当前位置:文档之家› 独斜塔斜拉桥抗震的功率谱法与反应谱法分析

独斜塔斜拉桥抗震的功率谱法与反应谱法分析

独斜塔斜拉桥抗震的功率谱法与反应谱法分析
独斜塔斜拉桥抗震的功率谱法与反应谱法分析

地震响应的反应谱法与时程分析比较 (1)

发电厂房墙体地震响应的反应谱法与时程分析比较 1问题描述 发电厂房墙体的基本模型如图1所示: 图1 发电厂墙体几何模型 基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。要求详细的ansys反应谱法命令流与手算验证过程。以时程法结果进行比较。分析不同阻尼值(0.02,0.05,0.10)的影响。 RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g) 频率谱值(g) 33 0.1 9 0.261 2.5 0.313 0.25 0.047 与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt 2数值分析框图思路与理论简介 2.1理论简介 该问题主要牵涉到结构动力分析当中的时程分析和谱分析。时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。 2.2 分析框架: 时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。 谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。 3有限元模型与荷载说明 3.1 有限元模型 考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。然后,采用solid45

功率及功率谱计算

功率谱定义 从确定性信号功率计算开始 ()()221 11lim lim 222T T T T T P x t dt X d T T ωωπ∞--∞→∞→∞==?? ()()21lim 2T T S X T ωω→∞= S(w)为功率谱密度,简称功率谱 则 ()12P S d ωωπ+∞-∞= ? 随机信号的功率谱密度 (1)样本功率谱与功率谱密度 ()()21,lim ,2X T T S X T ωξωξ→∞= 针对一个具体的样本而言,其是一个确定性的信号 (2) 随机信号的平均功率及平均功率谱密度 ()X X P E P ξ=???? 需要对具体的样本取概率均值才能计算出功率 ()()()21,lim ,2X X T T S E S E X T ωωξωξ→∞??==?????? 故功率谱密度是对所有概率取期望的反应。 (3)自相关函数与功率谱密度 ()()R S τω? (4)信号的自相关函数计算 分为确定信号和随机信号 确定信号 02002*0 1()lim ()()T T x T R x t x t dt T ττ-→∞=-? 周期信号 0202*0 1()()()T T x R x t x t dt T ττ-=-? 随机信号 *()[()()]x R E x t x t ττ=- 2 功率计算 (1)根据定义来计算

(2)周期信号如何计算 0cos()A t ω的计算 200()()1()[]2 A A s d T πσωωπσωωωω+∞-∞-++==?不好算因此放弃,但是应该可以类推得出结论 (3)自相关函数计算 0cos()A t ω的计算 /2 200/2 /222000/2201()cos()cos(())cos()cos(2)1[]2 cos()2 T T T T r A t t d T A A t d T A τωωτωωτωωτωωτ+-+-=-+-==?? 所以其功率谱为 200()2 A πσωωσωω(-)+(+) 0j t Ae ω的计算 0000/2()2/2 /22/2 21()1T j t j t T T j T j r A e e dt T A e dt T A e ωωτωτωτ τ+---+-===?? 总结:因此周期函数,首先转换成傅里叶级数,然后再通过自相关函数的定义计算自相关函数,得到其功率谱密度。

经典功率谱和Burg法的功率谱估计

现代信号处理作业 实验题目: 设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。 1.利用周期图法对序列进行功率谱估计。数据窗采用汉明窗。 2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。 3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。 4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13. 要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。 实验原理: 1)。周期图法: 又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。 2^ )(1)(jw e X N w P N per = , 其中∑-=-=1 )()(N n jwn N jw N e n x e X 2)。BT 法: 对于N 个观察值x(0),x(1),。。。,x(N-1),令x N (n)=a(n)x(n)。计算r x (m )为

∑--=-≤+= m N n N N x N m m n x n x N m r 10 1),()(1 )(,计算其傅里叶变换 ∑-=--≤= M M m jwm x BT N M e m r m v w P 1 ,)()()(^ ^ ,作为观察值的功率谱的估计。 其中v(m)是平滑窗。 3)。Welch 法: 假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M 其中K 为一整数,L 为分段数,该数据段的周期图为 2)(1)(^w X MU w P i M i per =,其中∑-=-=1 0)()(M n j w n i M i M e n x w X 。由此得到平均周期图为 ∑-==10 ^_ )(1)(L i i per w P L w P 。其中归一化U 取∑-== 10 2 )(1M n n a M U 。 4)。Burg 法: 在约束条件下,使得)(2 1^^^ b f ρρρ+=极小化,其中,约束条件是它所得到的 各阶模型解要求满足Levison 递归关系。 仿真结果: 1.周期图法

