止升至最高转速,待转速稳定后再降至静止状态,测量并记录油泵转速、泵出口压力、主油道压力、流量等参数,得出转速与主油道压力的关系曲线,主油道压力曲线拐点后的压力值为油泵调节压力。

图2 调节压力试验规范示意图

5.4.4 调节压力迟滞

调节压力迟滞试验规范见图3,分别在规定的试验油品、油温、转速、试验流阻、电磁阀信号的条件下,以规定的调节速度调节电磁阀占空比由0%至100%,再按照相同速度调节电磁阀占空比至0%,测量油泵电磁阀占空比、泵出口压力、主油道压力、机油温度等,并记录测量值,得出电磁阀占空比与主油道压力的关系曲线,计算相同压力条件下最大的占空比的差值。

图3 调节压力迟滞试验规范示意图

5.4.5 安全阀开启压力

在规定的试验油品、油温的条件下,将油泵转速升至2000r/min,待出口压力稳定10s后调节泵出口节流阀开度由100%至0%,测量泵出口压力、流量、机油温度等,并记录测量值,得出泵出口压力与流量的关系曲线,如图4所示,流量下降拐点对应的压力值即为安全阀开启压力。

图4 安全阀开启压力试验规范示意图

5.4.6 压力脉动

在规定的试验油品、油温、试验流阻、电磁阀信号条件下,将油泵由静止升至额定转速,待转速稳定10s后再由额定转速降至0r/min,试验过程中使用频率为1×104Hz~10×104Hz的高频压力传感器测量油泵出油口压力脉动,并记录测量值,得出转速与泵出口压力的关系曲线,曲线中波峰与波谷的差值即为压力脉动值,如图5所示。

图5 压力脉动试验规范示意图

5.4.7 冷启动时间

在规定的试验油品和试验流阻条件下,将油泵安装在试验台上测试,调节油温至-30℃±5℃,在规定时间内将油泵由静止升至规定转速,总运行时间不少于30s,测量并记录从启动至建立规定压力所用的时间,该时间即为冷启动时间,如图6所示。

图6 冷启动时间试验规范示意图

5.4.8 冷启动最大压力

在规定的试验油品、油温、试验流阻的条件下,将油泵安装在试验台上测试,调节油温至-30℃±5℃在规定时间内将油泵由静止升至规定转速,总运行时间不少于30s,测量油泵出油口压力、流量、机油温度等参数,并记录测量值,如图7所示。

图7 冷启动最大压力试验规范示意图

5.4.9 NVH性能试验

在规定的试验油品、油温、试验流阻的条件下,按照6.4.3的试验方法进行测试,测试标准按ISO 3746-2010规定执行。

5.5 可靠性试验

5.5.1 抗污染试验

在规定的试验油品、油温和试验流阻条件下,将机油的油泵由静止升至规定转速,转速稳定后按照表2分别投放不同规格大小和总量的污染物。试验开始后第10min时加入第1批次的污染物,第25min时加入第2批次的污染物,第40min时加入第3批次的污染物,第55min时加入第4批次的污染物,第70min时重复加入第4批次的污染物,试验总运行时间为85min。试验过程中需保证污染物在机油中混合均匀,油泵进油口距油箱底部的距离为8-12mm,或按照客户要求执行。

表2 污染物规格

5.5.2 耐久试验

耐久试验按照JB/T 8413.7-2015 的规定执行,或与发动机耐久试验同时进行。耐久试验时间和试验工况等应符合总成图样或相关技术文件的要求。

5.6 产品清洁度

清洁度的测量按GB/T 3821 的规定执行。

6 检验规则

6.1 出厂检验

6.1.1 油泵经出厂检验合格附合格证方可出厂,出厂检验项目见表3。

6.1.2 出厂检验可采用等效的装配线自动气测方法进行,但应提供油测和气测等效对比验证报告。

6.2 型式试验

6.2.1 型式试验项目按表3。

6.2.2 有以下情况时,应进行型式试验:

a)新产品或老产品转厂生产的试制定型鉴定;

b)正式生产后,如产品结构、材料、工艺有较大改变,可能影响产品性能时;

c)产品停产一年后,恢复生产时,重新进行生产件批准程序(PPAP)审核并进行型式试验;

d)正常生产时,定期(一年)或积累一定产量(10万)后,应周期性进行型式试验;

e)国家质量监督机构提出进行型式试验要求时。

6.2.3 型式试验油泵应从出厂检验合格的产品中抽检3件,抽检方法按GB/T 2828.1-2012 的规定执行。

6.2.4 判定规则如下:

a)所有检测项目全部合格,则判定该批产品为合格;

b)所有检测项目中有一项不符合要求,则加倍抽样进行检验,仍有项目不合格时,判定该批产品为不合格,否则判定为合格。

表3 检测项目

7 标识、包装、运输、贮存

7.1 标识

每台油泵都应该在装配线测试合格后打印二维码,二维码内容包含明码和暗码,明码包括产品图号和零件生产追溯信息。暗码数据对应制造工厂装配线中该零件在主要工位的关键装配数据,相关打码位置由双方确定。

7.2 包装

定点配套产品的包装与客户协商确定,宜使用密封及防锈功能的可回收包装箱,在外包装箱标识生产追溯信息。

7.3 运输

要保证油泵在运输过程中防雨、防潮、不致碰伤。

7.4 贮存

油泵及其子零件存储都要求使用客户指定的防锈剂。油泵包装前应做防锈处理, 2个月内不致锈蚀。

7.5 其他

标识、包装、运输和贮存也可由供需双方商定。

_________________________________

附录 A

(规范性附录)

油泵容积效率的计算A.1 容积效率的计算

油泵容积效率的计算按式(A.1)进行计算:

ηV=Q

Q L

×100%·······················································(A.1)

式中:

ηV——容积效率

Q——实际流量

Q L——理论流量

A.2 理论流量的计算

油泵理论流量的计算公按式(A.2)进行计算:

