当前位置:文档之家› 典型问题梳理

典型问题梳理

典型问题梳理
典型问题梳理

模块四典型问题梳理

21班(广东13班)辅导教师刘俊灵

问题1:

作为语文老师应该如何写好作文评语?

由李晓琳小学语文发表于2012年04月6日星期五 20:58

记得以前我读书时,每次发作文最喜欢就是看老师的评语,老师的肯定对我的写作兴趣影响甚大。现在自己当老师评改学生作文,评语下笔总是略为斟酌。作文评语是作文教学的一个重要环节,作文评语写得是否恰当,评价是否准确,对学生作文水平的提高起着至关重要的作用。特别是小学生,这种作用显得尤为重要。那么,怎样写小学生的作文评语才能最有效地发挥其指导和激励作用呢?

问题2:

(1)语文综合性学习教学中的困惑

由陈俊建小学语文发表于2012年04月1日星期日 21:01

语文综合性学习是《新课程标准》的重点,也是难点,教师在这场改革中更是遇到前所未有的困难。作为一名农村小学教师的我经过了痛苦与彷徨,针对以上问题,我提出以下几点困惑:

一是活动方法上的困难。学生自主参与意识不强,加之现在我们揭阳大部分地区都是农村,条件比较落后,多数学校没有多少图书室,电脑上网也不普及,兴致勃勃地开展一次活动,常常因为无法找到更多的资料而取消,再者,语文综合性学习从问题的提出、课题的确立,到活动方案的制订,资料的收集、具体的实践探索、结论的分析、展示交流,每个步骤必须是学生为主,主动探究并亲历实践的过程。现在百分之九十以上的语文课堂教学大多还是以教师为主,一下子变成以学生为主,让学生自主探究、自主学习,很多教师难以把握:指导少了,难以达到理想的效果;指导多了,又变成教师为主了,成了本末倒置。在这当中,教师究竟如何定位呢?很多教师对此办法不多。

一是思想认识上的困难。目前,大部分语文教师比较看重的还是考试成绩,开展综合性学习活动,说是能够提高语文的社会应用价值,发挥其工具性的一面,能够提高学生运用语文知识的能力,陶冶学生的情操,发挥其人文性的一面,但学生的应试能力呢,应试能力能提高吗?开展一次综合性学习活动,少不了三、五节课,而按教育部颁布标准,我们基本上每周也只有五节课,占用课时多了,进度能赶上吗?因此开展综合性学习的热情就不高,大多上一两节就完了,谈何质量?

(2)如何让语文综合性学习绽放精彩?

由李绪桂小学语文发表于2012年04月5日星期四 20:42

蔡可博士认为:语文综合性学习主要体现为语文知识的综合运用、听说读写能力的整体发展、语文课程与其他课程的沟通、书本学习与实践活动的紧密结合;这种沟通和超越听、说、读、写的综合性学习,有利于激发学生学习的兴趣,发展多方面的能力,促进语文素养的整体提高。

我非常赞同蔡博士的观点。可就目前,很多地方都忽视了语文的综合性学习,很是悲哀。这一方面是由于应试教育所造成,另一方面是因为我们不知道怎样来开展比较好。如何才能让语文综合性学习绽放应有的精彩呢?我很是期待答案。

问题3:

如何提高学生写作能力

由江长龙小学语文发表于2012年04月1日星期日 17:33

小学语文课程标准指出:写作是运用语言文字进行表达和交流的重要方式,是认识世界,认识自我,进行创造性表述的过程。写作能力是语文素养的综合体现。在小学语文教学中,如何提高学生写作能力,是我们每一位教育者值得探索的课题。本人在多年的教学实践中,认真研究,努力寻求小学作文教学的新方法、新思路,认为只有悉心引导,努力培养学生的写作兴趣,激发学生的写作情感,才能提高写作能力。各位老师也来谈谈这个问题,大家共同探索。谢谢!

问题4:

习作中能否使用网络语言

由彭惠情小学语文发表于2012年04月1日星期日 15:50

现在有一些小学生在习作上大量使用网络语言。对此,一些老师认为学生应该“规则观”要掌握并运用规范的语言文字:但也有一些人认为,使用网络语言使习作更加活泼,应该提醒。对此,你们有什么看法?