建筑结构抗震设计课后习题答案

武汉理工大学《建筑结构抗震设计》复试 第1章绪论 1、震级和烈度有什么区别和联系? 震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。烈度不仅跟震级有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素有关。一次地震只有一个震级,但不同的地点有不同的烈度。 2.如何考虑不同类型建筑的抗震设防? 规范将建筑物按其用途分为四类: 甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类(适度设防类)。 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。 2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度确定其地震作用。 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施。同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。 4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为6度时不应降低。一般情况下,仍应按本地区抗震设防烈度确定其地震作用。 3.怎样理解小震、中震与大震? 小震就是发生机会较多的地震,50年年限,被超越概率为63.2%; 中震,10%;大震是罕遇的地震,2%。 4、概念设计、抗震计算、构造措施三者之间的关系? 建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。他们是一个不可割裂的整体。 5.试讨论结构延性与结构抗震的内在联系。 延性设计:通过适当控制结构物的刚度与强度,使结构构件在强烈地震时进入非弹性状态后仍具有较大的延性,从而可以通过塑性变形吸收更多地震输入能量,使结构物至少保证至少“坏而不倒”。延性越好,抗震越好.在设计中,可以通过构造措施和耗能手段来增强结构与构件的延性,提高抗震性能。 第2章场地与地基 1、场地土的固有周期和地震动的卓越周期有何区别和联系? 由于地震动的周期成分很多,而仅与场地固有周期T接近的周期成分被较大的放大,因此场地固有周期T也将是地面运动的主要周期,称之为地震动的卓越周期。 2、为什么地基的抗震承载力大于静承载力? 地震作用下只考虑地基土的弹性变形而不考虑永久变形。地震作用仅是附加于原有静荷载上

MATLAB弹性时程分析法编程

计算书:课程设计计算书(题一) 根据加速度调幅公式:m i a t a a a /)(max ,00*= )/(29002902s mm Gal a m == 得:58/)(72900/)(3500i i t a t a a =*= )(i t a =[0 600 1100 150021002500 2900350 2050

15001000600200 -700 -1300-1700 -2000 -1800-1500 -700-250200 -100 0 0 0]; 所以经调幅后为0a =[0 72.6 133.1 181.5 254.1 302.5 350.9 42.4 248.1 181.5 121 72.6 24.2 -84.7 -157.3 -205.7 -242 -217.8 -181.5 -84.7 -30.3 24.2-12.1 0 0 0 ] 6.7206.72''1''2=-=-U U 5.60 6.721.133''2''3=-=-U U 依次类推可以求出地面运动加速度的差值。 因为km c 2=ζ,08.0=ζ , m kN k /9000=, m s kN m /2502?= 代入可以算得m s kN c /240?= 一、表格第一行数据计算: t c t m k K i i /3/62++=*, t=0.05s 代入得m N K i /623400 =* )△△2 /3()3/6(''''''''t U U c U t U U m P i i g i *++---=* N 18150-6.72250-=*= **=i i P U K △△ mm K P U i i 03.0623400/18150 /-=-==**△△ 起始时刻时:0=U 0'=U 0''=U 因为'''2''3/6/6i i U t U t U U -*-*=△△ 所以7205.0/)03.0(62''1 -=-*=U △