Q L=qn···························································(A.2)式中:

q——油泵排量

n——油泵转速

变排量压缩机汽车空调用热力膨胀阀的试验研究

变排量压缩机汽车空调用热力膨胀阀的试验研究 摘要 通过对某一变排量压缩机汽车空调制冷系统的热力膨胀阀的试验研究,得出了该膨胀阀静态过热度设定值、增益及滞环、感温包时间常数等静态和动态特性,并对试验结果进行了分析。 关键词:热力膨胀阀汽车空调变排量压缩机试验研究 1 引言 汽车空调系统的无级变排量摇板式压缩机(以下简称变排量压缩机)是根据压缩机吸气压力的差值,推动摇板改变倾斜角,从而改变活塞的行程和压缩机主轴每转一周的排量。所以该类变排量压缩机改变了传统的离合器启闭压缩机的调节方式,压缩机运行连续平稳,不会引起汽车发动机周期性的负荷变化,且空调送风温度波动小,有利于提高车内环境的热舒适性;可以保持几乎恒定且略高于结霜温度的蒸发温度,防止了蒸发器表面结霜,提高了系统除湿能力;可以降低能耗,节约燃油。从汽车空调系统由变排量压缩机替代定排量压缩机的总趋势来看,变排量压缩机将会在非独立式汽车空调系统尤其是各种豪华型汽车空调系统中得到广泛的应用。 热力膨胀阀是制冷系统广泛使用的节流装置,但是它与变排量压缩机组成的汽车空调制冷系统在实际使用中出现了系统稳定性问题。At-suo Inoue等人在对7缸变排量压缩机和热力膨胀阀组成的汽车空调制冷系统进行试验研究时发现有系统振荡现象存在。美国GM公司在无级变排量压缩机和热力膨胀阀汽车空调制冷系统的应用过程中,也有同样发现。我们对用于某一车型的变排量压缩机和热力膨胀阀汽车空调制冷系统的稳定性问题进行了研究,为了详细分析变排量压缩机和热力膨胀阀参数之间的相互耦合对系统稳定性的影响,需要对该系统的热力膨胀阀的动态行性进行深入地了解。 图1为我们研究的变排量压缩机汽车空调系统中热力膨胀阀的结构示意图。该热力膨胀阀是外平衡式,感温包为气体充注,且有两点与常用热力膨胀阀不同: (1) 常用热力膨胀阀是偏压式,而该热力膨胀阀是平衡式的,所需的开阀力小,阀杆受力基本不受阀进出口压力大小的影响。 (2) 该热力膨胀阀的静态过热度为负值,即当过热度为零时,阀也不能完全关闭,仍有一微量制冷剂流通。 图1 热力膨胀阀的结构 本文介绍了该热力膨胀阀静态过热度设定值、增益及滞环、感温包时间常数的测试方法和测试结果,并对试验数据进行分析。 2 试验装置和试验方法

变排量压缩机结构

变排量压缩机结构原理 轿车空调压缩机是由发动机直连驱动的,对于定排量压缩机汽车空调系Array统,用蒸发器出风温度来控制压缩机电磁离合器吸合或脱离,用间歇运行来 控制系统制冷能力和车内空调负荷相适应。这种控制方式除了车内空调温度波动 大,系统的频繁开停的不可逆损失使系统能耗增加等缺点外,最大的一个问题是压 缩机的周期性离合对汽车发动机引起的干扰,这种情况在汽车发动机容量较小时显 得更为突出。为了解决这个问题,变排量压缩机应运而生。 所谓的变排量压缩机,结构是基于传纺的斜盘式或摇板式压缩机,传统的斜盘 式或摇板式压缩机中,斜盘或摇板的偏转角度是固定不变的,即活塞的最大行程是 固定的。而升级为可变排量压缩机后,调节斜盘或摇板的角度,从而调节活塞的最 大行程,改变压缩机的排气量。 相对于传统的定排量压缩机系统,需要有在压缩机前端安装电磁离合器控制压 缩机间歇工作,以调节制冷量。可变排理压缩机取消了电磁离合器,通过活塞行程 的无级连续调节,调节制冷量。,车内环境热舒适性好,降低能耗!

三电可变排量压缩机 可变排量压缩机变排量的控制方式有两种:一种是机械式可变排量,即在压缩机内部有调节阀,依据空调的管路压力自适应的改变压缩机的排量;另一种是电控可变排量,在原机械调节阀的基础上增加了一个电磁调节阀,空调控制单元从蒸发器出风温度传感器获得信号,对压缩机的功率进行无级调节。

可变排量压缩机结构图 注意三个压力:一个是压缩机的吸入低压的制冷剂;另一个是压缩机排出的高压制冷剂;第三个是斜盘或摇板所在的曲轴箱的压力;这个曲轴箱内的压力基本是大于或等于压缩机的吸入压力,而远小于压缩机的排气压力。 控制阀用于调节曲轴箱内的压力,当曲轴箱压力等于压缩机的吸气压力时,压缩机处于最大排量;当控制曲轴箱压力高于吸气压力后,斜盘或摇板角度减小,压缩机的排量减小。

机油泵的结构与分解见图1

机油泵的结构与分解见图1-128和图1-129所示,机油泵所用油为SAE20号润滑油,在温度为80℃、转速为1000r/min,进口压力为0.01Mpa,出口压力为0.6MPa的条件下,最小流量应为8.3L/min,实测可达到10L/min。低压压力开关报警压力为30kPa;发动机转速为2150r/min时报警压力为0.18MPa。 图1-128 AFE型发动机的机油泵 1-密封垫片(0.1mm) 2-分电器轴 3-中间轴驱动齿轮 4-分电器从动齿轮 5-定位销6-机油泵轴上支承座 7-定位螺孔 8-机油泵轴 9-机油泵轴下支承及定位套 10-机油泵壳体 11-机油泵从动齿轮 12-机油泵的主动齿轮 13-从动齿轮轴 14-衬垫(0.2mm)15-吸油管 16-吸油管支承套 17-集滤器 18-O形密封圈 19-机油泵盖 20-短螺栓21-垫片

图1-129 机油泵分解图 l-机油泵壳体 2-主动轴 3-从动轴 4-从动齿轮5-机油泵泵盖 6、7、8-螺栓 9-机油集滤器 10-密封垫 11-阀弹簧 1、机油泵的拆卸 (l)旋松分电器轴向限位卡板的紧固螺栓,拆下卡板。 (2)拔出分电器总成。 (3)旋松并拆下两个机油泵壳与发动机机体的连接长紧固螺栓,将机油泵及吸油部件一起拆下。 (4)拧松并拆下吸油管组紧固螺栓,拆下吸油管组,检查并清洗滤网。 (5)旋松并取下机油泵盖短螺栓,取下机油泵盖组,检查泵盖上限压阀(旁通阀)。观察泵盖接合面的磨损情况。 (6)分解主从动齿轮,再分解齿轮和齿轮轴。 2、机油泵的检修 (l)检查齿轮啮合间隙。检查时,将机油泵盖拆下,用厚薄规在互成 120度角三个位置处测量机油泵主、从动齿轮的啮合间隙,如图1-130所示。新机油泵齿轮啮合间隙为0.05mm,磨损极限值为0.20mm。 (2)检查机油泵主从动齿轮与机油泵盖接合面的间隙。主从动齿轮与机油泵盖接合面间隙为检查方法如图1-131所示,正常间隙应为0.05mm,磨损极限值为0.15mm。