问题5:

如何讲解古诗词

由吴映旋小学语文发表于2012年04月2日星期一 22:48

古诗词语言精练,意境优美,寓意深邃,但是由于小学生知识面狭窄,生活阅历浅,很难理解古诗词的寓意,所以古诗词教学一直是我头疼的一个问题。讲得多了,怕成“填鸭式”教学,讲得少了,又怕学生不理解。

不知道同行们是如何讲解古诗词的,希望不吝赐教。

基因工程技术 笔记整理

基因工程技术:按照人们的愿望,进行严密的设计,通过体外DNA重组和转移等技术,有目的地改造生物种性,使现有物种在较短的时间内趋于完善,创造出新的生物类型。 质粒是一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、共价闭合环状DNA分子cccDNA,并以超螺旋状态存在于宿主细胞中,它具有自主的复制和转录系统。质粒在细胞内的复制一般有二种:紧密控制型(stringent control)和松弛控制型(relaxed control)。前者只在细胞周期的一定阶段进行复制,通常每个细胞内只含有一个或几个质粒分子;后者在整个细胞周期中随时可以复制,在每个细胞中有许多拷贝。 质粒的不相容性:利用共同复制系统的不同质粒不能在同一宿主细胞中共存。 从细胞中分离质粒DNA 的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细胞;分离和纯化质粒DNA。 溶菌酶:破坏菌体细胞壁;SDS和Triton X-100:使细胞膜裂解。 染色体DNA通常用于构建基因组文库和Southern杂交等。 基因组DNA的提取 植物基因组DNA提取:提取缓冲液(Tris.Cl—保持pH,EDTA,NaCl,SDS),氯仿/戊醇/乙醇溶液—沉淀和抽提DNA,异丙醇—沉淀DNA(提染色体),TE(Tris.Cl,EDTA)--溶解DNA,RNase—保存液,降解RNA,NaAC—加盐,70%乙醇—漂洗。 细菌基因组DNA提取:SDS,蛋白酶K,氯仿:异戊醇(24:1)-- 沉淀DNA,苯酚:氯仿:异戊醇(25:24:1)-- 抽提,70%乙醇—漂洗,TE,NaCl—调节离子强度,RNase A,CTAB/NaCl 溶液—CTAB--一种阳离子去污剂,具有从低离子强度溶液中沉淀核酸和酸性多聚糖的特性,异丙醇/无水乙醇—沉淀上清液。 总RNA制备 mRNA的分子结构容易受到RNA酶的攻击反应而降解,加上RNA 酶极为稳定而且广泛存在,因此,在提取过程中应严格防止RNA 酶的污染并设法抑制其活性,这是实验成败的关键。仪器—玻璃器皿:200℃烘2h,塑料器皿:DEPC水液处理—所有器皿最后硅烷化处理。 RNA酶抑制剂:DEPC--强烈但不彻底,与氨水溶液混合会产生致癌物;异硫氰酸胍--最有效,使RNA酶失活;其他--RNA酶蛋白抑制剂(RNasin)SDS, 尿素等。 细胞内总RNA制备方法:异硫氰酸胍热苯酚法、酚/SDS法、Trizol法。(均先将组织在液氮中研磨成粉末) 异硫氰酸胍热苯酚法:异硫氰酸胍(GIT)与β-巯基乙醇共同作用抑制RNase的活性,GIT与十二烷基肌氨酸钠(Sarcosyl)作用使蛋白质变性。 酚/SDS法:用酚和SDS破碎细胞和去除蛋白质,用LiCl选择沉淀RNA以去除DNA 和其它不纯物。 Trizol法:Trizol试剂(含酚、异硫氰酸胍和溶解剂等)。 mRNA提取 制备mRNA原理:分离的总RNA 可利用mRNA3’端含有poly(A)的特点,用oligo(dT)纤维素柱分离,当RNA流经oligo(dT)纤维素柱时,在高盐缓冲液作用下,mRNA被特异的吸附在oligo(dT)纤维素上,然后逐渐降低盐浓度洗脱,在低盐溶液或蒸馏水中,mRNA被洗下。然后经过两次oligo(dT)纤维素柱,可得到较纯的mRNA。纯化的mRNA在70%乙醇中-70℃可保存一年以上。(上样buffer和洗脱buffer)。溶液中无盐时要沉淀RNA,必须加盐NaAC。 琼脂糖凝胶电泳 DNA凝胶电泳:琼脂糖-- 分离DNA片段大小范围广;聚丙烯酰胺-- 小片段,分辨力高。

基因工程知识点梳理

生物选修3知识点 专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过,赋予生物以,创造出。基因工程是在 上进行设计和施工的,又叫做。 (一)基因工程的基本工具 1.“分子手术刀”—— (1)来源:主要是从中分离纯化出来的。 (2)功能:能够识别的核苷酸序列,并且使每一条链中的两个核苷酸之间的断开,因此具有。(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式: 和。 2.“分子缝合针”—— (1)两种DNA连接酶()的比较: ①相同点:都缝合键。 ②区别:来源于大肠杆菌,来源于T4噬菌体, 只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来; 而能缝合两种末端,但连接的之间的效率较低。 (2)与DNA聚合酶作用的异同: DNA聚合酶只能将加到已有的核苷酸片段的末端,形成磷酸二酯键。 DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 必须需要模板 3.“分子运输车”—— (1)载体具备的条件:①。 ②,供外源DNA片段插入。 ③,供重组DNA的鉴定和选择。 (2)最常用的载体是 ,它是一 种 。