功率谱密度

t=0:0.0001:0.1; %时间间隔为0.0001,说明采样频率为10000Hz x=square(2*pi*1000*t); %产生基频为1000Hz的方波信号 n=randn(size(t)); %白噪声 f=x+n; %在信号中加入白噪声 figure(1); subplot(2,1,1); plot(f); %画出原始信号的波形图 ylabel('幅值(V)'); xlabel('时间(s)'); title('原始信号'); y=fft(f,1000); %对原始信号进行离散傅里叶变换,参加DFT采样点的个数为1000 subplot(2,1,2); m=abs(y); f1=(0:length(y)/2-1)'*10000/length(y);%计算变换后不同点对应的幅值plot(f1,m(1:length(y)/2)); ylabel('幅值的模'); xlabel('时间(s)'); title('原始信号傅里叶变换'); %用周期图法估计功率谱密度 p=y.*conj(y)/1000; %计算功率谱密度 ff=10000*(0:499)/1000; %计算变换后不同点对应的频率值 figure(2); plot(ff,p(1:500)); ylabel('幅值'); xlabel('频率(Hz)'); title('功率谱密度(周期图法)'); 功率谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。在这里,结合matlab,我做一个粗略介绍。功率谱估计可以分为经典谱估计方法与现代谱估计方法。经典谱估计中最简单的就是周期图法,又分为直接法与间接法。直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计

MATLAB仿真实现经典谱估计(采用周期图法)

数字信号处理 课程实验报告 实验指导教师:黄启宏 实验名称 MATLAB 仿真实现经典谱估计(采用周期图法) 专业、班级 电子与通信工程 姓 名 张帅 实验地点 仿古楼301 实验日期 2013.11.17 一、实验内容 采用周期图法(直接法)实现经典谱估计。 二、实验目的 (1)掌握周期图法(直接法)估计出功率谱的步骤和方法; (2)在实验的过程中找到影响经典谱估计的因素; (3)了解周期图法(直接法)估计功率谱的缺陷。 三、实验原理 把随机信号()x n 的N 点观察数据()N x n 视为一能量有限信号,直接取得()N x n 傅里叶变换,得()jw N x e ,然后再取其幅值的平方,并除以N ,作为对()x n 真实的功率谱()jw P e 的估计。即为: ^ 21()|()|PER N P X N ωω= ^ 21()|()|PER N P k X k N = 四、涉及实验的相关情况介绍(包含使用软件或实验设备等情况) 一台安装MATLAB 软件的电脑

五、实验记录 程序、相关的图形、相关数据记录及分析)( %采用直接法(周期图法)估计功率谱; clear Fs = 1000;%采样频率 n = 0:1 /Fs: .3;%产生含有噪声的序列 xn = cos(200*pi*n)+0.1*randn(size(n)); subplot(311);%输出随机信号xn; plot(n,xn);xlabel('时间');ylabel('幅度');title('输入信号x(n)'); axis([0 0.3 -2 2]); grid on; window = boxcar( length( xn) ) ;%矩形窗 nfft = 512; [Pxx f]= periodogram( xn,window,nfft,Fs) ;%直接法 subplot(312) plot( f,10* log10( Pxx) ) ; title('直接法经典谱估计,512点'); xlabel('频率(Hz)'); ylabel('功率谱密度'); grid on; window = boxcar( length( xn) ); nfft = 1024;

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么是反应谱理论 在房屋工程抗震研究中,反应谱是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自 振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构 所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震 时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱和等强度延性需求谱,其实质是确定强度折减系数R,延性系数μ,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期和阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示?,它是在计算了大量地面运 动加速度的基础上,确定地震影响系数α与特征周期T之间关系的曲线

地震反应谱分析实例

结构地震反应谱分析实例 在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0

!进行模态求解 ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom

结构抗震设计时程分地震波的选择

(1)设计用地震记录的选择和调整 用规范的确定性方法和地震危险性分析方法所确定的设计地震动参数,是选择天然地震加速度记录的依据。 (一)实际地震记录的选择方法 选择地震记录应考虑地震动三要素,即强度(峰值)、频谱和持续时间。对某一建筑的抗震设计,最好是选用该建筑所在场地曾经记录 到的地震加速度时间过程。但是,这种机会极少。为此,人们只能从现有的国内外常用的地震记录中去选择,尽可能挑选那些在震级、震中距和场地条件等方面都比较接近设计地震动参数的记录。他的文章给出了相应的地震数据的记录目录。 (二)实际地震记录的调整 1.强度调整。将地震记录的加速度值按适当的比例放大或缩小,使其峰值加速度等于事先所确定的设计地震加速度峰值。即令 其中a(为记录的加速度值为调整后的加速度值;A众为设计地震加速度峰值;。为记录的加速度峰值。这种调整只是针对原记录的强度进行的,基本上保留了实际地震记录的特征。也就是所说的(强度修正。将地震波的加速度峰值及所有的离散点都按比例放大或缩小以满足场地的烈度要求)

