当前位置:文档之家› 硕士论文—酚醛树脂基球形活性炭的制备及其对Co2的吸附

硕士论文—酚醛树脂基球形活性炭的制备及其对Co2的吸附

硕士论文—酚醛树脂基球形活性炭的制备及其对Co2的吸附
硕士论文—酚醛树脂基球形活性炭的制备及其对Co2的吸附

酚醛树脂的应用

酚醛树脂的发展概述 侯远东 (河北化工医药职业技术学院,方兴路88号 050026) 摘要:酚醛树脂也叫电木,又称电木粉。是最古老的合成树脂,因其具有较高的机械强度,耐热性好,难燃、低毒、低发烟,可与其它多聚物共混,实现高性能化。本文主要介绍酚醛树脂的生产销售状况、发展趋势。 关键字:酚醛树脂发展趋势生产销售 产品介绍 酚类化合物与醛类化合物缩聚而得的树脂为酚醛树脂。其中以苯酚和甲醛缩聚而得的酚醛 树脂最为重要。 酚醛树脂综合性能优良,是一种人工合成的最古老树脂,拥有近百年的使用历史。早在1872年德国化学家拜耳(A,Baeyer)首先发现了酚和醛在酸的存在下反应可以得到结晶的产物,但当时没有对其开展研究。接着化学家克莱堡(W,Kleeberg,1891)和史密斯(A,Smith,1899) 对这个反应进行了研究。进入20世纪,1902年布卢默(B.Blumer)合成了第一个商业化酚醛 树脂,命名为Laccain 。然而直到1905~1907,被称为酚醛树脂创始人的美国化学家巴克兰(L.H.Baekeland)才对酚醛树脂进行了系统而广泛的研究,并于1907年申请了关于酚醛树脂“加压、加热”固化的专利,而且于1910年10月10日成立了Bakelite公司。巴克兰的功绩 不仅首次合成了交联的聚合物,而且发现了树脂的模压过程,实现了酚醛树脂的实用化,这对 酚醛树脂的生产和应用起了很重大的作用。因此此年(1910年)定为酚醛树脂元年(或者合成高分子元年),巴克兰被成为酚醛树脂之父【1】。 由于酚醛树脂原料易得,价格低廉,生产工艺和设备简单,而且制品具有优异的机械性能、耐热性、耐寒性、电绝缘性、尺寸稳定性、成型加工性、阻燃性及低烟雾性,因此其成为工业 部门不可缺少的材料,具有广泛的用途[2]。 酚醛树脂的性质 (1)物理性质 物理性质:固体酚醛树脂为黄色、透明、无定形块状物质,因含有游离酚而呈微红色,市 场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,比重1.25~1.30。液体酚醛树脂为 黄色、深棕色液体。因选用催化剂的不同,可分为热固性和热塑性两类。

聚丙烯腈基碳纤维增强热固性酚醛树脂复合材料的研制

聚丙烯腈基碳纤维增强热固性酚醛树脂复合材料的研制1.聚丙烯腈基碳纤维(PAN-CF) 碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。 1.1聚丙烯腈基碳纤维的制备 聚丙烯基碳纤维是继粘胶基碳纤维后第二个开发成功的碳纤维。它是目前各种碳纤维中产量最高品种最多发展最快技术最成熟的一种碳纤维。 聚丙烯腈(PAN)是由(AN)聚合而成的链状高分子。 由于PAN在它的熔点317℃以前就开始热分解,因此不能采用熔融纺丝而只能通过溶剂进行湿法或干法纺丝。 聚丙烯腈碳纤维的生产过程分三步:(1)预氧化;(2)高温碳化处理;(3)高温石墨化处理。 (1)聚丙烯腈原丝的预氧化 预氧化的目的就是为了防止原丝在碳化时熔融,通过氧化反应使得纤维分子中含有羟基,羰基,这样可在分子间和分子内形成氢键,从而提高纤维的热稳定性。在聚丙烯腈纤维预氧化过程中可能发生的主要化学反应和氧化脱氢反应。 分析结果表明在大约200℃左右约有75%氰基发生了化学反应。未环化的杂化发生氧化脱氢反应,使纤维中结合一部分氧。一般认为,在制造聚丙烯腈碳纤维时,纤维仅需要部分氧化,含氧量在5%~10%较好。预氧化采用的方法有两种:空气氧化法和催化法。 原丝在200~300℃空气中预氧化时,其颜色从白→黄→棕→黑,说明聚合物发生了一系列的化学变化,并开始形成石墨微晶结构。催化环化是将聚丙烯腈原丝在225℃的SnCl4二苯醚溶液中催化成环。催化法有可能使部分氰基未被氧化,造成结构缺陷。目前工业生产上普遍采用的是空气预氧化法。 同时为了提高碳纤维的力学性能,在原丝预氧化时同时采用引力牵伸。 (2)预氧化的碳化 预氧化的碳化一般是在惰性气氛中,将预氧丝加热至1000~1800℃,从而除去纤维中的非碳原子(如H,O,N等) 。生成的碳纤维的含碳量约为95%。碳化过程中,未反应的聚丙烯腈进一步环化,分子链间脱水,脱氢交联,末端芳构化成氨。随着温度的进一步升高,分子链间的交联和石墨晶体进一步增大。碳化温度对碳纤维的力学性能有很大的影响。在碳化过程中,拉伸强度和弹性模量随温度的升高而升高。但在拉伸强度在1400℃左右达到最大值。这是由于随温度的提高,碳纤维中的石墨晶体增大,定向程度提高,因而拉伸模量升高而拉伸强度趋于下降。 (3)PAN的石墨化 石墨化过程是在高纯度惰性气体保护下于2000~3000℃温度下对碳纤维进行热处理。碳纤维经石墨化温度处理后,纤维中残留的氮,氢等元素进一步脱除,六角碳网平面环数增加,并转化为类石墨结构。 在PAN石墨纤维的制备中,牵伸贯穿生产全过程。不仅在生产PAN原丝时需要多次牵伸。牵伸使微晶沿纤维轴向择优取向,微晶之间堆积更加紧密,从而使密度和模量提高。