(3)其它载体: (二)基因工程的基本操作程序 第一步: 1.目的基因是指:基因。 2.原核基因采取获得,真核基因是。人工合成目的基因的 常用方_ 和_。 3. 从基因文库中获取 基因文库(1)概念:将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。 (2)类型:基因组文库和部分基因文库(如cDNA文库) (1)原理: (2)过程:第一步:加热至90~95℃; 第二步:冷却到55~60℃,; 第三步:加热至70~75℃,。 第二步:(核心步骤)

基因工程知识点总结归纳(更新版)

基因工程 绪论 1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。作动词:基因的分离和重组的过程。 2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。供体、受体和载体是基因工程的三大要素。 3、基因工程诞生的基础 三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。 三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现 3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶 1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。 2、限制酶的命名:属名(斜体)+种名+株系+序数 3、II型限制性内切酶识别特定序列并在特定位点切割 4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。 5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。 6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。 7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。 8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。 9、S1核酸酶:特异性降解单链DNA或RNA。

基因工程知识点

基因工程各章知识点 第一章绪论 1.基因工程的首例操作实验 三大理论基础:DNA是遗传物质、DNA的双螺旋结构和半保留复制、遗传密码的破译和遗传物质传递方式的确定 三大技术基础:限制性核酸内切酶的发现与DNA的切割、DNA连接酶的发现与DNA片段的连接、基因工程载体的研究与应用 基因工程的诞生: 72年,P.Berg首次实现体外DNA重组:体外用EcoRI分别切割SV40和λDNA,并用T4 DNA连接酶连接成为重组的杂种DNA分子 73年,S.Cohen 体外重组DNA并转化:具Kanr的E.Coli质粒R6-5和具Tetr的E.Coli质粒pSC101切割并连接转化的大肠杆菌具有双重抗性 S.Cohen 和H.Boyer首次实现真核基因在原核中表达:将非洲爪蟾的DNA与E.Coli质粒(pSC101)体外切割并连接,转化大肠杆菌 2.基因工程的基本概念 基因工程是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种新物体(受体)内,使之稳定遗传并表达出新产物或具有新性状的DNA体外操作技术,也称为分子克隆或重组DNA 技术。 供体、载体、受体是基因工程的三大基本元件。 3.基因工程的基本操作过程 a分离目的DNA片段:酶切、PCR扩增、化学合成等。 b重组:体外连接的DNA和载体DNA,形成重组DNA分子。 c转化:将重组DNA分子导入受体细胞并与之一起增殖。 d筛选:鉴定出获得了重组DNA分子的受体细胞。 e对获得外源基因的细胞或生物体通过培养,获得所需的遗传性状或表达出所需要的产物。 第二章载体 1.理解用PBR322和PUC18作载体的克隆外源基因的原理。答案不确定 PBR322作载体的克隆外源基因的原理:PBR322质粒具有12 种限制性内切酶的单一识别位点:Tet r 基因内有7个酶切位点:Bam HⅠ,SalⅠ:Amp r基因内有3 个酶切位点:PstⅠ。Eco RⅠ和HindⅢ不在抗生素基因内,不导致插入失活。 如果在pBR322质粒的Tet r基因内位点插入外源DNA片断,将切断了tet r基因编码序列的连续性,使tet r 失去活性,产生出Amp r Tet s表型的重组pBR322质粒,转化入Amp s Tet s的大肠杆菌细胞。先涂布在含氨苄青霉素的选择培养基上,筛选出具Amp r菌落,再将它们影印于含四环素的选择性培养基上。插入外源片断的重组质粒不能在这种培养基上生长,这样就找出了含重组质粒的大肠杆菌。如果在pBR322质粒的Amp r基因内位点插入外源DNA片断,则反之。 PUC18作载体的克隆外源基因的原理:

专题一、基因工程知识点归纳

专题一基因工程 一【高考目标定位】 1、专题重点:DNA重组技术所需的三种基本工具;基因工程的基本操作 程序四个步骤;基因工程在农业和医疗等面的应用;蛋白质工程的原理。 2、专题难点:基因工程载体需要具备的条件;从基因文库中获取目的基 因;利用PCR技术扩增目的基因;基因治疗;蛋白质工程的原理。 二【课时安排】2课时 三【考纲知识梳理】 第1节DNA重组技术的基本工具 教材梳理: 知识点一基因工程的概念:基因工程是指按照人们的愿望,进行格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在DNA分子水平上进行设计和施工的,因此又叫做DNA重组技术。 注意:对本概念应从以下几个面理解: 知识点二基因工程的基本工具 1.限制性核酸切酶——“分子手术刀” (1)限制性切酶的来源:主要是从原核生物中分离纯化来的。 (2)限制性切酶的作用:能够识别双链DNA分子的某种特定的核苷酸序列,并能将每一条链上特定部位的两个核苷酸之间的磷酸二酯键切开。(3)限制性切酶的切割式及结果:①在中心轴线两侧将DNA切开,切口是黏性末端。②沿着中心轴线切开DNA,切口是平末端。 2.DNA连接酶——“分子缝合针” (1)来源:大肠杆菌、T4噬菌体 (2)DNA连接酶的种类:E.coliDNA连接酶和T4DNA连接酶。 (3)作用及作用部位:E.coliDNA连接酶作用于黏性末端被切开的磷酸