2.频率调整考虑到场地条件对地震地面运动的影响,原则上所选择的实际地震记录的富氏谱或功率谱的卓越周期乃至形状,应尽量与场地土相应的谱的特性一致。如果不一致,可以调整实际地震记录的时间步长,即将记录的时间轴“拉长”或“缩短”,以改变其卓越周期而加速度值不变也可以用数字滤波的方法滤去某些频率成分,改变谱的形状。另外,为了在计算中得到结构的最大反应,也可以根据建筑结构基本自振周期,调整实际地震记录的卓越周期,使二者接近。这种调整的结果,改变了实际地震记录的频率结构,从物理意义上分析是不合理的。 另外,在测定场地土和建筑结构的卓越周期时,运用不同的测试仪器和测试技术,往往得到不同的结果。即使是对同一个测试结果,在频谱上确定卓越周期时,不同的分析方法也会导致不同的结果。有的选取谱的第一个峰值所对应的周期作为卓越周期,有的选最大峰值时的,也有的取某一段周期等,很不一致。对如何确定地震加速度记录的卓越周期,也是各行其是,有的利用加速度反应谱,有的用伪速度谱,有的用富氏谱,结果当然是不一样的。上述各种作法在工程中引起了一些混乱。 王亚勇认为,用脉动测试方法测定场地土和结构的卓越周期及自振周期时,应采用速度摆型或加速度摆型的地震仪测定地运动和结构振动,然后计算其富氏谱或功率谱,以谱的最大峰值所对应的周期作为卓越周期和自振周期比较合适。反应而相应地根据记录的位移谱或速度谱。 这也就是所谓的滤波修正。可按要求设计滤波器,对地震波进行时域或频域的滤波修正。这样修正的地震资料不仅卓越周期满足要求,功率谱的形状和面积也可控制。卓越周期修正。将地震波的离散步长按人为比例改变,

反应谱与时程理论对比

反应谱是在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形。更直观的定义为:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱。 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静 力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK= αG 其中α为地震影响系数,即单质点弹性体系在地震时最大反应加速度。另一方面地震影响系数也可视为作用在质点上的地震作用与结构重力荷载代表值之比。 目前,反应谱分析法比较成熟,一些主要国家的抗震规范均将它作为基本设计方法。不过,它主要适合用于规则结构。对于不规则结构以及高层建筑,各国规范多要求采用时程分析法进行补充计算。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后使用静力法进行结构分析。但它并不是结构真实的动力响应分析,只是对于结构动力响应最大值进行估算的近似方法,在线弹性范围内,反应谱分析法被认为是高效而且合理的方法。反应谱分为加速度反应谱、速度反应谱和位移反应谱。基于不同周期结构相应峰值的大小,我们可以绘制结构速度及加速度的反应谱曲线。一般情况下,随着周期的延长,位移反应谱为上升曲线,速度反应谱为平直曲线,加速度反应谱为下降曲线,目前结构设计主要依据加速度反应谱。 加速度反应谱在短周期部分为快速上升曲线,并且在结构周期与场地特征周期接近时出现峰值,后面更大范围为逐渐下降阶段。峰值出现的时间与对应的结构周期和场地特征周期有关。一般来说结构自振周期的延长,地震作用将减小。当结构自振周期接近场地特征周期时,地震作用最大。 反应谱分析方法需要先求解一个方向地震作用响应,再基于三个正交方向的分量考虑结构总响应,即基于振型组合求解一个方向的地震响应,再基于方向组合求解结构总响应。 振型组合方法有SRSS法,CQC法。 1.SRSS法 SRSS法是平方和平方根法,这种方法假定所有最大模态值在统计上都是相互独立的,通过求各参与阵型的平方和平方根来进行组合。该法不考虑各振型间的藕联作用,实际上结构模态都是相互关联的,不可避免的存在藕联效应,对那些相邻周期几乎相等的结构,或者不规则结构不适用此法。《抗规》GB50011-2010规定的SRSS法为如下所示:

matlab实现功率谱密度分析psd

matlab实现功率谱密度分析psd及详细解说 功率谱密度幅值的具体含义?? 求信号功率谱时候用下面的不同方法,功率谱密度的幅值大小相差很大! 我的问题是,计算具体信号时,到底应该以什么准则决定该选用什么方法啊? 功率谱密度的幅植的具体意义是什么??下面是一些不同方法计算同一信号的matlab 程序!欢迎大家给点建议! 直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk);