酚醛树脂

酚醛树脂 以酚类与醛类为原料,在催化剂作用下,缩聚而得到的树脂,统称为酚醛树脂。酚醛树脂是应用于工业上最早的一种合成树脂。 由于它原材料来源丰富,合成工艺简单,成本较低,而且具有良好的化学性能、物理性能、力学性能和电气绝缘性能,具有广泛的用途。它可以根据不同的使用要求,合成各种使用性能的酚醛树脂,例如,可制成耐热纤维、黏合剂、泡沫塑料等。 酚醛纤维 酚醛纤维具有优异的阻燃、抗烧蚀、高热稳定性和吸声等特性,得到了广泛应用。酚醛纤维是过量的苯酚与甲醛反应生成直线性酚醛树脂,酚醛树脂经熔融纺丝,在酸和醛的混合液中固化形成不溶不熔纤维。纺出纤维的固化反应,就是此聚合物纤维原丝在酸催化作用下进一步同甲醛发生的加成缩合反应,生成亚甲基桥键-CH2-和亚甲基醚键-CH2OCH2-化合物。 (l)酚醛纤维的制备在草酸催化作用下,使过量苯酚与甲酸反应,合成直线形热塑性酚醛树脂;进一步分馏,制备出软化点130℃、数均分子量2000和游 离酚含量小于0.3%的高纯可纺性热塑性酚醛树脂;再经熔融纺丝,纺制成平均 直径1Oum的纤维;将初生纤维固定在石墨夹板上,浸入盛有甲醛和盐酸水溶液的固化液的反应器内,按一定的升温速率升温至95℃,进行固化反应,得到酚 醛纤维。甲醛浓度、盐酸浓度、升温速率等因素对固化反应产生影响,最终影响酚醛纤维的性能。 (2)影响酚醛纤维性能的因素初生纤维的熔并温度随着甲醛浓度的增大而依次降低。其原因在于甲醛与酚醛树脂具有良好的相容性,甲醛的浓度越高,对酚醛树脂的渗透性越强;甲醛对酚醛树脂有显著的溶胀作用,并使其在甲醛浓溶液中的熔点降低。为提高+CH2OH在纤维内部的扩散速度,在+CH20H马初生纤维的液固反应体系中,选用高浓度的+CH30(18.5%),即HCHO (37%)与HCl(37%)各50%相混合。将初生纤维置于18.5%的盐酸溶液中,按10℃/h的速率升温至95℃,并在此温度下恒温2h。初生纤维在反应结束后变成棕红色纤维,将此反应生成 物用热台显微镜和IR进行分析,结果表明,初生纤维经盐酸处理后亚甲基-CH2-和酚羟基-OH 吸收峰相对强度减少,出现了新的吸收峰芳香醚键C-O-C和芳香酮键C-C=O。这可能是初生纤维在强酸作用下酚羟基之间、酚羟基与亚甲基之间发生了脱水缩合反应,导致了芳环中取代基数目增多,交联程度提高,酚醛纤维熔点的提高,热台显微镜分析结果显示,经过HCl处理的酚醛纤维依然为可熔融物,这说明在盐酸作用下只能发生部分交联,发生高度交联化必须存在交联基因的供应体。 纤维内部芳环之间的交联基团越多,宏观上反应在力学性能上拉伸强度越高。在较低的酸浓度下,酚醛纤维拉伸强度随酸浓度的提高而增大,在酸浓度为12%

成型及粘结剂的选择

粉末活性炭的成型 粉末活性炭的成型: 1、聚乙烯醇 粘结剂的制备:将定量的水加入100m L的烧杯中,置于电子万用炉上加热到沸腾后加入20g聚乙烯醇,用玻璃棒搅拌至聚乙烯醇全部溶解成粘稠液体,以备使用。称取20g粉末碳,加入15%的粘结剂,混合均匀后在一定压力下成型,成型后将样品置于电阻炉中进行后处理。成型压力80MPa、后处理温度220度和时间60分钟。 2.羧甲基纤维素C M C 称取一定量的C M C(粘结剂比例20%)于适量的蒸馏水中,强力搅拌30分钟,溶解混匀之后加入一定量的磁性活性炭,搅拌60分钟;然后将搅拌混匀的混合物置于85度烘箱中浓缩,每20分钟搅拌一次,防止出现结块粘结现象。在成球盘中挤压成球,再经过一定温度下炭化即可得到成型磁性活性炭。 3.酚醛树脂

在制备的线型酚醛树脂中加入含有甲醛、氯化钙、氟化钾及固化剂的混合液于95℃下搅拌10m i n,将反应器冷却至30℃,加入适量冷水,抽滤,将固体颗粒于真空干燥箱中35℃下干燥24h,得热固性酚醛树脂微球。 沥青基球形活性炭制备方法是将石油沥青或煤沥青原料进行热处理,生成焦油状物质,然后通过蒸馏或抽提除去其中低分子组分,使软化点升高。将高软化点的沥青与苯、甲苯、萘等芳香族溶剂加热混合后分散在含悬浮剂的分散介质中于50~350℃下成球。将芳香族溶剂的沥青球浸泡在能与芳香族溶液互溶但与沥青无亲合性的有机化溶剂中,提取出沥青球中芳香溶剂得到微孔沥青球。在氧化性气氛中将微孔沥青球进行氧 化处理,使沥青球在惰性气氛保护下炭化,然后用水蒸汽活化,得到沥青基球形活性炭。

使用粘结剂的压块工艺有两类粘结剂可用于煤炭的压块成型过程。一类是“基质型粘结剂”,指少量加入的、辅助性的强粘结性(结焦性)煤种,适用于当采用不具有粘结性、或仅有弱粘结性的煤炭(原煤或生产过程中产生的废煤粉等)或煤炭制品(如煤半焦、焦炭粉等)的压块成型,目的是获得高强度、高抗碎裂、高抗磨损的成型煤炭制品。基质型粘结剂的颗粒被牢牢嵌入固体物料的实体中,故压块料的性能很大程度上取决于粘结剂的性能。另一类是“薄膜型粘结剂”,可用于煤炭压块过程的这种类型的粘结剂有煤焦油和煤沥青,以后者更为常用。象胶水那样的薄膜型粘结剂则通常是依赖水或其它溶剂的扩散和蒸发作用而使其获得粘结强度的。对于某些煤炭品种,虽然单独采取高压工艺也可使其成型为压块料,但有时也要使用一些薄膜型粘结剂,这样做的目的是降低操作压力以使压块料拥有更多的孔隙结构。