变排量压缩机汽车空调制冷系统特性分析

变排量压缩机汽车空调制冷系统特性分析 编辑:凌月仙仙作者:田长青窦春鹏出处:中国论文下载中心日期:2005-12-10 摘要:为了解决变排量压缩机汽车空调系统振荡和蒸发器结霜问题,对该系统稳态特性进行分析。建立了变排量压缩机汽车空调制冷系统稳态模型,模拟结果与试验数据吻合较好。系统存在变排量压缩机定转速定行程、变转速定行程、定转速变行程和变转速变行程四种运行方式,本文对四种方式下汽车空调制冷系统的稳态特性进行了分析。研究首次发现,在变活塞行程情况下,与定行程方式下性能参数一一对应关系不同,蒸发压力、制冷量等系统参数表现为多值对应关系,系统存在“性能带”,可使蒸发压力保持在一个较小的范围内变化。变排量压缩机汽车空调制冷系统性能带的发现和提出,丰富和发展了制冷系统特性分析理论。 关键词:性能带变排量压缩机汽车空调稳态特性 1 前言 汽车空调系统的无级变排量摇板式压缩机(以下简称变排量压缩机)摒弃了传统的离合器启闭压缩机调节方式,可以根据车内负荷变化改变摇板角度和活塞行程,实现了汽车空调系统连续运行,不会引起汽车发动机周期性的负荷变化,车内环境热舒适性好,降低能耗,节约燃油[1,2]。但是在由变排量压缩机和热力膨胀阀组成的汽车空调制冷系统会出现系统振荡[3,4]和蒸发器结霜现象,为了解决这些问题,必须对系统的稳态特性进行分析。 只有很少研究者对变排量压缩机汽车空调制冷系统特性进行过分析。Inoue等人[3]在对汽车空调制冷系统中七缸变排量压缩机和热力膨胀阀的匹配问题进行了试验研究,但是没有理论分析。Lee等人[5]对变排量压缩机汽车空调制冷系统的稳态特性进行了试验研究和理论分析,但是认为在变活塞行程情况下参数是一一对应关系。 本文在变排量压缩机稳态模型基础上,建立变排量压缩机汽车空调制冷系统稳态模型并进行试验验证,然后对系统特性进行分析。 2 系统稳态模型 变排量压缩机汽车空调系统由变排量压缩机、蒸发器、冷凝器和储液干燥器、热力膨胀阀以及连接管道组成,制冷剂采用R134a。为简化模型,忽略各连接管道的压力损失和热损失。与定排量压缩机汽车空调系统最大的不同是变排量压缩机,所以重点介绍变排量压缩机模型建立。 2.1 变排量压缩机模型 本文研究的压缩机为五缸变排量摇板式压缩机,其排量可以在每转10cm3到156 cm3范围内无级变化。根据变排量压缩机的控制机理和结构特点,图1给出了压缩机模型关系图。首先建立控制阀数学模型从而确定摇板箱压力Pw随排气压力Pd和吸气压力Ps的变化规律,然后建立压缩机运动部件动力学模型确定活塞行程Sp与排气压力、吸气压力、摇板箱压力和压缩机转速Nc的关系,再通过压缩过程模型由排气压力、吸气压力、吸气温度、活塞行程和压缩机转速来确定压缩机制冷剂流量Mr和排气温度,这样以上三个模型就组成了变排量压缩机的稳态模型。 图1 压缩机模型关系图 根据我们的研究发现,变排量压缩机由于活塞行程减小时运动部件(如轴套同主轴之间)的摩擦力矩与活塞行程增大时相反,活塞行程减小时摩擦力矩与吸气压力形成的力矩同向,行程增大时摩擦力矩与吸气压力形成的力矩反向,所以行程增大时临界吸气压力(活塞行程刚要增大时的吸气压力)Ps,cu大于行程减小时临界吸气压力Ps,cd。当Ps,cd≤Ps≤Ps,cu,压缩机出现了一个“调节滞区”,活塞行程Sp不会发生变化。根据控制阀的数学模型和运动部件动力学模型,可以计算出不同排气压力、压缩机转速和摇板角下行程增加和行程减小时临界吸气压力,并拟合出行程减小时和行程增加时的临界吸气压力与排气压力、压缩机转速和活塞行程的如下关系式:

机油泵概述

概述 通常我们认为润滑油是一种减少运动面之间摩擦的物质,但是在发动机内部循环流动的润滑油还具有其它的作用。总之,润滑系统必须: 1、在运动部件之间提供光滑的油膜 2、xx活塞环和气缸壁之间的间隙 3、带走发动机部件过多的热量 4、清洁发动机内部部件 部件系统 发动机润滑系统主要部件有: 1、机油盘或油底壳金属制成的油底壳安装在气缸体下面,用来存放发动机机油,同时机油的热量通过油底壳向外界空气散发。 2、机油泵集滤器从油底壳中吸取机油供给机油泵。集滤器中有一过滤网,可过滤出机油中较大的杂质。 3、机油泵的作用是使机油在发动机内循环流动。 4、主油道气缸体中的主油道将机油送至各个需要润滑的地方。 5、机油压力指示器当机油压力过低时,警告驾驶员的装置。这个功能要求有两个独立的装置: 安装在气缸体上的机油压力传感器(探测机油压力)和仪表板上的指示灯或机油压力表(警告驾驶员)。 6、油封或密封垫用来阻止发动机内部和外部的机油泄漏。 7、机油深度尺用来测量机油油面高度的可拆式金属制测量工具。从机油尺导管中取出机油尺,检查其端部的油迹可知道机油油面高低。机油尺端部有刻度线,以决定是否需要添加机油。