抗震设计方法概述

本学期的“工程结构抗震分析”课程首先介绍了地震与地震震害以及结构抗震分析的必要性和其方法的发展过程,然后简单回顾了一下结构动力学基础,接下来认识了地震波与强震地面运动的特性,以及地震作用下结构的动力方程,最后重点讲述了几种抗震设计分析方法——反应谱分析法,时程分析法(弹性和弹塑性),和静力弹塑性分析法。通过一个学期的学习,本人对强震地面运动特征和抗震设计原理和方法有了一定的了解和把握。 在进行建筑、桥梁以及其它结构物的抗震设计时,一般都要遵循以下五个步骤:抗震设防标准选定、抗震概念设计、地震反应分析、抗震性能验算以及抗震构造设计,其流程如图1 所示。 本文将着眼于图1流程中的第3个步骤, 从我国现行规范中的3种最常用的结构响应分 析方法出发,简单介绍一下其各自的基本概念 和适应范围(具体原理和计算过程在此不再详 述,读者可另查阅相关课本和规范),以及现有 抗震设计规范中存在的问题,以便初学者对结 构抗震设计分析方法有个初步的认识,也作为 本人对本课程的学习总结。 一.3种最常用的结构响应分析方法 1.底部剪力法 定义:根据地震反应谱理论,以工程结构 底部的总地震剪力与等效单质点的水平地震作 用相等来确定结构总地震作用的一种计算方 法。 底部剪力法适用于基本振型主导的规则和 高宽比很小的结构,此时结构的高阶振型对于 结构剪力的影响有限,而对于倾覆弯矩则几乎 没有什么影响,因此采用简化的方式也可满足 工程设计精度的要求。 高规规定:高度不超过40m、以剪切变形 为主且质量和刚度沿高度分布比较均匀的高层 建筑结构,可采用底部剪力法。 底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。 2.振型分解反应谱法 定义:振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。 反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构

ANSYS地震反应谱SRSS分析共24页

ANSYS地震反应谱SRSS分析 我在ANSYS中作地震分解反应谱分析,一次X方向,一次Y 方向,他们要求是独立互不干扰的,可是采用直进行一次模态分析的话,他生成的*.mcom文件好像是包含了前面的计算 结果,命令流如下: !进入PREP7并建模 /PREP7 B=15 !基本尺寸 A1=1000 !第一个面积 A2=1000 !第二个面积 A3=1000 !第三个面积 ET,1,beam4 !二维杆单元 R,1,0.25,0.0052,0.0052,0.5,0.5 !以参数形式的实参 MP,EX,1,2.0E11 !杨氏模量 mp,PRXY,1,,0.3 mp,dens,1,7.8e3 N,1,-B,0,0 !定义结点 N,2,0,0,0 N,3,-B,0,b

N,4,0,0,b N,5,-B,0,2*b N,6,0,0,2*b N,7,-B,0,3*b N,8,0,0,3*b E,1,3 !定义单元 E,2,4 E,3,5 E,4,6 E,3,4 E,5,6 e,5,7 e,6,8 e,7,8 D,1,ALL,0,,2 FINISH ! !进入求解器,定义载荷和求解 /SOLU D,1,ALL,0,,2 !结点UX=UY=0

sfbeam,1,1,PRES,100000, sfbeam,3,1,PRES,100000, sfbeam,7,1,PRES,100000, SOLVE FINISH allsel NMODE=10 /SOL !* ANTYPE,2 !* MSAVE,0 !* MODOPT,LANB,NMODE EQSLV,SPAR MXPAND,NMODE , , ,1 LUMPM,0 PSTRES,0 !* MODOPT,LANB,NMODE ,0,0, ,OFF

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么就是反应谱理论 在房屋工程抗震研究中,反应谱就是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义就是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应与加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力与变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型与阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则就是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应就是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程就是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种就是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性与所选取地震波就是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法就是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱与等强度延性需求谱,其实质就是确定强度折减系数R,延性系数,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱就是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期与阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示? ,它就是在计算了大量地面运动加速度的基础上,确定地震影响系数与特征周期T之间关系的曲线