酚醛树脂纤维的研究进展

酚醛树脂纤维的研究进展 *** 中北大学材料科学与工程学院,山西太原,030051 摘要:简单的介绍了酚醛树脂及其重要性能、合成原理,酚醛树脂改性的目的主要是改进它脆性或其它物理性能,提高它对纤维增强材料的粘结性能并改善复合材料的成型工艺条件等。最后对酚醛树脂纤维未来的发展方向进行了展望。 关键词:酚醛树脂、纤维、改性、复合材料 引言:酚醛树脂耐热性好,机械强度高,电绝缘性和耐高温蠕变性能优良,价格低廉且成型加工性好,特别是其良好阻燃性及很少产生有害气体的特性,使该种具有近百年历史的合成材料得到进一步发展,应用于塑料、复合材料、胶粘剂、涂料和纤维等各个领域。经过改性的酚醛树脂广泛应用于高尖端技术领域。所以,酚醛树脂纤维很受欢迎的。 一、酚醛树脂的简介 酚醛树脂也叫电木,又称电木粉,英文名称:phenolic resin, 简称PF。原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。固体酚醛树脂为黄色、透明、无定形块状物质,因含有游离酚而呈微红色,比重 1.25~1.30,易溶于醇,不溶于水,对水、弱酸、弱碱溶液稳定。液体酚醛树脂为黄色、深棕色液体。 酚醛树脂由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂。因选用催化剂的不同,可分为热固性和热塑性两类。热固性酚醛树脂具有很强的浸润能力,成型性能好,体积密度大,气孔率低,用于耐火制品,该树脂在15℃- 20℃下可保持三个月。酚醛树脂制品优点主要是尺寸稳定,耐热、阻燃,电绝缘性能好,耐酸性强,它主要应用于运输业、建筑业、军事业、采矿业等多种行业,应用广泛。在NH4OH、NaOH或NaCO3等碱性物质的催化下,过量的甲醛与苯酚(其摩尔比大于1)反应生成热固性酚醛树脂。其反应过程如下:在碱性催化剂存在下使反应介质PH大于7,苯酚和甲醛首先发生加成反应生成一羟甲基苯酚。室温下,在碱性介质中的酚醇是稳定的,一羟甲基苯酚中的羟甲基与苯酚上的氢的反应速度比甲醛与苯酚的邻位和对位上的氢的反应速度小,因此一羟甲基苯酚不容易进一步缩聚,只能生成二羟甲基苯酚和三羟甲基苯酚。热塑性酚醛树脂(或称两步法酚醛树脂),为浅色至暗褐色脆性固体,溶于乙醇、丙酮等溶剂中,长期 姓名:*** 班级:*** 学号:***

纳米活性炭纤维

纳米活性炭纤维 随着人口的増长和城市化的加速,有机物的污染越来越严重。都市生活污水量的不断増加,使有机污染物增加,而且工业废水中排放的有机物的总量上升。化工、冶金、炼焦、轻工等行业是有机污染的主要来源。这些行业排出的有机物不仅数量多,而且有有害和有毒的物质,对环境造成极大危害。 活性炭纤维(ACF)以它优异的吸附、脱附性能已在有机废水处理中广泛应用。如有机化工中含氯仿废水、制药厂高浓度废水、页岩油干馏废水、农药废水、炼油厂废水、多氯联苯、甲苯废水、苯齡废水、有机染料废水、己内酰胺废水等。 理化性能 ACF最显著的特点是具有很大的比表面积和丰富的微孔,徼孔的体积占总孔体积的90%以上,微孔直径小且直接开口于纤维表面,因而具有吸附容量大、吸附效率高、吸附和脱附速度快等优点,ACF表面也含有大量的有机基团,具有强的氧化还原反应能力。 纳米活性炭纤维比表面积和吸附容量大。微孔的孔径分布范围窄,再生性能大大优于颗粒状活性炭。活性炭纤维中以微孔为主,孔径小,对低浓度物质的吸附性能尤为突出,颗粒状活性炭在甲苯浓度低于0.01%时已基本失去吸附能力,而活性炭纤维在甲苯浓度低于0.001%时仍有良好的吸附效果。 工艺技术 操作过程 生产活性炭纤维(ACF)用的有机原纤维有:纤维素系、酚醛系、聚丙烯腈系、沥青系、聚乙焼醇系、苯乙焼源烃共聚系和木质系等,工业上所使用的主要是前4种原料。 在制造ACF之前,有机原纤维一般要经过低温200~400°C在空气中进行几十分钟乃至几小时的不熔化处理,随后进行(炭化)活化处理,也可以炭化和活化同时进行。活化方法主要包括物理活化、化学活化。用C02为活化介质,在惰性气体如氮气的保护下,处理温度一般在600~1000°C。具体的处理过程根据原材料和实际要求的不同而有所差异。 ACF的制造工艺过程,因原料和产品性能不同而异,但通常都要经过预处理、炭化和活化三个阶段。 预处理的目的,随原料纤维不同而异。对聚丙烯腈纤维和沥青纤维而言,为使原料纤维不熔化,即在炭化过程中不熔融变形,继续保持纤维形状,可采取预氧化稳定处理,使聚丙烯腈和沥青分子形高聚物而提高其热稳定性。而黏胶纤维预处理的目的患是高原料纤维的热氧稳定性、控制活化反应特性,以达到改善活性炭纤维的结构、性能并提高产品的得率。为此,采用无机盐溶液浸渍的方法;常用的浸渍剂为磷系或氯系化合物溶液,如磷酸、偏磷酸、焦磷酸及氯化锌等。酚酵树脂系纤维因不存在软化点,无需作不熔化处理,即可炭化和活化。

酚醛树脂的认识

1.酚与醛经聚合制得的合成树脂统称,其中以苯酚-甲醛树脂最重要。酚醛树脂有热塑性和热固性两类。热塑性酚醛树脂(或称两步法酚醛树脂),为浅色至暗褐色脆性固体,溶于乙醇、丙酮等溶剂中,长期具有可溶可熔性,仅在六亚甲基四胺或聚甲醛等交联剂存在下,才固化(加热时可快速固化)。主要用于制造压塑粉,也用于制造层压塑料、清漆和胶粘剂。热固性酚醛树脂(或称一步法酚醛树脂),可根据需要制成固体、液体和乳液,都可在热或(和)酸作用下不用交联剂即可交联固化。为指导树脂合成和成型加工,常将其固化过程分为A、B、C三个阶段。具有可溶可熔性的预聚体称作A阶酚醛树脂;交联固化为不溶不熔的最终状态称C阶酚醛树脂;在溶剂中溶胀但又不完全溶解,受热软化但不熔化的中间状态称B阶酚醛树脂,热固性酚醛树脂存放过程中粘度逐渐增大,最后可变成不溶不熔的C阶树脂。因此,其存放期一般不超过3~6个月。热固性酚醛树脂可用于制造各种层压塑料、压塑粉、清漆、耐腐蚀塑料、胶粘剂和改性其他高聚物。 2.(1)Lee J. D.等制备出酚醛树脂基球形炭。他们将苯酚和甲醛分散在以阿拉伯胶为分散剂的悬浮液中,利用六次甲基四胺为催化剂,搅拌加热使苯酚和