系统如何工作 油底壳加入发动机的机油流到油底壳中,油底壳中的挡板可防止集滤器周围缺油。放油塞通常安装在油底壳的最下部。 机油尺测量油底壳中机油的油面高度,机油尺上的刻度线可以准确地标记机油油面高度,并显示是否需要添加机油。 集滤器通常有两种方法从油底壳中吸取机油至机油泵: 浮动式集滤器 一些发动机采用浮动式集滤器,其随油底壳中的机油浮动。当汽车转弯时,机油从一侧流向另一侧,集滤器就随机油浮动。为使集滤器浮动,就必须保证油底壳中有足够的机油。当机油油面下降时,集滤器随之下降,以保证恒定的机油流量。固定式集滤器 一些发动机采用固定式集滤器,它是一根插入油底壳的油管。由于不是伸向油底壳底部的所有方向,因此可避免吸取油底壳底部的沉淀物。 上面两种集滤器都有过滤网,以过滤出较大的沉淀物。一些过滤网具有旁通阀,当过滤网阻塞后,旁通阀打开,机油泵直接通过旁通阀吸取机油,而不是通过过滤网。 机油泵汽车发动机使用的机油泵通常有两种结构型式: 转子式和齿轮式。福特汽车的机油泵都是转子式。 转子式机油泵 内转子装在外转子里,外转子具有几个齿面。内、外转子之间有一定的偏心距,因此当转子转动时,内、外转子之间的工作腔容积发生变化,机油被吸入(容积变大时),然后压出(容积变小时)。 齿轮型机油泵齿轮式机油泵壳体内装有一对互相啮合的齿轮,齿轮与壳体内壁之间的间隙非常小,机油从进油口吸入,然后转动的齿轮将齿间的机油送至另一侧的出油腔内。

发动机可变配气机构的研究进展

发动机可变配气机构的研究进展 0 引言 由于环境保护和人类可持续发展的要求,低能耗和低污染已成为汽车发动机的发展目标。要求发动机既要保证良好的动力性又要降低油耗满足排放法规的规定。在各种现代技术手段中,可变配气技术已成为新技术发展方向之-[1]。这一技术能通过改变发动机的供气来达到降低油耗和满足排放要 求。 1 可变配气机构的分类 1.1 按控制参数的分类 按照控制参数的不同,可变配气技术可分为可变气门正时(VVT)和可变气门升程(VVL)两类。可变气门正时即气门开启与关闭时刻可变,根据气门开启持续期的变化又分为可变气门相位(vP)和可变气门相位与持续期(VET)两类;可变气门升程主要是改变了气门开启的最大升程,按照气门正时与持续期的变化情况又可分为可变气门升程与正时(VLT)和气门升程单独可变两类f2】。 1-2 按可变配气实现途径的分类 实现可变配气有多种途径,按照有无凸轮轴可分为基于凸轮轴的可变配气机构和无凸轮轴的可变配气机构两类。基于凸轮轴的可变配气机构主要可分为可变凸轮型线、可变凸轮轴相位角、可变凸轮从动件三类;无凸轮轴的可变配气机构根据气门驱动形式主要可分为电磁驱动气门、电液驱动气门、电气驱动气门、电机驱动气门以及其他气门驱动形式几大类圆。 2 发动机可变配气机构的国内外研究与发展现状 2.1 发动机可变配气机构在国外的研究与发展现状 配气控制技术早期的研究进展比较缓慢,主要成果是在1985年以后取得的,其发展先后顺序大致如下:优化凸轮型线一可变凸轮相位一可变凸轮型线一机械式全可变气门机构一无凸轮轴电磁(电 液、电气及其他)驱动配齐机构一无凸轮轴全可变配气机构。迄今为止,具有代表性的可变配气机构主要有Toyota公司的VVT—i、BMW 公司的Vanos、Honda公司的VTEC、Mitsubishi公司的MIVEC、Porsche 公司的Vario—Cam、BMW 的Valvotronics等。 下面将分类介绍国外可变配气机构的研究及发展现状。 2.1.1基于凸轮轴的可变配气机构 1)可变凸轮型线的可变配气机构 此类可变配气机构能同时改变气门正时、持续期及升程.改变方式目前主要有阶段式与连续式两种。 a)阶段式改变凸轮型线的可变配气机构 Honda公司的V rEC、Mitsubishi公司的MIVEC以及Porsche公司的Vario—Cam等均属于阶段式改变凸轮型线的可变配气机构。下面以Honda公司的VTEC为例,介绍阶段式改变凸轮型线的可变配气机构。VTEC在2个进气门上采用了3个凸轮及3个摇臂,如图1所示,其中3个摇臂可独立运动也可连成一体运动。转速较低时,通过液压机构使主、次摇臂分别由主凸轮和次凸轮驱动,中间摇臂随中间凸轮运动。但是对气门不起作用,这样主、次进气门的升程曲线不同,可以形成涡流。转速较高时,通过液压机构使3个摇臂连成一体,并受中间凸轮驱动.以满足发动机高速的要求。这类机构优点是可以提供两种以上凸轮型线,在不同转速和负荷下,采用不同的凸轮型线驱动气门『11;缺点是只能优化某些工况,不能实现全工况性能的优化[21。 b)连续式改变凸轮型线的可变配气机构 Fiat公司早期开发了凸轮型线在轴向可连续变化的3D凸轮机构。如图2所示,一个带有锥度外廓的凸轮和装有可倾斜式垫块的挺柱相接触,凸轮轴的轴向移动使得凸轮的不同部分和挺柱相接触,导致气门升程和配气相位发生变化。基圆半径沿凸轮轴的轴向是不变的,但凸轮升程沿轴向改变,故垫块必须随凸轮轴旋转变化它的倾斜角。凸轮轴端部安装一机械式调速器,当凸轮轴转速发生变化时,调速器拖动凸轮轴产生轴向移动,使得气门升程和配气相位同时发生改变。该机构优点是可以

变排量压缩机工作原理

变排量压缩机 压缩机是制冷系统的重要元件,它压缩从蒸发器出来的低温、低压的制冷剂蒸气,使之成为高温、高压的制冷剂蒸气。除部分客车空调压缩机是由专门的辅助发动机驱动外,大部分汽车压缩机均由发动机带动,利用电磁离合器的吸合控制压缩机工作。 定排量压缩机为了防止蒸发器内温度过低,它根据制冷负荷变化,不断地吸合、断开电磁离合器,这会造成以下不良影响: ● 发动机运行不平稳 ● 功耗损失(在高速和低负荷时) ● 压缩机进排气压力波动大 ● 出风口温度变化大 为了改善以上影响,GM 公司从1985年开始使用变排量压缩机,在制冷系统工作时,变排量压缩机的电磁离合器一直处于吸合状态,它可根据制冷负荷及发动机转速变化,在一定范围内连续平稳地改变活塞排量,从而实现系统流量的调节。 变排量压缩机结构 变排量压缩机结构相对于定排量压缩机不同之处在于: 1. 摆动盘通过导向销和传动柄相连,传动柄与主轴连成一体,导向销安装在传动柄的偏心槽内, 它可使摆动盘与主轴倾斜成某一范围内的任意角度,从而改变了压缩机排量。摆动盘与主轴角度不同,可使活塞行程改变,同时压缩机排量也随之变化。 2. 在变排量压缩机后端有一个控制阀总成,控制阀内有一个压力感应波纹管,此波纹管感应压 缩机吸气压力,可控制摇板箱内气体压力,摇板箱内气体压力变化导致摆动盘角度变化,从而调节压缩机排量。 可变排量压缩机内部结构 图B O 形圈 摆动盘总成 后端盖总成离合器线圈接线端子 离合器驱动器总成阀板总成 法兰密封 控制阀总成 固定环O 形圈 固定环 密封圈 定位销 定位球 皮带轮轴承 压缩机排出压力 摇板箱压力供给 摇板压缩机吸收压力 波纹管 控制阀总成