二酯键,T4DNA连接酶作用于黏性末端和平末端被切开的磷酸二酯键。注意:比较有关的DNA酶 (1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基 (2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用的部位是碱基和碱基之间的氢键。注意:使DNA解成两条长链的法除用解旋酶以外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA 解旋。 (3)DNA聚合酶:能将单个的核苷酸通过磷酸二酯键连接成DNA长链。(4)DNA连接酶:是通过磷酸二酯键连接双链DNA的缺口。注意比较DNA聚合酶和DNA连接酶的异同点。 3.基因进入受体细胞的载体——“分子运输车” (1)分子运载车的种类:①质粒:常存在于原核细胞和酵母菌中,是一种分子质量较小的环状的裸露的DNA分子,独立于拟核之外。②病毒:常用的病毒有噬菌体、动植物病毒等。 (2)运载体作用:①是用它做运载工具,将目的基因转运到宿主细胞中去。②是利用它在受体细胞对目的基因进行大量复制。 (3)作为运载体必须具备的条件:①在宿主细胞中保存下来并大量复制②有多个限制性切酶切点③有一定的标记基因,便于筛选。 思维探究:知识点3、4、5主要是介绍DNA重组技术的三种基本工具及其作用。限制酶──“分子手术刀”,主要是介绍限制酶的作用,切割后产生的结果。在这部分容学习时,应关心的问题之一是:限制酶从哪里寻找?我们可以联想从前学过的容──噬菌体侵染细菌的实验,进而认识细菌等单细胞生物容易受到自然界外源DNA的入侵。那么这类原核生物之所以长期进化而不绝灭,有保护机制?进而联想到可能是有什么酶来切割外源DNA,而使之失效,达到保护自身的目的”。这样就对“限制酶主要是从原核生物中分离纯化出来”的认识提高了一个层次。 基因进入受体细胞的载体──“分子运 输车”的学习容,不能仅仅着眼于记住这几个 条件,而应该深入思考每一个条件的涵,通过 深思熟虑,才能真正明确为什么要有这些条件 才能充当载体。 教材拓展: 拓展点一限制酶所识别序列的特点 限制酶所识别的序列的特点是:呈现碱基互补对称,无论是奇数个碱

高中生物基因工程核心知识点

基因工程核心知识点 一、基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E?coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E?coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形 成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 *比较有关的DNA酶 (1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基 (2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用的部位是碱基和碱基之间的氢键。注意:使DNA解成两条长链的方法除用解旋酶以外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA解旋。(3)DNA聚合酶:能将单个的核苷酸通过磷酸二酯键连接成DNA长链。 (4)DNA连接酶:是通过磷酸二酯键连接双链DNA的缺口。注意比较DNA聚合酶和DNA 连接酶的异同点。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体:噬菌体的衍生物、动植物病毒 【解题技巧】 (1)限制酶是一类酶,而不是一种酶。 (2)限制酶的成分为蛋白质,其作用的发挥需要适宜的理化条件,高温、强酸或强碱均易使之变性失活。 (3)在切割目的基因和载体时要求用同一种限制酶,目的是产生相同的黏性末端。(4)获取一个目的基因需限制酶剪切两次,共产生4个黏性末端或平末端。 (5)不同DNA分子用同一种限制酶切割产生的黏性末端都相同,同一个DNA分子用不同的限制酶切割,产生的黏性末端一般不相同。 (6)限制酶切割位点应位于标记基因之外,不能破坏标记基因,以便于进行检测。 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因主要是指编码蛋白质的结构基因,目前被广泛提取使用的目的基因有:苏云金杆菌抗虫基因、植物抗病基因(抗病毒、抗细菌)、人胰岛素基因等。 2.获得目的基因的方法

基因工程基础知识梳理(二)

基因工程基础知识梳理(二) 三、基因工程的应用 .植物基因工程的成果 提高农作物的_____能力、改良农作物的品质、利用植物生产_____等。 ( )抗虫转基因植物 ①方法:将_____导入植物体,使其具有抗虫性。 ②成果:各种抗虫作物,如抗虫水稻、抗虫棉、抗虫玉米等。 ③意义:减少_____,降低生产成本,减少环境污染。 ④主要杀虫基因:_____、蛋白酶抑制剂基因、淀粉酶抑制剂基因、植物凝集素基因等。 ( )抗病转基因植物 ①方法:将_____导入植物体中,使其具有抗病特性。 ②成果:多种抗病作物,如抗病的烟草、小麦、甜椒、番茄等。 ③意义:提高作物抗病力,增产。 ④主要抗病基因:抗病毒的_____和病毒的复制酶基因;抗真菌的_____ 基因和抗毒素合成基因。 ( )抗逆转基因植物 ①方法:将_____基因导入植物体,获得抗逆作物。 ②成果:多种抗逆植物,如抗盐碱和干旱的烟草、抗寒番茄、抗除草剂大豆和玉米等。 ③意义:提高作物抗逆能力,稳定高产。 ④主要抗逆基因:抗盐碱、抗干旱的_____基因、耐寒的_____基因、抗除草剂基因。 ( )利用转基因改良植物的品质 ①方法:将优良性状基因导入植物体,获得_____。 ②成果:_____含量较高的玉米、耐储存番茄、新花色的矮牵牛。 ③意义:改良植物的某些品种。 ④主要优良性状基因:_____的蛋白质编码基因、控制番茄果实成熟的基因、与植物花青素代谢有关的基因。 .动物基因工程的成果