甲醛聚合得到球形酚醛树脂。这种球形酚醛树脂经炭化后可以得到酚醛树脂基球形炭。注:(将废旧酚醛泡沫作为原料之一填入,酚醛泡沫含量、悬浮剂种类、悬浮剂含量、炭化温度、活化时间这5个方面设计变量) (2)刘朗、杨骏兵等在球形炭的基础上制备出球状活性炭,先将线型酚醛树脂、六次甲基四胺溶解在甲醇中并混合均匀,得到含有固化剂的线型酚醛树脂固态化合物。将上述化合物破碎为1.25^-2.Smm的颗粒,作为成球的原料树脂。将十二烷基硫酸钠和水一定比例加入高压釜中,搅拌均匀后将上述原料树脂加入。匀速搅拌下升温,保持搅拌使高压釜自然冷却,得到酚醛树脂微球。将所得到的酚醛树脂微球在氮气保持下升温炭化活化,得到粒径在2mm左右且分布均匀的酚醛树脂基球形活性炭。 (3)谢飞以苯酚和甲醛为原料,以盐酸为催化剂在1100C下回流1h,加入适量的氨水,维持恒温反应15min,得到了线型为主的原料树脂。将上述原料树脂加热至熔融态加入到成球液中,在一定温度下搅拌,分散得到球形树脂。经冷却、真空干燥后得到粒径分布在450-900wm的酚醛树脂微球。将酚醛树脂微球炭化活化后即得到了酚醛树脂基球形活性炭。 (3)Chao Ye等人之后利用碳纳米管、线型酚醛树脂制得球形活性炭。将六次甲基四服在乙醇中混合,并在80℃下除去乙醇得到固体混合物,将其破碎为不规则的颗粒。将其颗粒分散在含分散剂的溶液中升温固化,然后冷却固液分离的得到了碳纳米管酚醛树脂基球形炭。之后炭化活化得到了球形活性炭。

酚醛树脂基活性炭微球的电化学性能_省略_料的活性炭微球的制备及电化学性能_王芙蓉

收稿日期:2006-06-05; 修回日期:2006-08-28 基金项目:国家自然科学基金(50272070)和太原市启明星项目 通讯作者:李开喜,研究员,E-m ai:l li kx99@yahoo .com 作者简介:王芙蓉(1980-),女,山西芮城人,硕士研究生,主要从事新型炭材料的研究。 文章编号: 1007-8827(2006)03-0219-06 酚醛树脂基活性炭微球的电化学性能II .作为E DLC 电极材料的活性炭微球的制备及电化学性能 王芙蓉1,2 , 李开喜1 , 吕永根1 , 李 强1 , 吕春祥1 , 孙成功 3 (1.中国科学院山西煤炭化学研究所 中国科学院炭材料重点实验室,山西太原 030001; 2.中国科学院研究生院,北京 100039; 3. S choo l of C he m ica,l Env i ronm en tal and M i n i ng Eng i neeri ng,U n i vers i ty of No tti n gham,Un i versit y Park,N otti ngha m,NG 72RD,UK ) 摘 要: 用直流恒流循环法考察在不同的活化条件下得到的酚醛树脂活性炭微球作为双电层电容器电极的电化学性能。结果表明,要得到高比电容的电容器电极材料,水蒸气活化的最佳条件为:在800e 下活化1h ,水蒸气的量控制为氮气量的40%。在此条件下得到的酚醛树脂活性炭微球作为电极具有良好的循环充放电性能,比电容可达到143F /g ,充放电效率高达98%。在2.0n m ~7.5n m 之间的孔对活性炭微球的比电容影响显著。关键词: 双电层电容器;活性炭微球;电化学性能中图分类号: TM 242,TM 53 文献标识码: A 1 前言 双电层电容器兼有普通电容器功率密度大、二次电池能量密度高的优点,可快速充放电而且寿命长,是一种新型的能源器件。随着电容器在移动通讯、信息技术、航空航天和国防科技等领域的不断应用,近年来电容器的研究呈现出空前的研究热潮 [1,2] 。电极材料是决定电容器性能的两大关键因 素(电极材料和电解液)之一,故电容器电极材料成为电容器研究的重点。 目前出现的各种电化学电容器的电极材料按其种类可分为:炭材料[2] 、过渡金属氧化物 [3] 、有机导电聚合物[4] 等。在所有的电化学电容器电极材料 中,研究最早和技术最成熟的是炭材料 [5] ,主要有 活性炭[6-13] 、活性炭纤维[14] 、碳气凝胶 [15] 、纳米碳 管 [16] 等。目前研究热点在于如何提高炭材料作为 电容器电极的比电容,而比电容的提高必须增大电极材料的有效比表面积,同时要有利于电解液与电极表面的接触和电解液在电极材料孔道的进出。 球形活性炭为规则的球形,球与球之间存在的间隙有利于电解液的流动,在球径较均匀的情况下, 便于电解液对电极的浸润,更有利于在电解液和电极之间双电层的形成,从而增大电容量。此外,球形 炭的振实密度较高 [17] ,易得到较高的体积能量密 度,而且较无定形炭容易混合和涂层[18] 。 酚醛树脂作为一种炭质前驱体,在炭化活化后所得活性炭具有较高的导电性,且孔径可控制为以中大孔为主。目前,以酚醛树脂基活性炭微球作为电容器电极的研究未见报道。 本文研究以酚醛树脂基微球为原料用水蒸气活化法制得活性炭微球,考察了其作为电容器电极材料的影响因素,并与其结构相关联。 2 实验部分 2.1 活性炭微球的制备 以乳化法制备的酚醛树脂微球为原料[19] ,在氮气氛围中800e 下炭化30m i n 。再于不同温度下经氮气体积分数40%的水蒸气活化不同时间后得到系列酚醛树脂基活性炭微球。 2.2 活性炭电极及电容器的制备 将球径范围30L m ~50L m 的酚醛树脂活性炭微球与30%的聚四氟乙烯溶液(PTFE )相混合(其中活性炭质量分数为95%,PTFE 质量分数为5 %),压在泡沫镍上制成表面积为1c m 2 的圆片状电极,活性炭用量为20m g ~40m g 。 以聚丙烯膜为隔膜,将两个圆片状电极紧紧挤 第21卷 第3期2006年9月新 型 炭 材 料NE W CARBON MATER I AL S V o.l 21 N o .3 Sep .2006