发动机可变气门生成技术

呼吸有道解析汽车发动机可变气门升程技术 2010-07-23 01:15:36 来源: 网易汽车跟贴 0 条手机看新闻版权声明:本文版权为网易汽车所有,转载请注明出处。 网易汽车7月23日报道在上节技术大讲堂中,我们想大家解析了关于汽车发动机可变气门正时技术,简单来说它是通过电脑控制发动机气门的开启时间,利用进气门与排气门不同的开启时间来控制汽车发动机的效率与经济性,但这种技术对于汽车发动机性能方面的提升却不大。随着汽车行业的发展,发动机的性能如何已经成为一款车能否取得成功的关键,这也就促使各大汽车厂家的工程师们对发动机技术进行了进一步研究。通过研究后,他们发现了可以弥补发动机可变气门正时技术不足的方法,而这也就是我们今天这节技术大讲堂要说的发动机可变气门升程技术。

>>技术大讲堂:呼吸有道解析汽车发动机可变气门正式技术<<众所周知,发动机的动力表现主要取决于单位时间内汽缸的进气量,上一节技术大讲堂我们说过,气门正时代表了气门开启的时间,而气门升程则代表的是气门开启的大小,从原理上看,可变气门正时技术也是通过改变进气量来改善动力表现的,但实际上气门正时则只能增加或者缩小气门开启时间,并不能有效改善汽缸内单位时间的进气量,从数学角度上看,气门正时是将分母和分子同时等比例放大,而这对于数字的扩大或缩小则没有任何改善,也正式因此对于可变气门正时技术队于发动机动力性的帮助并不大。 而当气门开启大小也可以实现可变调节的话,那么就可以针对不同的转速使用合适的气

门开启大小,从而提升发动机在各个转速内的动力性能,这就是和可变气门正时技术相辅相承的可变气门升程技术。 正如我们在用皮管接水时,当我们将皮管口的面积变小后,从皮管中喷出的水压力将变大,而这样一来单位时间内流出的水量也将增多,发动机可变气门升程技术利用的就是这种原理,用增加单位时间内发动机进气量的方法来提高发动机的动力性能。

可变配气相位

VVTI-概况 VVTI VVT-i是Variable Valve Timing-intelligent的缩写,它代表的含义就是智能正时可变气门控制系统。这一装置提高了进气效率,实现了低、中转速范围内扭矩的充分输出,保证了各个工况下都能得到足够的动力表现。另一个先进之处在于全铝合金缸体带来的轻量化,不仅减小了质量,也降低了发动机的噪声。可变配气正时可变配气正时控制机构的主要目的是在维持发动机怠速性能情况下,改善全负荷性能。这种机构是保持进气门开启持续角不变,改变进气门开闭时刻来增加充气量。(1)凌志LS400汽车可变配气正时控制机构(VVT-i) VVT-i系统用于控制进气门凸轮轴在50°范围内调整凸轮轴转角,使配气正时满足优化控制发动机工作状态的要求,从而提高发动机在所有转速范围内的动力性、经济性和降低尾气的排放。VVT-i系统由VVT-i控制器、凸轮轴正时机油控制阀和传感器三部分组成,如下图所示。其中传感器有曲轴位置传感器、凸轮轴位置传感器和VVT传感器。LS400汽车的发动机是8缸V型排列4气门式的,有两根进气凸轮轴和两根排气凸轮轴。在工作过程中,排气凸轮轴由凸轮轴齿形带轮驱动,其相对于齿形带轮的转角不变。曲轴位置传感器测量曲轴转角,向ECU提供发动机转速信号;凸轮轴位置传感器测量齿形带轮转角;VVT传感器测量进气凸轮轴相对于齿形带轮的转角。它们的信号输入ECU,ECU根据转速和负荷的要求控制进气凸轮轴正时控制阀,控制器根据指令使进气凸轮轴相对于齿形带旋转一个角度,达到进气门延迟开闭的目的,用以增大高速时的进气迟后角,从而提高充气效率。1)结构VVT-i控制器的结构如下图所示,它包括由正时带驱动的外齿轮和与进气凸轮轴刚性连接的内齿轮,以及一个内齿轮、外齿轮之间的可动活塞。活塞的内、外表面上有螺旋形花键。活塞沿轴向的移动,会改变内、外齿轮的相对位置,从而产生配气相位的连续改变。VVT外壳通过安装在其后部的剪式齿轮驱动排气门凸轮轴。凸轮轴正时控制阀根据ECU的指令控制阀轴的位置,从而将油压施加给凸轮轴正时带轮以提前或推迟配气正时。发动机停机时,凸轮轴正时控制阀处于最延迟的位置,如下图(b)所示。2)工作原理根据发动机ECU的指令,当凸轮轴正时控制阀位于图(a)所示时,机油压力施加在活塞的左侧,使得活塞向右移动。由于活塞上的旋转花键的作用,进气凸轮轴相对于凸轮轴正时带轮提前某一角度。当凸轮轴正时控制阀位于图(b)位置时,活塞向左移动,并向延迟的方向旋转。进而,凸轮轴正时控制阀关闭油道,保持活塞两侧的压力平衡,从而保持配气相位,由此得到理想的配气正时。提高充气效率是提高发动机动力性能的重要措施。除了增压以外,合理选择配气相位且能随发动机转速不同而变化,以及利用进气的惯性及谐振效应是提高充气效率的重要途径。进气惯性及谐振效应是随着发动机转速、进气管长度及管径大小的变化而变化。在不同转速下,进气管长度应有所不同,方能获得良好的进气惯性效应。并且,只有采用可变配气相位,可变进气系统才能适应不同发动机转速下的要求,才能较全面地提高发动机性能。可变进气系及配气相位改善发动机的性能,主要体现在以下几方面:①能兼顾高速及低速不同工况,提高发动机的