( )提高动物的生长速度 ①生长基因:外源_____基因。 ②成果:转基因绵羊、转基因鲤鱼。 ( )改善畜产品的品质 ①优良基因:肠_____基因。 ②成果:转基因牛乳汁中_____含量少。 ( )转基因动物生产药物 ①基因来源:药用蛋白基因+乳腺蛋白基因的_____。 ②成果:乳腺生物反应器。 ( )转基因动物作器官移植的供体 ①器官供体:抑制或除去_____。 ②成果:利用_____培育没有免疫排斥反应的猪器官。 .基因工程药物 ( )来源:转基因_____。 ( )成果:_____、抗体、疫苗、激素等。 ( )作用:预防和治疗人类肿瘤、心血管疾病、遗传病、各种传染病、_____、类风湿等疾病。 .基因治疗 ( )特点:把 _____导入病人体内,使该基因的表达产物发挥功能,从而达到治疗疾病的目的。 ( )成果:将腺苷酸脱氨酶基因导入患者的_____,治疗复合型免疫缺陷症。 ( )方法:分为体外基因治疗法和_____基因治疗法。 四、蛋白质工程 .蛋白质工程的崛起 ( )实质:将一种生物的_____转移到另一种生物体内,后者产生它本不能产生的蛋白质,从而产生新性状。 ( )目的:生产符合人们生活需要的、并非自然界已存在的_____。 ( )实例:天冬氨酸激酶和________的活性受细胞内__________的影响,当赖氨酸浓度达到一定量时会抑制这两种酶的活性,改变两种酶的特性后,玉米游离赖氨酸含量提高。 .蛋白质工程原理

专题1基因工程知识点梳理(含教材答案)

专题1 基因工程 ※基因工程的概念: 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 ﹡原理:基因重组 ﹡目的:创造出更符合人们需要的新的生物类型和生物产品。 ﹡意义:能够打破生物种属的界限(即打破生殖隔离,克服远源杂交不亲和的障碍),在分子水平上定向改变生物的遗传特性。 ﹡操作水平:DNA分子水平 【思考】: (1)基因工程的物质基础是:所有生物的DNA均由四种脱氧核苷酸组成。 (2)基因工程的结构基础是:所有生物的DNA均为双螺旋结构。 (3)一种生物的DNA上的基因之所以能在其他生物体内得以进行相同的表达,是因为它们共用一套遗传密码子。 一、基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端(回文结构特点)。 ①在中心轴线两侧将DNA切开,切口是黏性末端。 ②沿着中心轴线切开DNA,切口是平末端。 2.“分子缝合针”——DNA连接酶

(1)分类:根据酶的来源不同,可分为E·coliDNA连接酶和T4DNA连接酶两类 (2)功能:恢复被限制酶切开了的两个核苷酸之间的磷酸二酯键。 ★两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键 ②区别:E.coIiDNA连接酶来源于大肠杆菌,只能使黏性末端之间连接; T4DNA连接酶能缝合两种末端,但连接平末端之间的效率较低。 (3)与DNA聚合酶作用的异同: DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 (4)与DNA分子相关的酶

高考生物基因工程专项知识点

-高考生物基因工程专项知识点 基因工程技术为基因的结构和功能的研究提供了有力 的手段,下文是为考生准备的生物基因工程专项知识点的内容。 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯 键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E?coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E?coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而

T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是??质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体:噬菌体的衍生物、动植物病毒 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:编码蛋白质的结构基因。 2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法_和化学合成法_。 3.PCR技术扩增目的基因 (1)原理:DNA双链复制 (2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~

(完整版)《基因工程》知识点默写

专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外和 ,赋予生物以新的,创造出更符合人们需要的新的和 。基因工程是在上进行设计和施工的,又叫做。 基因工程育种的原理:;优点:、 (一)基因工程的基本工具(工具酶:、) 1.“分子手术刀”—— (1)来源:主要是从中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种的核苷酸序列,并且使每一条链中部位的两个核苷酸之间的断开,因此具有性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:末端和末端。(4)限制酶自身DNA,原因是原核生物中或识别序列已经被。 2.“分子缝合针”—— (1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合键。 ②区别:E·coliDNA连接酶来源于,只能将双链DNA片段互补的之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合,但连接平末端的之间的效率较。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将核苷酸加到已有的核苷酸片段的末端, 形成磷酸二酯键。DNA连接酶是连接的末端,形成磷酸二酯键。 3.“分子运输车”—— (1)载体具备的条件:①。 ②。 ③。 (2)最常用的载体是 ,它是一种裸露的、结构简单的、独立于之外,并具有的 DNA分子。 (3)其它载体:、 . (二)基因工程的基本操作程序 第一步: 1.目的基因是指:。