活性炭纤维

活性炭纤维 活性炭纤维(ACF),亦称纤维状活性炭,是性能优于活性炭的高效活性吸附材料和环保工程材料。其超过50%的碳原子位于内外表面,构筑成独特的吸附结构,被称为表面性固体。它是由纤维状前驱体,经一定的程序炭化活化而成。较发达的比表面积和较窄的孔径分布使得它具有较快的吸附脱附速度和较大的吸附容量,且由于它可方便地加工为毡、布、纸等不同的形状,并具有耐酸碱耐腐蚀特性,使得其一问世就得到人们广泛的关注和深入的研究。目前已在环境保护、催化、医药、军工等领域得到广泛应用。 自1962年美国专利首次涉及随后美国ORNL使用活性炭纤维过滤放射性碘辐射以来,不同前驱体有机纤维及其活性炭纤维的研究和应用得到快速发展。美国、英国、前苏联、特别是日本,是研究和使用ACF的大国,年产量近千吨。国内的ACF研究起始于80年代末期,到90年代后期陆续出现工业化装置。大多处于实验室研究阶段。 制造方法:前驱体原料的不同,ACF的生产工艺和产品的结构也明显不同。ACF的生产一般是将有机前驱体纤维在低温200 ℃~400 ℃下进行稳定化处理,随后进行(炭化)活化。常用的活化方法主要有:用CO2或水蒸汽的物理活化法以及用ZnCI2,H3PO,H2PO4,KOH 的化学活化法,处理温度在700 ℃~1 000 ℃间,不同的处理工艺(时间,温度,活化剂量等)对应产品具有不同的孔隙结构和性能。用作ACF前驱体的有机纤维主要有纤维素基,PAN基,酚醛基,沥青基,聚乙烯醇基,苯乙烯/烯烃共聚物和木质素纤维等。商业化的主要是前4种。 结构特征:活性炭纤维是一种典型的微孔炭(MPAC),被认为是“超微粒子、表面不规则的构造以及极狭小空间的组合”,直径为10 μm~30 μm。孔隙直接开口于纤维表面,超微粒子以各种方式结合在一起,形成丰富的纳米空间,形成的这些空间的大小与超微粒子处于同一个数量级,从而造就了较大的比表面积。其含有的许多不规则结构-杂环结构或含有表面官能团的微结构,具有极大的表面能,也造就了微孔相对孔壁分子共同作用形成强大的分子场,提供了一个吸附态分子物理和化学变化的高压体系。使得吸附质到达吸附位的扩散路径比活性炭短、驱动力大且孔径分布集中,这是造成ACF比活性炭比表面积大、吸脱附速率快、吸附效率高的主要原因。 功能化方法:功能化主要通过孔隙结构控制和表面化学改性来满足对特定物质的高效吸附转化。 ACF通常适用于气相和液相低分子量分子(MW=300以下)的吸附。当吸附剂微孔大小为吸附质分子临界尺寸的两倍左右时,吸附质较容易吸附。孔径调整的目的就是使ACF的细孔与吸附质分子尺寸相当,通常采用下列方法:1)活化工艺或活化程度的改变(至纳米级); 2)在原纤维中添加金属化合物或其它物质经炭化活化,或采用ACF添加金属化合物后再活化(中孔为主),原料纤维预先具有接近大孔的孔径(大孔);3)烃类热解在细孔壁上沉积、高温后处理(使孔径变小)。 表面化学改性主要改变ACF的表面酸、碱性,引入或除去某些表面官能团。经高温或经氢化处理可脱除表面含氧基团(还原);通过气相氧化和液相氧化的方法可获得酸性表面。改性需综合考虑物理结构与化学结构的影响。

质子交换膜燃料电池用炭纸的制备

质子交换膜燃料电池用炭纸的制备 张敏;谢志勇;黄启忠 【期刊名称】《材料导报》 【年(卷),期】2011(025)006 【摘要】The carbon paper was improved to be fit for the use of gas diffusion layer in proton exchange membrane fuel cell by the process of impregnation, molding, carbonizating, graphitization, with modified phenolic resin as the binder and carbon fiber paper as the green body. Fundamental properties were characterized and compared with Toray carbon paper. The results show that, thickness is 0. 189mm, density 0. 446g/cm3 ,which are almost the same with Toray's;the porosity is 83%, 18. 6% higher than T oray's; through-plane resistivity 3. 35 mΩ · cm and in-plane resistivity 3. 86mΩ·cm, 25. 9%and 39. 7%lower than Toray carbon paper respectly; permeability rate reaches 5100mL·mm/(cm2 · h · mmAq) at 88. 2Pa,41.67% higher than T oray's;the output voltage performance is a little worse than T oray's but not soevident.%以改性酚醛树脂为粘合剂,炭纤维纸为坯体,通过浸渍、模压固化、炭化、石墨化工艺制得质子交换膜燃料电池气体扩散层用炭纸,表征了炭纸的基本性能并与东丽炭纸的相关性能进行了对比.结果表明,自制炭纸的厚度为0.189mm,密度为0.446g/cm3,均与东丽炭纸相近;孔隙率为83%,比东丽炭纸提高18.6%;体电阻率为3.35mΩ·cm,面电阻率为3.86mΩ·cm,分别比东丽炭纸减小了25.9%和39.7%;压差为88.2Pa时透气率达