水工建筑物抗震设计规范

中华人民共和国行业标准 SL203-97 水工建筑物抗震设计规范 Specificatins for seismic design of hydraulic structures 1997-08-04发布 1997-10-01实施 中华人民共和国水利部发布 中华人民共和国行业标准 主编单位:中国水利水电科学研究院 批准部门:中华人民共和国水利部施行日期:1997年10月1日 中华人民共和国水利部 关于发布《水工建筑物抗震设计规范》SL203-97的通知 水科技[1997]439号 根据部水利水电技术标准制定,修订计划,由水利水电规划设计总院主持,以中国水利水电科学研究院为主编单位修订的《水工建筑物抗震设计规范》,经审查批准为水利行业标准,现予以发布.标准的名称和编号为:SL203-97.原《水工建筑物抗震设计规范》SDJ10-78同时废止. 本标准自1997年10月1日起实施.在实施过程中各单位应注意总结经验,如有问题请函告主持部门,并由其负责解释. 本标准文本由中国水利水电出版社出版发行.一九九七年八月四日 前言 本规范是根据原能源部,水利部水利水电规划设计总院(91)水规设便字第35号文的通知,由中国水利水电科学研究院会同有关设计研究院和高等院校对原水利电力部于1978年发布试行的SDJ10-78《水工建筑物抗震设计规范》进行修订而成. 本规范在修订过程中,主编单位会同各协编单位开展了广泛的专题研究,调查总结了近年来国内外大地震的经验教训,吸收采用了地震工程新的科研成果,考虑了我国的经济条件和工程实际,提出修订稿后,在全国广泛征求了有关设计,施工,科研,教学单位及管理部门和有关专家的意见,经过反复讨论,修改和试设计,最后由电力工业部水电水利规划设计管理局会同水利部水利水电规划设计管理局组织审查定稿. 本规范为强制性行业标准,替代SDJ10-78. 本规范共分11章和1个标准的附录.这次修订的主要内容有:进一步明确了规范适用的烈度范围,水工建筑物等级和类型,并扩大了建筑物类型和坝高的适用范围;提出了对重要水工建筑物进行专门的工程场地地震危险性分析以确定地震动参数的要求,并给出了相应的设防概率水准;增加了场地分类标准,并相应修改了设计反应谱;改进了地基中可液化土的判别方法和抗液化措施;根据1994年国家批准发布的GB50199-94《水利水电工程结构可靠度设计统一标准》的原则和要求,在保持规范连续性的条件下,区别不同情况,把各类主要水工建筑物的抗震计算从定值安全系数法向分项系数概率极限状态的体系"转轨,套改",并给出了各类水工建筑物相应的结构系数;采用了对混凝土水工建筑物以计入结构,地基和库水相互作用的动力法为主和拟静力法为辅的抗震计算方法,对土石坝采用按设计烈度取相应动态分布系数的拟静力抗震计算方法;在编写的格局上改为按水工建筑物类型分章,各章分别给出抗震计算和抗震措施,并补充了内容. 希望有关单位在执行本规范的过程中,结合工程实际,注意总结经验和积累资料,如发现需要修改和补充之处,请将意见和有关资料寄交归口管理单位,以便今后再次修订时考虑. 本规范由原能源部,水利部水利水电规划设计总院提出修订. 本规范由水利部水利水电规划设计管理局归口.

三 设计地震动反应谱确定的规范方法

三设计地震动反应谱确定的规范方法 设计地震动是通过对地震环境和场地环境的分析判断和分类方法确定。工程勘察单位至少提供: 设计基本地震加速度和设计特征周期 场地环境:覆盖层厚度、剪切波速、土层钻孔资料 1.设计基本地震加速度和设计特征周期 根据场地在中国地震动参数区划图上的位置判断确定。

土层剪切波速的测量应符合下列要求: 1 在场地初步勘察阶段对大面积的同一地质单元测量土层剪切波速的钻孔数量不宜少于3。 2 在场地详细勘察阶段对单幢建筑测量土层剪切波速的钻孔数量不宜少于2 个数据变化较大时可适量增加对小区中处于同一地质单元的密集高层建筑群测量土层剪切波速的钻孔数量可适量减少但每幢高层建筑下不得少于一个。 3 对丁类建筑及层数不超过10 层且高度不超过30m 的丙类建筑当无实测剪切波速时可根据岩土名称和性状按表 4.1.3 划分土的类型再利用当地经验在下表的剪切波速范围内估计各土层的剪切波速.