qc289-2001汽车发动机机油泵技术条件

本标准是对QC/T 289-1999的修订,主要修订处: 1)取消了 QC/T 289-1999中的重要性分等。 2)增加了对机油泵行业常用术语的定义。 3)增加了技术条件要求。 4 )对原常用标准进行了更新。 5)增加了试验方法要求。 6)统一了机油泵的检验规则。 7)增加了机油泵的包装,标识要求。 本标准自实施之日起,代替 QC/T 289-1999《汽车用机油泵总成质量分等》本标准由中国机械工业联合会提出。 本标准由全国汽车标准化技术委员会归口。 本标准由东风汽车泵业有限公司负责起草。 本标准主要起草人:黄海波。 中华人民共和国汽车行业标准 QC/T 289-2001 代替QC/T 289-1999 汽车发动机机油泵技术条件 1 范围 本标准规定了汽车发动机机油泵总成的技术要求、试验方法、标志、包装、运输、贮存等。 本标准适用于汽车发动机用的机油泵(简称机油泵)。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时, 所示版本均为有效,所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 2828-1987 逐批检查计数抽样程序及抽样表 GB/T 3821-1983 JB/T 8886-1999 JB/T 9774-1999 中小功率内燃机清洁度测定方法内燃机机油泵试验方法中小功率内燃机清洁度限值 3定义 3.1流量Q(L/min ):单位时间内,从泵的出口处输出的液体量 3.2 压力P( kPa):泵出口处的压力

3.3 容积效率n v (%):实际流量与理论流量的比值: n v =Q /Q t 。 3.4 限压阀开启压力P k (kPa):限压阀溢油口开始喷油时之压力值。 3.5 吸油高度h(mm :油箱液面至主动齿轮(或内转子) 中心的高度差。 3.6 工作特性 3.6.1 转速特性 在规定试验油粘度和一定压力时,表示供油量与转速的函数关系。 4.5 的规定;安装在发动机内部的机油泵,还应测定其外表面的清洁度,清洁度限值由主机厂与配 件厂协商确定 4.6 在发动机额定转速时的容积效率,齿轮泵应不小于 76%,转子泵应不小于 85%。 4.7 总成可靠性试验后性能复试流量值应不低于可靠性试验前性能试验流量值的 90%,且 总成各零件不得有过度磨损或擦伤。 5 仪器仪表精度要求 5.1 温度计(表):误差不大于±°c 。 5.2 压力表:压力表精度不低于 1 级 5.3 转速表:误差不大于± 0.5%。 5.4 流量:流量误差不大于 0.5%。 5.5 计时秒表:误差不大于 1/100 s 4.8 o o 3.6.2 压力特性 在规定试验油粘度和一定转速时,表示供油量与压力的函数关系。 4 技术要求 4.1 要求。 机油泵总成各零件的制造及装配应符合按规定程序批准的产品图样和有关技术文件的 4.2 机油泵总成图或有关技术文件中应规定产品的性能指标和可靠性指标。 4.3 象。 总成装配完毕后,用手或专用工具使机油泵的齿轮转动,应转动平滑,不得有卡滞现 4.4 机油泵总成应表面光整,无锈蚀,毛刺,磕碰伤。 安装在发动机外部的机油泵,解体测定其内表面的清洁度,清洁度限值按 JB /T 9774 试验合格后的总成应有良好的防尘保洁措施。

汽车变排量空调压缩机工作原理

汽车变排量空调压缩机工作原理 一、摘要:变排量空调在现代汽车上得到越来越广泛的使用" 本文介绍汽车变排量空调的优点" 重点阐述具有代表性的9种汽车变排量空调压缩机的结构和工作原理。(注:新式可变排量压缩机参考相关资料)。 轿车空调用变排量压缩机按照结构形式分为摇板式、斜盘式、滚动活塞式、螺杆式、旋片 式、涡旋式等机型,其中斜盘式变排量压缩机目前使用最多,按控制方式分为内部控制式变排 量压缩机和外部控制式变排量压缩机。其生产厂家及其对应生产的变排量压缩机型号如表1所 示。 变排量空调在奥迪、波罗、大宇、标志、别克、中华、奥拓等轿车上得到了广泛的使用, 如表2所示。和传统的定量空调相比,变排量空调有如下的优点:①排气压力和工作转矩的波动 减小,避免了对发动机的冲击;②保持了温度的稳定性;③保持了蒸发器低压的稳定性,而且 蒸发器不会结霜;④$提高了压缩机的使用寿命;⑤减少了功率消耗。

1、V5变排量压缩机 V5变排量压缩机由一个可变角度的摇板和5个轴向定位的气缸组成,其外形如图1所示,控制阀结构如图2所示。压缩机容积控制中心是一个波纹管式操纵控制阀,装在压缩机的后端,可检测压缩机吸气腔的压力,锥阀控制摇板箱和吸气腔(波纹管室) 之间的通道,球阀控制排气腔和摇板箱之间的通道,排量的改变是依靠摇板箱压力的改变来实现。摇板箱压力降低,作用在活塞上的反作用力就使摇板倾斜一定角度,这就增加了活塞行程(即增加了压缩机排量);反之,摇板箱压力增加,就增加了作用在活塞背面的作用力,使摇板往回移动,减少了倾角,即减小了活塞行程(也就减少了压缩机排量)排气压力影响控制阀的控制点的变化,排气压力升高,控制点降低。当空调容量要求大时,吸气压力将高于控制点,控制阀的锥阀打开并保持从摇板箱吸入气体至吸气腔&如果没有摇板箱——吸气腔间压力差,压缩机将有最大的容积。通常压缩机的排气压力比曲轴箱的压力大得多,曲轴压力高于或等于压缩机的吸气压力。在最大排量时,摇板箱的压力才等于吸气压力,在其它情况下,摇板箱的压力大于吸气压力。

可变气门配气相位和气门升程电子控制系统VTEC技术解析

可变气门配气相位和气门升程电子控制系统VTEC技术解析 the camshaft and rocker arms, but unlike ordinary engine is the number and control method of cam and rocker arm. Medium and low speed with a small angle of the cam, two valve timing and lift different at low speed, this time a valve lift is very small, almost do not participate in the intake process, the air intake channel basically the equivalent of two valve engine, but due to the flow direction of an intake air barrier gas cylinder center, so it can produce intake eddy current, strong for low speed, especially in the cold car conditions conducive to improving the mixture uniformity, increases the burning rate and decrease the effect of wall surface chilling effect and clearance, making the combustion more fully, thereby improving the economy, and significantly reduce HC and CO emissions; and at high speeds. Through to VTEC solenoid valve to control the hydraulic oil, so that the two intake rocker arms are connected as a whole and the intake cam from the opening of the longest and largest lift to drive the valve, this time two inlet valve according to the cam profile synchronization. Compared with the low speed operation, greatly increasing the inlet flow area and opening duration, so as to improve the power of the engine at high speed. This two kinds of entirely different performance curve of output, Honda engineers so that they are implemented in the same engine, and vividly described as "the usual soft driving" and "wartime intense driving".