多孔碳纳米球的制备及其电化学性能_杨秀涛

物理学报Acta Phys.Sin.Vol.66,No.4(2017)048101 多孔碳纳米球的制备及其电化学性能 ?杨秀涛梁忠冠袁雨佳阳军亮夏辉? (中南大学物理与电子学院,长沙 410083) (2016年10月11日收到;2016年10月31日收到修改稿) 以三嵌段共聚物F108为软模板,通过水热法合成酚醛树脂球并在氮气氛围下碳化、KOH 活化处理,最终得到多孔碳纳米球材料.通过扫描电子显微镜,透射电子显微镜和氮气吸附分析仪对样品进行表征,结果表明样品的平均粒径为120nm,球形度高,比表面积达到1403m 2/g,孔径分布广.通过X 射线衍射研究样品的结晶度, 序度提高明,10000次循环充放电后,关键词:PACS:1引上的电池,长、能影响较大[纳米管[5,6]球[12?14].物为模板,活化,得到活 P123(PEO 20-. 为软模板,利用水(porous .通过扫描电子X 射线,研究孔隙结构、 ?国家自然科学基金(批准号:51673214)资助的课题.?通信作者.E-mail:xhui73@https://www.doczj.com/doc/d412957790.html, ?2017中国物理学会Chinese Physical Society https://www.doczj.com/doc/d412957790.html, 网络出版时间:2017-01-12 10:56:13 网络出版地址:https://www.doczj.com/doc/d412957790.html,/kcms/detail/11.1958.O4.20170112.1056.016.html

结晶度和表面官能团的影响.结合PCNS 样品的电化学性能的测试,研究了PCNS 样品的理化特性对其电化学性能的影响. 2实验部分 2.1 多孔碳纳米球的合成 首先,称取1.96g 三嵌段共聚物F108溶解于30mL 水中搅拌均匀得到澄清溶液A.然后称1.2g 的苯酚并量取4.2mL 质量分数为37%的甲醛溶液溶解于30mL 的0.1M(mol/L)氢氧化钠溶液,搅拌均匀, min 体系中加入到溶液B.取物质烘干.氛下以700? 物PCNS 为中性,900?C 时,2.2600i)TWIX)比表面积S 孔面积(S 计算.品的孔径分布.用X 射线衍射仪(XRD,SIEMENS D500)在电压为40kV 、电流为100mA,Cu 靶、K α射线(λ=0.15056nm)、石墨单色滤波器以及衍射角为10?—70?的条件下以2?/s 的速度对样品扫描. 用红外光谱仪(FTIR,Niclet 380)对样品在波数500cm ?1—4500cm ?1范围内进行扫描,根据得到的吸收光谱图分析样品的表面元素及官能团组成. 2.3电化学特性测试 采用辰华CHI660E 电化学工作站在三电极体 系进行电化学特性的测试.测试体系的对电极和参比电极分别采用铂片电极和Hg/HgO 电极,而工作电极的制备采用(1×1)cm 2泡沫镍为基底,将制备的多孔碳纳米球样品作为活性物-质和乙炔黑,用乙醇作为溶剂,60wt%聚四氟乙烯(PTFE)混合,调成浆状,,于10MPa 压(cyclic (galvano-GC)和电化学阻spectroscopy,5,10,20,50,100V 的电压区间进行·m ), (1) (A),放电时间(g).电化学kHz,微扰为,1(b)分别是PCNS 1(c)和图1(d)是照片,图1(e)和TEM 照片,每TEM 照片,KOH 处理后其粒径大小没有明显的改变.从选区电子衍射图可知,样品在?002?和?100?晶面处具有衍射特征峰.由超高放大倍数TEM 照片,可以看出样品PCNS700和PCN900的微晶有序度要高于PCNS 的有序度.

酚醛树脂

水性酚醛树脂胶粘剂的制备 酚醛树脂是苯酚或取代苯酚同甲醛的反应产物。改变酚和醛的种类,酚/酲摩尔比,催化剂的种类和用量,或者反应时间与温度,其反应生成物均会不同。重要的商品酚包括苯酚C6H5OH,甲苯酚CH3C6H4OH,二甲苯酚(CH3)2C6H3OH,对叔丁基苯酚等。所用酚/醛摩尔比与催化剂的种类,决定着酚醛树脂是酚端基还是羟甲基端基(-CH2OH)。酚端基型酚醛树脂常称为“线性酚醛树脂”(novolac)或“两步型树脂”;这种树脂不是热反应性的,除非另外加入更多的甲醛,它们一般用六次甲基四胺(简称“六次”)在加热下交联固化。如果分子链端为羟甲基,则可称为“甲阶酚醛树脂”(resole)或“一步型树脂”;这类树脂是热反应性的,在进一步加热下就会固化成热固性网状结构-除非将苯酚的邻位之一或对位预先封闭(例如采用对叔丁基苯酚)。两步型树脂在酚过量(即较高酚/酲摩尔比)与酸性催化剂存在下制备;一步型树脂在醛过量(即较低酚/醛摩尔比)与碱性催化剂存在下制备。 水性酚醛树脂包括低分子量的水溶性酚醛树脂(主要是甲阶树脂)和水分散性酚醛树脂两类,后者可从包括线性酚醛树脂在内的多种酚醛树脂制成,且稳定得多。 1.水溶性甲阶酚醛树脂的制备 一般甲阶酚醛树脂是否有水溶性或混溶性的关键是控制其加热反应的程度。在醛过量与碱性催化剂存在下,最初生成的产物主要是苯酚中两个邻位和一个对位上的氢部分或全部被羟甲基取代。在进一步加热下,可能发生两类缩合脱水反应导致分子量增大:一类为2个羟甲基之间缩合形成醚链节(-CH2-O-CH2),另一类为一个羟甲基同一个邻位或对位活泼氢原子之间反应产生次甲基链节。 在加热反应程度不大时,产物含有比例较多的亲水基团(如羟甲基等),是低粘度的水溶性液体;进一步反应脱水,在分子量增大的同时,亲水基团减少,就逐步变成同水混溶性很小或不混溶的高粘度液体,其后变成可粉碎的固体。 一般甲阶酚醛树脂的制备工艺,是把氢氧化钠催化剂加入到苯酚和甲醛中,然后逐步加热到80-100℃。用真空控制反应温度在100℃以下,反应时间一般为1-3h。因为甲阶树脂进一步加热反应会凝胶,故脱水温度用真空控制在105℃以下。通常在150℃热板上测试凝胶时间,以监测反应程度并决定是否结束反应和出料。 低分子量水溶性树脂应在尽可能低的温度下完成生产反应,通常在50℃左右(反应活性较低的对位取代型甲阶树脂可以在高达120℃的温度下完成反应)。这类水溶性树脂固含量范围40%-70%,pH范围7-7.5。其树脂分子量稍微增大(这在室温下也很难避免),对水溶性或混溶性都会产生重大影响。因此这类树脂常按订货单制造,并在冷冻下贮存或装运,并且要马上使用。液体甲阶酚醛树脂有两类: ①含树脂的可溶性盐; ②为用过滤脱除了不溶性盐的树脂。这些盐是在综合碱性催化时形成的。在前一种类型中不必脱除其可溶性盐,因此成本较低。 采用对叔丁基苯酚制备甲阶树脂时,一般在制造期间要经过洗涤脱盐。在最初的碱性反应阶段后,在脱水之前,反应物料用一种芳香溶剂稀释,经中和形成一种水溶性盐。当停止搅拌时,水层(含有大多数盐)沉降到底部,接着进行溶液分离。再加入更多的水进行反复多次的洗涤。其后将树脂在真空下脱除溶剂,在冷却前形成所希望的分子量。 在有些应用中,需要使液体水溶性甲阶树脂保持与水的高混溶性。例如当其用作绝热粘结剂时,它们要用相当多的水稀释后喷洒到玻璃和石棉纤维上。因此这类树脂也要求在冷冻下贮存和装运。 固态甲阶树脂较稳定,只在热天才需冷冻。从对位取代酚类(如丁基苯酚)所制得的甲阶树脂可稳定1年以上。 水溶性酚醛树脂一般可以用粘度、相对密度、固含量和水溶性来表征。典型树脂的性能