2.获取目的基因的方法有、 和。 3.基因文库是指:将含有某种生物的许多DNA片段,导入 中储存,各个受体菌分别含有这种生物的,称为基因文库。包含了一种生物所有的基因,这种基因文库称为;包含了一种生物的一部分基因,这种基因文库称为,如。 获取目的基因的依据有哪些?如、、 、、。 4.PCR技术扩增目的基因 (1)原理: (2)特点: (3)条件:()、、()、()。 (4)仪器:。 5.人工合成目的基因的方法有:、。第二步: ----也是基因工程的 1.目的:。 2.组成:+++ (1)启动子含义及作用: 。 (2)终止子含义及作用:。 注意与终止密码子的区别 (3)标记基因的作用:。 常用的标记基因是、。 第三步: 1.转化的概念:是进入受体细胞内,并且在受体细胞内的过程。 2.常用的转化方法: 将目的基因导入植物细胞:采用最多的方法是,其次还有和 等。其中单子叶常有的方法是。

基因工程知识点超全

基因工程 一、基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在 二、基因工程的基本工具 1、限制性核酸内切酶-----“分子手术刀” 2、DNA连接酶-----“分子缝合针” 3、基因进入受体细胞的载体-----“分子运输车” 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)存在:主要存在于原核生物中。 (2)特性:特异性,一种限制酶只能 识别一种特定的核苷酸序列,并且能在 特定的切点上切割DNA分子。 (3)切割部位:磷酸二酯键 (4)作用:能够识别双链DNA分子的 某种特定核苷酸序列,并且使每一条链 中特定部位的两个核苷酸之间的磷酸 二酯键断开。

(5)识别序列的特点: (6)切割后末端的种类:DNA 分子经限制酶切割产生的DNA 片段末端通常有两种形式——黏性末端和平末端。当限制酶在它识别序列的中轴线两侧将DNA 的两条链分别切开时,产生的是黏性末端,而当限制酶在它识别序列的中轴线处切开时,产生的则是平末端。

2.“分子缝合针”——DNA连接酶 (1)作用:将限制酶切割下来的DNA片段拼接成DNA分子。 (2)类型 相同点:都连接磷酸二酯键 3.“分子运输车”——载体 (1)载体具备的条件: ①能在受体细胞中复制并稳定保存。 ②具有一个至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌拟核之外,并具有自我复制能力的双链环状DNA分子。 (3)其他载体:λ噬菌体的衍生物、动植物病毒。 (4)载体的作用: ①作为运载工具,将目的基因送入受体细胞。 ②在受体细胞内对目的基因进行大量复制。 【解题技巧】 (1)限制酶是一类酶,而不是一种酶。 (2)限制酶的成分为蛋白质,其作用的发挥需要适宜的理化条件,高温、强酸或强碱均易使之变性失活。 (3)在切割目的基因和载体时要求用同一种限制酶,目的是产生相同的黏性末端。 (4)获取一个目的基因需限制酶剪切两次,共产生4个黏性末端或平末端。 (5)不同DNA分子用同一种限制酶切割产生的黏性末端都相同,同一个DNA分子用不同的限制酶切割,产生的黏性末端一般不相同。 (6)限制酶切割位点应位于标记基因之外,不能破坏标记基因,以便于进行检测。 (7)基因工程中的载体与细胞膜上物质运输的载体不同。基因工程中的载体是DNA分子,能将目的