汽车可变排量压缩机工作原理

汽车可变排量压缩机工作原理 汽车空调系统故障诊断方法 一:看 一般大客车空调制冷系统的高压液路上单独设有一玻璃观察窗,小型车的观察窗一般则装在干燥过虑器罐上。空调系统运行过程中,通过系统的玻璃观察窗,可以大致判断制冷流量是否合适。 (1)如果观察窗内气刨持续流出,制冷剂几乎像飘舞一样,说明系统内的制冷剂很少。此时高压侧与低压侧几乎没有温差。 (2)如果有少量气泡以1~2秒的间隔间隙性地出现,说明系统内的制冷剂不充分。此时高压侧温热,低压侧微凉。 (3)如果观察窗大体上透明,仅在提高或降低发动机转速时,偶尔出现气泡说明系统内制冷剂量适当。此时高压侧热(压缩机出口处温度约为70℃),低压侧凉(压缩机入口处温度约为5℃)。 (4)系统内制冷剂过多时,在系统其他条件都正常的情况下,从观察窗完全看不到气泡。这种结果与制冷剂适量条件下所观察到的结果没有明显差异,但此时高压侧温度较正常高。 (5)通过系统观察镜观察是应注意,干燥过滤器滤网堵塞时,即使制冷剂量正常,也会出现气泡,但这是用手摸干燥过滤器出口侧管路,其感觉是凉的。此外,从观察镜所看到的气泡是受温度影响的,外界气温高时易出现气泡。加制冷剂时系统为抽真空,混入空气,观察窗内也会看到气泡。 二:听 就是听机器运转的声音是否有异常,主要包括: (1)听压缩机运转时有无杂音是否有异常,有则不正常; (2)听鼓风机、冷凝风扇电动机等运转时是否有杂音,有则为不正常; (3)若有皮带声,说明皮带打滑; (4)若有尖叫声,则为电磁离合器磁力线圈老化,磁吸力不够,离合器片打滑所致。 三:摸 当制冷系统及其主要部件出现故障是,常会导致系统管路及主要部件的外表温度出现异常。因此,根据外表温度的变化,可以粗略地判断系统的工作状态及主要部件性能的好坏。在具体检查时,可用处摸手感的方法进行判断。 (1)摸制冷系统的高、低压管,高压管烫手、低压管冷或冰手为正常; (2)冷凝器较热为正常; (3)储液干燥过滤器呈温热太; (4)用手感觉空调出风口吹出的风有冰凉的感觉为正常; (5)用手摸各管接头及电器插座插头是否松动。 四:测 通过看、听、摸诊断方法的同时,如果能够使用压力表侧出制冷循环系统高、低压两侧压力,将使判断的结果更为准确。例如在制冷剂严重不足时,高、低压表指示值比正常底很多;制冷剂不足时,高、低压表指示值比正常略底;制冷剂适量时,高、低压表指示值均正常;制冷剂过多时,高、低压表的指示值都比正常高,此外,系统内混入空气时,高、低压两侧压力都过高,高压表抖动强烈。干燥过滤器堵塞时,低压表的指示值比正常低,高压表的指示值则比正常高很多。但是,利

有关汽车发动机可变技术的综述

论文题目:有关汽车发动机可变技术的综述 一、摘要 近几十年来,基于提高汽车发动机动力性、经济性和降低排污的要求,许多国家和发动机厂商、科研机构投入了大量的人力、物力进行新技术的研究与开发,例如可变气门技术、可变气缸技术、可变进气歧管技术。目前,这些新技术和新方法,有的已在内燃机上得到应用,有些正处于发展和完善阶段,有可能成为未来内燃机技术的发展方向。 二、关键词:可变气门技术、可变气缸技术、可变进气歧管技术 三、引言 可变进气系统分为两类:(1)多气门分别投入工作;(2)可变进气道系统。其目的都是为了改变进气涡流强度、提高充气效率;或者为了形成谐振及进气脉冲惯性效应,以适应低速及中高速工况都能提高性能的需要。 1.多气门分别投入工作 实现多气门分别投入工作的结构方案有如下两种:第一,通过凸轮或摇臂控制气门按时开或关;第二,在气道中设置旋转阀门,按需要打开或关闭该气门的进气通道,这种结构比用凸轮、摇臂控制简单。 2.可变进气道系统 可变进气道系统是根据发动机不同转速,使用不同长度及容积的进气管向气缸内充气,以便能形成惯性充气效应及谐振脉冲波效应,从而提高充气效率及发动机动力性能。 惯性可变进气系统,是通过改变进气歧管的形状的长度,低转速用长进气管,保证空气密度,维持低转的动力输出效率;高转用短进气歧管,加速空气进入汽缸的速度,增强进气气流的流动惯性,保证高转下的进气量,以此来兼顾各段转速发动机的表现。加装VIS后,发动机进气气流的流动惯性和进气效率都有所加强,从而提高了扭矩,并降低了油耗。 四、可变气门技术 可变气门正时技术几乎已成为当今发动机的标准配置,为了进一步挖掘传统内燃机的潜力,工程人员又在此基础上研发出可变气门升程技术,当二者有效的结合起来时,则为发动机在各种工况和转速下提供了更高的进、排气效率。提升动力的同时,也降低了油耗水平。 (一)配气相位机构的原理和作用

浅谈发动机可变气门正时技术

浅谈发动机可变气门正时技术 [摘要]随着发动机的转速变化,改变气门的开闭时刻提高气门的开闭时间,使进气更顺畅,利用空气流动的惯性根据发动机不同的转速变化改变气门的开闭时间,提高发动机的进气效率,强化其性能。 [关键词]气门;可变配气正时 中图分类号:V564 文献标识码:A 文章编号:1009-914X (2017)11-0023-01 增加气门开闭的时间,让气门开闭的时刻可变便可以提高发动机的进气效能,可以提高发动机的燃烧效能,增加发动机的功率。 今天我想跟大家介绍的一个技术是大家耳熟能详的一 项技术,叫发动机可变配气正时系统,其实在过去很长的汽车发展过程里,大概在过去的六、七年前,这个技术系统都是大家比较陌生,很稀有的一种技术,单单根据技术名字来了解,大部分人都很难理解什么叫可变气门正时,所以足可以看出这项技术的高大上,通常配备了这样技术的发动机,我们通常会认为这是一台非常高端的、先进的发动机。但是随着发动机的日渐革新,不管是日系德系还是哪怕自主品牌基本上已经普及了这个技术。那么可变配气正时系统到底是