热固性酚醛树脂

热固性酚醛树脂 热固性酚醛树脂具有很强的浸润能力,成型性能好,体积密度大,气孔率低,用于耐火制品,该树脂在15℃- 20℃下可保持三个月.酚醛树脂制品优点主要是尺寸稳定,耐热、阻燃,电绝缘性能好,耐酸性强,它主要应用于运输业、建筑业、军事业、采矿业等多种行业,应用广泛. 在NH4OH、NaOH或NaCO3等碱性物质的催化下,过量的甲醛与苯酚(其摩尔比大于1)反应生成热固性酚醛树脂。其反应过程如下:在碱性催化剂存在下使反应介质PH大于7,苯酚和甲醛首先发生加成反应生成一羟甲基苯酚 室温下,在碱性介质中的酚醇是稳定的,一羟甲基苯酚中的羟甲基与苯酚上的氢的反应速度比甲醛与苯酚的邻位和对位上的氢的反应速度小,因此一羟甲基苯酚不容易进一步缩聚,只能生成二羟甲基苯酚和三羟甲基苯酚。 热固性酚醛树脂胶黏剂可以不用固化剂吗 视你的胶黏剂配方而定。酚醛比为1:1时为线形聚合物,要获得热固性树脂就要加交联剂了(提高醛用量,以苯酚对位进行交联)。若配方中有提及固化成分(如NL固化剂)也可以不用。 使用哪种热固性酚醛树脂能在45C温度左右固化,或是加入什么固化剂使其能在45C左右固化? 问题补充: 热固性酚醛树脂是用于覆膜砂上 催化剂为磺酸类与无机酸混合使用 酚醛树脂的固化温度、固化时间和碳化温度,想要在400度左右的环境下使用如何 作为高分子材料400°c很难

热固性酚醛树脂的固化过程? 热固性酚醛树脂的固化要具体看树脂的型号,加入固化剂可以常温固化,也可以直接高温固化。 2011-10-24 16:32 cjm20033|四级 主体是羟甲基、苯环活性氢等同类或之间的缩聚反应,当然之间有酚羟基、醚键等参与的非常复杂的反应,如变色,就是酚羟基的变化。具体固化过程目前估计还不能用反应式明确地表达出来。 |评论 加适量的六亚甲基四胺固化剂,不信你可以不用。 酚醛树脂固化在线等!!! 我处有两种酚醛树脂,一种为粉末状固态,另外一种为液态,(在不加固化剂的情况下)想做试验使其加热固化,请帮忙提供它们固化所需要的条件,如:固化温度、反应时间、注意事项等,越详细越好。 注意:我处是现成的酚醛树脂,不是要制备,而是固化(这个对专业人士应该比较简单),所以请各位不要粘贴什么酚醛制备的东西来耽误大家的时间。多谢!满意回答 我来吧。 首先你要知道酚醛的牌号,从而知道这种酚醛是热塑还是热固。一般粉状为热塑需加固化剂固化,液态为热固直接固化。 酚醛的固化条件一般为热压固化。如温度在150度,压力20MPa,压5-10分钟,后去掉压力,保温150度4 个小时。注意事项就是,加压过程中要放2-3次气(即去压再加压) 上面的条件只是一个例子,具体的参数,要根据你的酚醛性能,制品用途,大小等来确定。如果没有加压设备的话,180度烘个2小时以上也是能固化的。 酚醛树脂分碱式合成跟酸式合成两种。其中碱式合成的,只要加温就可以固化。酸式的,才需要加固化剂。 仅供参考 1谁知道酚醛树脂的固化热是多少? 当甲醛/苯酚(摩尔比)小于1时,可得热塑性产物,称热塑性酚醛树脂,即线型酚醛树脂,它不含进一步缩聚的基团,加固化剂并加热才能固化。如以六亚甲基四胺为固化剂,固化温度150 ℃,混以填料制成的模塑粉俗称电木粉。当甲醛/苯酚(摩尔比)大于1时,在碱催化下先得到甲阶段树脂,即热固型酚醛树脂,