基因工程中学生常见的十个问题

《基因工程》专题中学生常问的十个“为什么” 人教版新课标教材选修3《基因工程》专题对基因工程进行了生动地介绍,让学生对一项生物技术有了一定的了解,在教学中我发现学生们对此内容很感兴趣,在和他们的交流过程中,他们经常会给我提出这样﹑那样的一些问题,我把它们总结成了十个“为什么”。一.为什么原核生物的限制酶不切割自己的DNA? 原核生物容易受到自然界外源DNA的入侵如噬菌体,在长期的进化过程中原核生物形成了一套完善的防御机制,以保持自身遗传的相对稳定性。当外源DNA侵入后,限制酶就将其切割掉,使外源DNA不能发挥遗传效应,而且限制酶往往与一种甲基化酶同时成对存在,它们具有相同的底物专一性,具有识别相同碱基序列能力。甲基化酶的甲基供体为S-腺苷甲硫氨酸,甲基受体为DNA上的腺嘌呤与胞嘧啶。当限制酶作用位点上的某一些碱基被甲基化修饰后,限制酶就不能再降解这种DNA了。这样在含有某种限制酶的原核生物的细胞中,其DNA分子中不具备这种限制酶的识别切割序列,或者通过甲基化酶将甲基转移到所识别序列的碱基上,使限制酶不能将其切开。所以限制酶只降解外源入侵的异种DNA,而不分解自身DNA,在解除外源DNA遗传干扰的同时又保护了自身遗传特性的稳定。 二.为什么CDNA文库只有该物种部分基因? 因为CDNA是以mRNA为模板,经逆转录酶催化,在体外逆转录合成,如果与适当的载体如噬菌体或质粒连接后导入受体菌,则每个细菌含有一段CDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的CDNA集合称为该组织细胞的CDNA文库。基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以CDNA文库具有组织细胞特异性,当然CDNA文库也就比基因组DNA文库小得多。 三.为什么要扩增目的基因? 因为基因工程中的每一个操作步骤的成功率都不高,要进行大量的筛选,这样就需要大量相同的目的基因,所以需要扩增目的基因。 四.为什么PCR技术中不使用解旋酶和ATP? PCR技术是一种体外进行DNA复制的方法,通过在一定的条件下控制温度即高温变性、低温退火和适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增。在DNA 复制过程中是通过在高温条件实现DNA解旋,所以不需要解旋酶,而且如果使用了解旋酶会使DNA一直处在单链的状态,反而会破坏复制过程的循环性;复制的过程本来是需要能量的,但是在PCR反应体系中加入的并非是普通的4种脱氧核苷酸,而是4种脱氧核苷三磷酸即dATP,dTTP,dGTP,dCTP,它们分别由4种脱氧核苷酸在消耗ATP的基础上活化形成的,所以它们能提供PCR反应需要的能量,所以在PCR过程中,不需要加入ATP。 五.为什么用Ca2+处理大肠杆菌能增大转化率?

最新基因工程细胞工程知识点汇总

基因工程细胞工程知识点汇总 一、基因工程 (一)基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同: DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。②具有一至多个限制酶切点,

供外源DNA片段插入。③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是 质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体: 噬菌体的衍生物、动植物病毒 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:编码蛋白质的结构基因。 2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法_和化学合成法_。 3.PCR技术扩增目的基因 (1)原理:DNA双链复制 (2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。第二步:基因表达载体的构建 1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。 2.组成:目的基因+启动子+终止子+标记基因 (1)启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。 (2)终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。 (3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。

基因工程期末考试重点知识整理

基因工程 第一章基因工程概述 1、基因工程的概念(基因工程基本技术路线PPT) 基因工程(Gene Engineering),是指在基因水平上的遗传工程,它是用人为方法将大分子(DNA)提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新的育种技术. 2、基因工程的历史 基因工程准备阶段:1972,第一个重组DNA分子的构建,构建人:Paul Berg及其同事PPT 基因工程诞生:1973,Cohen & Boyer首次完成重组质粒DNA对大肠杆菌的转化 基因工程发展阶段的几个重要事件: 一系列新的基因工程操作技术的出现; 各种表达克隆载体的成功构建; 一系列转基因菌株、转基因植物、转基因动物等的出现 3、基因工程的内容(P9) 4、基因克隆的通用策略(P12)(基因组文库(鸟枪法)+分子杂交筛选) 第二章分子克隆工具酶 5、限制性核酸内切酶的概念、特点、命名、分类(问答) 概念:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶,主要存在于细菌体内 特点(参加PPT) 命名:依次取宿主属名第一字母,种名头两个字母,菌株号,然后加上序号。

如:从Haemophilus influenze Rd中提取到的第三种限制型核酸内切酶被命名为Hind Ⅲ,Hin指来源于流感嗜血杆菌,d表示来菌株Rd,Ⅲ表示序号。 分类:依据酶的亚单位组成、识别序列的种类以及是否需要辅助因子可分为:Ⅰ型酶、Ⅱ型(Ⅱs型)酶和Ⅲ型酶。 真核细胞中有4中DNA聚合酶:α,β,γ,线粒体DNA聚合酶 原核生物中3中DNA聚合酶:Ⅰ,Ⅱ,Ⅲ 6、几个基本概念 粘性末端:两条多聚核苷酸链上磷酸二酯键断开的位置是交错的,对称地分布在识别序列中心位置两侧,这样形成的DNA片段末端称为~。 平末端:两条多聚核苷酸链上磷酸二酯键断开的位置处在识别序列的对称结构中心,这样切割的结果产生的DNA片段末端是平齐的,称之为~。 同裂酶:一些来源不同的限制性核酸内切酶具有相同的识别序列。如:BamHI和BstI均可识别GGATCC。 同尾酶:有些限制性内切酶虽然识别序列不同,但是切割DNA分子产生相同的DNA末端。如:TaqI:TCGA;ClaI:A TCGA T;AccI:GTCGAC 星星活性:某些限制性核酸内切酶在特定条件下,可以在不是原来的识别序列处切割DNA,这种现象称为Star活性。 DNA物理图谱:(多为质粒图谱)