个什么技术呢,它能给我们带来什么,使发动机得到哪些性能上、动力上、经济上的提升呢? 所谓可变气门正时,从字面上拆分来理解,就是可以改变气门的开启关闭的时间,那如果气门的开闭时间不可改变会是一个什么样的工作情况呢。我们知道发动机完成一个工作循环它需要经历四个冲程。进气冲程、压缩冲程、做功冲程及排气冲程,这四个行程使发动机完成一次工作循环发出动力带动各机构运转。从进气行程来讲,就如同人的呼吸过程一样,我们很自然的可以理解,当我呼吸开始时我的嘴需要张开给空气一个进去体内的通道,所以当进气开始时,进气门是处于打开的状态,当我进气完成后即将转入下一个行程压缩冲程时,进气门应该是出于关闭状态的,否则当压力高于进气压力时,进入气缸的气体则会从气门压出形成倒流,所以进气门应适时关闭,使气缸形成密封。而事实上由于进气冲程它的空气是有流速的,而空气呢它的进气流动也是有惯性的,所以实际在匹配进气门开闭时间的时候,它并不是准确的按照活塞运行到上止点的时候打开,在下止点的时候准确关闭的。而是它会有一个提前打开和延后关闭的过程,这样增加了气门的开启持续时间,能够让进气更顺畅而且能够让可燃混合气更多的进入到气缸中去,提高发动机的燃烧效率。由于传统的发动机的这个特性,所以它只能按照一个最常用的转速去匹配它的进气门打开和关闭的时间,通常这

(汽车行业)汽车变排量空调压缩机工作原理

(汽车行业)汽车变排量空调压缩机工作原理

汽车变排量空调压缩机工作原理 壹、摘要:变排量空调在现代汽车上得到越来越广泛的应用"本文介绍汽车变排量空调的优点"重点阐述具有代表性的9种汽车变排量空调压缩机的结构和工作原理。(注:新式可变排量压缩机参考相关资料)。 轿车空调用变排量压缩机按照结构形式分为摇板式、斜盘式、滚动活塞式、螺杆式、旋片式、涡旋式等机型,其中斜盘式变排量压缩机目前应用最多,按控制方式分为内部控制式变排量压缩机和外部控制式变排量压缩机。其生产厂家及其对应生产的变排量压缩机型号如表1所示。 到了广泛的应用,如表2所示。和传统的定量空调相比,变排量空调有如下的优点:①排气压力和工作转矩的波动减小,避免了对发动机的冲击;②保持了温度的稳定性;③保持了蒸发器低压的稳定性,而且蒸发器不会结霜;④$提高了压缩机的使用寿命;⑤减少了功率消耗。

V5变排量压缩机由壹个可变角度的摇板和5个轴向定位的气缸组成,其外形如图1所示,控制阀结构如图2所示。压缩机容积控制中心是壹个波纹管式操纵控制阀,装在压缩机的后端,可检测压缩机吸气腔的压力,锥阀控制摇板箱和吸气腔(波纹管室)之间的通道,球阀控制排气腔和摇板箱之间的通道,排量的改变是依靠摇板箱压力的改变来实现。摇板箱压力降低,作用在活塞上的反作用力就使摇板倾斜壹定角度,这就增加了活塞行程(即增加了压缩机排量);反之,摇板箱压力增加,就增加了作用在活塞背面的作用力,使摇板往回移动,减少了倾角,即减小了活塞行程(也就减少了压缩机排量)排气压力影响控制阀的控制点的变化,排气压力升高,控制点降低。当空调容量要求大时,吸气压力将高于控制点,控制阀的锥阀打开且保持从摇板箱吸入气体至吸气腔&如果没有摇板箱——吸气腔间压力差,压缩机将有最大的容积。通常压缩机的排气压力比曲轴箱的压力大得多,曲轴压力高于或等于压缩机的吸气压力。在最大排量时,摇板箱的压力才等于吸气压力,在其它情况下,摇板箱的压力大于吸气压力。 当空调容量要求小时,吸气压力达到控制点,控制阀打开球阀将排气腔的气体引至摇板箱,且通过锥阀关闭从摇板箱到吸气腔的强制通风的通道。 摇板的角度由5个活塞的平衡力来控制,摇板箱——吸气管间压力差的

变排量压缩机在汽车空调系统中的应用

变排量压缩机在汽车空调系统中的应用 摘要 随着人们生活水平的不断提高,对车载空调控制系统的智能性、运行情况的稳定性、控制系统的合理性都有较高要求。因此,如何对系统进行更加细致的分析,如何对复杂工况进行更加合理的调控,就成了各大汽车制造企业和科研机构所关注的问题。本课题通过对基于变排量压缩机的车载空调控制系统进行分析,提出了一种从硬件选型到台架模拟的整套开发过程,并且通过实验验证了控制系统的快速性、准确性和稳定性,使得此控制系统及其研发流程能得到广泛的应用。通过对于变排量压缩机在汽车空调系统中的应用,能够更好的将变排量压缩机在汽车空调系统中的应用。 本文首先对于该课题的研究背景和研究意义进行分析,为本文的研究指明了研究的方向。然后对于汽车空调系统进行概述分析。最后对于变排量压缩机在汽车空调系统中的应用进行分析,最后分析了汽车空调系统发展趋势进行分析。 关键词:变排量;压缩机;汽车空调 论文类型:应用研究

目录 1绪论 (1) 1.1选题背景 (1) 1.2国内外研究文献综述 (1) 1.2.1国外文献综述 (1) 1.2.2国内研究综述 (2) 1.3研究内容以及研究方法 (3) 1.3.1研究内容 (3) 1.3.2研究方法 (3) 2汽车空调概述 (4) 2.1汽车空调工作原理 (4) 2.2汽车空调系统组成 (5) 2.2.1制冷系统 (5) 2.2.2取暖系统 (6) 2.2.3通风系统 (6) 2.2.4空气净化系统 (6) 2.2.5自动控制系统 (6) 3变排量压缩机在汽车空调系统中的应用 (7) 3.1对于空调系统进行控制 (7) 3.2CFD优化及集成系统 (7) 3.3自动化空气质量调控 (8) 4汽车空调系统发展趋势 (9) 4.1空调压缩机的发展趋势 (9) 4.2热交换器发展方向 (9) 4.3自动智能化空调系统 (9) 4.4新能源汽车空调系统发展趋势 (9) 致谢 (11) 参考文献 (12) 附件: (13) 网络学院毕业论文独创性声明 (13) 毕业论文知识产权权属声明 (13)

相关主题
文本预览
相关文档 最新文档