多孔炭微球实验论文

探究加钴对磷掺杂多孔碳微球的电化学性 能的影响 摘要:以葡萄糖为原料,利用水热合成法,水热合成胶质碳微球,经过一系 列的洗涤,超声搅拌处理,利用醋酸铝处理法制备出多孔碳微球,在其中的一组中加入醋酸钴,以磷酸为磷源进行磷掺杂,制备出磷掺杂的多孔碳微球,最后进行分析其电化学性能,比较加钴对磷掺杂多孔碳微球的影响。 关键词:多孔碳微球磷掺杂加钴电化学性能 多孔碳材料是指具有不同孔结构的碳材料,其孔径可以根据实际应用的要求(如所吸附分子尺寸等) 进行调控,使其尺寸处于纳米级微孔至微米级大孔之间,多孔碳材料具有碳材料的性质,如化学稳定性高,导电性好,价格低廉等优点; 同时,孔结构的引入使其同时具有比表面积大,孔道结构可控,孔径可调等特点。多孔碳材料在气体分离、水的净化、色谱分析、催化和光催化及能量存储等领域得到了广泛的应用。 燃料电池和金属一空气电池由于其具有较高的能量密度、低的工作温度以及对环境的友好性等一系列优点,在便携式电子设备、居民住宅,特别是交通运输的电源方面具有广阔的应用前景。众所周知,在燃料电池和金属一空气电池中,阴极氧气还原反应是一个动力学缓慢过程,这也是限制电池效率的直接因素因此对高效的氧还原电催化剂的开发与探索引起了广大科研工作者的兴趣。其中铂基催化剂由于具有高效的电催化能力被广泛应用于阴极氧还原反应过程中,但是由于铂的稀缺性和价格的昂贵,直接阻碍了燃料电池和金属一空气电池的大规模商业化应用。掺杂异原子可以修饰碳材料的物理和化学性质并且还可以生成新的催化活性位点。目前,异原子掺杂碳材料作为阴极催化剂的主要方式有氮掺杂、硼掺杂和磷掺杂等。通过掺杂“磷原子”对多孔碳材料(例如多孔碳微球)进行功能化,可强化多孔碳材料固有的优异性能并赋予其新功能,从而拓宽其在各领域的应用范围。近年来,研究者相继开发了一系列技术方法(例如磷酸热处理法、化学活化法和水热合成法等),已经成功制备了多种结构特异、性能优异的磷掺杂多孔碳材料。这些材料在电池催化、气体吸附分离、储氢及污染气体脱除等方面的应用,目前磷掺杂多孔碳材料正向规模化工业应用发展。 在我们的实验中,采用磷酸和醋酸钴分别作为磷源和钴源,葡萄糖作为碳源,合成了磷掺杂多孔碳材料。电化学性能测试表明,磷掺杂的碳材料具有很高的电催化活性;磷掺杂的碳材料表现出较高的稳定性。研究表明,除掺杂元素磷外,前驱体中钴的引入对该类材料的催化活性也起着重要作用。 1 实验 1.1 原料及试剂

酚醛树脂

酚醛树脂的聚合原理、方法及其应用 摘要:酚醛树脂也叫电木,又称电木粉。原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。苯酚与甲醛缩聚而得。酚醛树脂主要用于制造各种塑料、涂料、胶粘剂及合成纤维等。 关键词:酚醛树脂聚合原理聚合方法酚醛树脂的应用 正文: 酚醛树脂是世界上人工合成的第一类树脂材料,它具有良好的耐酸性能、力学性能、耐热性能,而且由于它原料易得,合成方便,目前仍被广泛应用。在高中教材里,酚醛树脂作为缩聚反应的典例,阐述了单体分子聚合成高分子的一种形式。与加聚反应不同,单体分子在发生缩聚反应时,生成的不仅仅是高分子化合物,还有小分子物质(如水)生成。也正是因为单体间缩去小分子物质,才成为有机物彼此连接成链状或体型的直接诱因。 缩聚反应是指单体间相互反应,生成高分子化合物同时生成小分子的聚合反应。酚醛树脂是由苯酚和甲醛在催化剂条件下缩聚而成。反应机理是苯酚羟基邻位上的两个氢原子比较活泼,与甲醛醛基上的氧原子结合为水分子,其余部分连接起来成为高分子化合物——酚醛树脂。如果采用不同的催化剂,苯酚羟基对位上的氢原子也可以和甲醛进行缩聚,使分子链之间发生交联,生成体型酚醛树脂。体型酚醛树脂绝缘性很好,是用作电木的原料。另外,以玻璃纤维作骨架,以酚醛树脂为肌肉,组合固化制成复合材料即玻璃钢。 苯酚和甲醛的合成反应是一个较复杂的反应过程,目前公认的看法认为苯酚和甲醛之间反应合成酚醛树脂的反应是一种缩聚反应。其生产工艺的基本原理是由一种或几种单体化合物合成聚合物的反应。缩聚反应具有逐步的性质,中间形成物具有相当稳定的性能。苯酚和甲醛两种物质发生反应时根据缩聚反应条件的差异可以形成两大类树脂,即热固性酚醛树脂和热塑性酚醛树脂。其中需要注意的是酚醛的化学结构是影响酚醛树脂合成及性能的主要因素。在选择原料时其中对酚类物质的要求是:酚分子中必须具有2个以上的官能度。酚环上连有供电子基时反应速度会加快;连有吸电子基时,反应速度会变慢。在选用醛类物质时,没有多高的要求,工业上一般都是使用甲醛的。 实验聚合方法,在25×200mm的试管中加入4g化学纯苯酚和2.5mL化学纯甲醛溶液(密度约1.1g/cm3、浓度为36~38%),再加入1mL化学纯的浓盐酸,振荡均匀后塞上带有直玻璃管(长300mm)的橡皮塞。把上述试管固定在铁架台上,放在80~90℃的水浴中加热(如左图)。片刻后,试管中发生剧烈反应,反应后还要继续加热,直到生成粉红的固体树脂为止。取出固体树脂(用铁丝钩出),用水冲洗后得到热塑性树脂。在25×200mm的试管中加入2.5g化学纯苯酚和3mL化学纯甲醛溶液(浓度同前),再加入1mL化学纯浓氨水(浓度为25~28%),振荡均匀之后塞上带有直玻璃管(长300mm)的橡皮塞。把上述的试管固定在铁架台上,用沸水浴加热,直到混合物分成两层。当底层的树脂粘度增大时,取下试管用水冷却,等树脂固化后倒出,用水冲洗,得到黄色的热固性树脂。 液体酚醛树脂的生产工艺,生产液体酚醛树脂时甲醛的加入量要比正常的需要量略多一些,甲醛量多一些树脂的生产速度快,产量高,游离酚减少。通常取苯酚与甲醛的克分子比为:6 :7;催化剂氨水加入量为苯酚加入量的4%,(氨水中氢氧化铵含量按25%计时)。当混合物料加热到85℃左右时,可停止加热,物料以缩聚反应放出的热量自行升温到98 ℃左右,并开始沸腾,当反应过于激烈时应通水冷却。 一般非水性一步型酚醛树脂胶粘剂由苯酚与甲醛以摩尔比1:(1~3),在碱性催化剂存在下进行加成反应,生成含羟甲基苯酚的低聚物,常配成固含量50%~60%的乙醇溶液供使用。储藏中,胶粘剂的pH会下降,由12~13降至11~9.5,会造成储藏不稳定性,可加入二氧化

相关主题
文本预览
相关文档 最新文档