高中生物基因工程核心知识点

高中生物基因工程核心知识点 专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E?coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E?coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。

基因工程知识点全

第一章基因工程概述 1.什么是基因工程,基因工程的基本流程? 基因工程(Genetic engineering)原称遗传工程。从狭义上讲,基因工程是指将一种或多 种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内, 使之按照人们的意愿遗传并表达出新的性状。因此,供体、受体和载体称为基因工程的三大 要素。 1.分离目的基因 2.限制酶切目的基因与载体 3.目的基因和载体DNA在体外连接 4.将重组DNA分子转入合适的宿主细胞,进行扩增培养 5.选择、筛选含目的基因的克隆 6.培养、观察目的基因的表达 第二章基因工程的载体和工具酶 1. 基因工程载体必须满足哪些基本条件? ?具有对受体细胞的可转移性或亲和性。 ?具有与特定受体细胞相适应的复制位点或整合位点。 ?具有多种单一的核酸内切酶识别切割位点。 ?具有合适的筛选标记。 ?分子量小,拷贝数多。 ?具有安全性。 2. 质粒载体有什么特征,有哪些主要类型? 1、自主复制性 2、可扩增性 3、可转移性 4、不相容性 主要类型有 1.克隆质粒 2.测序质粒 3.整合质粒 4.穿梭质粒 5.探针质粒 6.表达质粒3. 质粒的构建 (1)删除不必要的 DNA 区域,尽量缩小质粒的分子量,以提高外源 DNA 片段的装载量。一般来说,大于20Kb 的质粒很难导入受体细胞,而且极不稳定。 (2)灭活某些质粒的编码基因,如促进质粒在细菌种间转移的 mob 基因,杜绝重组质粒扩散污染环境,保证 DNA 重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因, 提高质粒的拷贝数 (3)加入易于识别的选择标记基因,最好是双重或多重标记,便于检测含有重组质粒的受 体细胞。 (4)在选择性标记基因内引入具有多种限制性内切酶识别及切割位点的 DNA序列,即多克隆接头(Polylinker),便于多种外源基因的重组,同时删除重复的酶切位点,使其单一 化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入。 (5)根据外源基因克隆的不同要求,分别加装特殊的基因表达调控元件。 4. 什么是人工染色体载体? 将细菌接合因子、酵母或人类染色体上的复制区、分配区、稳定区与质粒组装在一起, 即可构成染色体载体 5. 什么是穿梭载体? 人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的载体。 6.入-噬菌体载体及构建 -DNA为线状双链DNA分子,长度为48.5kb,在分子两端各有12个碱基的单链互补粘性末端。 ?1缩短长度提高外源 DNA 片段的有效装载量删除重复的酶切位点 ?引入单一的多酶切位点接头序列,增加外源DNA片段克隆的可操作性 ?灭活某些与裂解周期有关基因。 ?使λ-DNA载体只能在特殊的实验条件下感染裂解宿主细菌,以避免可能出现的污染

基因工程基础知识梳理

基因工程的基本工具 一、基因工程的概念: 二、基因工程的原理和优点: 三、基因工程的基本工具 1.分子手术刀: (1)来源: (2)作用: (3)不同类限制酶的区别: (4)与DNA连接酶的异同点: 相同点: 不同点: 2.分子缝合针: (1)分类: (2)作用: (3)区别: (4)与DNA聚合酶的异同点: 区别: 相同点: 3.分子运输车: (1)作用: (2)种类: (3)质粒是什么? (4)质粒的特点及每一个特点的作用: <1>.特点: 作用: <2>.特点: 作用:

<3>.特点: 作用: 基因工程的基本操作程序 一、目的基因的获取 1.目的基因指什么: 2.获取目的基因的来源: 3.获取目的基因的方法 1.条件: 2.基因文库的分类: 基因组文库: 部分基因文库(cDNA文库): 3.基因文库的构建流程 4.两种基因文库的区别: 1.条件: 2.中文名称: 3.原理: 4.原料:

5.过程及每一步的作用: 第一步: 第二步: 第三步: 1.条件: 二、基因表达载体的构建(核心步骤) 1.基因表达载体的结构元件 1①目的基因 2启动子: 3终止子: 4标记基因: 5复制原点 2.构建基因表达载体的目的: 3.构建的方法:[理解单酶切和双酶切的区别] 三、将目的基因导入受体细胞(转化) 1.植物细胞(充当受体细胞)的转化 1农杆菌: 2Ti质粒: 3总体思路: 4农杆菌侵染植物时的机理: ⑤适用范围:

注意事项: 注意事项: 2.动物细胞(充当受体细胞)的转化 1技术: 2具体谁来充当受体细胞: 3.微生物细胞(充当受体细胞)的转化 Ca2+转化法: 四、目的基因的检测与鉴定 1.分子水平的检测 目的: 方法: 结果: 目的: 方法: 结果: 目的: 方法: 结果: 2.个体水平的检测

相关主题
文本预览
相关文档 最新文档