建筑场地覆盖层厚度的确定应符合下列要求: 1 一般情况下应按地面至剪切波速大于500m/s 的土层顶面的距离确定(且其下卧层沿途的剪切波速均不小于500m/s)。 2 当地面5m 以下存在剪切波速大于(其上部各土层)相邻上层土剪切波速2.5 倍的土层且其下卧岩土的剪切波速均不小于400m/s 时可按地面至该土层顶面的距离确定 3 剪切波速大于500m/s 的孤石、透镜体应视同周围土层 4.土层中的火山岩硬夹层应视为刚体其厚度应从覆盖土层中扣除

例题:某类建筑场地位于7度烈度区,设计地震分组为第一组,设计基本地震加速度为0.1g,建筑结构自振周期T=1.4s,阻尼比为0.08,该场地在建筑多遇地震条件下地震影响系数a为多少。 同一个场地上甲乙两座建筑物的结构自震周期分别为T甲=0.25sT乙=0.60s,一建筑场地类别为Ⅱ类,设计地震分组为第一组,若两座建筑的阻尼比都取0.05,问在抗震验算时甲、乙两座建筑的地震影响系数之比最接近下列那个选项。 A 1.6 B 1.2 C 0.6 D 条件不足无法计算 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s (3)12-24m粗砂土=230 =310m/s (4) 24-45m硬塑粘土=260 =300m/s (5)45-60m泥岩=500 =520m/s 建筑物采用浅基础,埋深2m,地下水位2.0m,阻尼比为0.05,自震周期为1.8s该建筑进行抗震设计时 (1)进行第一阶段设计时,地震影响系数应取多少 (2)进行第二阶段设计时,地震影响系数应取多少 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s

功率谱估计仿真实验

功率谱估计仿真实验 选题条件:对于给定的一个信号()()()t t f t f t x ?ππ++=212sin 2)2sin(,其中1f =50Hz , 2f =100Hz ,()t ?为白噪声,采样频率Fs 为1000Hz ,对其进行功率谱估 计。 仿真目标:采用多种方法对该指定信号进行功率谱估计,计算其功率谱密度,比较 各种估计方法的优劣。 设计思路:本仿真实验采用经典谱估计中的周期图法对给定信号进行谱估计。但是 由于其自身的缺陷,使得频率分辨率较低。为了不断满足需要,找到恰 当的估计法,实验使依次使用了周期图法的改进型方法如分段周期图法、 窗函数法以及修正的周期图法进行功率谱估计,对四种方法得出的谱估 计波形进行比较分析,得出估计效果最好的基于周期图法的谱估计方法。 仿真指标:频率分辨率、估计量的方差、频谱光滑度 平台说明:本实验采用MATLAB7.0仿真软件,基于WINDOWS-XP 系统。Matlab 是 一个集数值分析、矩阵运算、信号处理和图形显示于一体的工程分析处理软件。它提供的部分算法函数为功率谱估计提供了一条可行的方便途径,如PSD 和CSD 可以自动实现Welch 法估计,而不需要自己编程。但是较为有限,大部分需要自己编写相应的M 文件来实现。 实现方法: 一、周期图法 周期图法是直接将信号的采样数据()n x 进行傅立叶变换求功率谱密度估计。假设有限长随机信号序列()n x ,将它的功率谱按定义写出如下: ()()??? ?????+=∑-=-∞→2121lim N N n n j N j xx e n x N E e P ωω 如果忽略上式中求统计平均的运算,观测数据为:()n x 10-≤≤N n ,便得到了周期图法的定义: ()()2 10 ^ 1n j N n j xx e n x N e P ωω--=∑=, 式中的绝对值符号内的部分可以用FFT 计算,这样就可得到周期图法的计算框图如下所示: () ω j xx e ^ 图1 周期图法计算功率谱框图 采用周期图法时,可以分取不同的信号长度256、512和1024,分别进行功率谱

相关主题
文本预览
相关文档 最新文档