当前位置:文档之家› 第四章电感式传感器

第四章电感式传感器

第四章电感式传感器
第四章电感式传感器

第四章电感式传感器

4.1 比较差动式自感传感器和差动变压器在结构上及工作原理上的异同之处。

4.2 变间隙式、变截面式和螺管式三种电感式传感器各适用于什么场合?它们各有什么优缺点?

4.3 螺管式电感传感器做成细长形有什么好处?欲扩大螺管式电感传感器的线性范围,可以采取哪些措施?

4.4 差动式电感传感器测量电路为什么经常采用相敏检波(或差动整流)电路?试分析其原理。

4.5 试述电感传感器产生零位电压的原因和减小零位电压的措施。

4.6 差动变压器式传感器采用恒流激磁有什么好处?

4.7 电源频率波动对电感式传感器的灵敏度有何影响?如何确定传感器的电源频率?

4.8 试从电涡流式传感器的基本原理简要说明它的各种应用。

4.9 用反射式电涡流传感器测量位移(或振幅)时对被测体要考虑哪些因素?为什么?

4.10 反射式电涡流传感器探头线圈为什么通常做成扁平型?

4.11 试从压磁式传感器的工作原理和结构特点出发分析其应用场合。

4.12 若差动式自感传感器的两个线圈的有效电阻不等(R1≠R2),则在机械零位时存在零位电压(U≠0)。试用矢量图分析能否用调整衔铁位置的方式使U0 =0?(设传感器接入下图电桥)。

4.13 试计算下图所示差动变压器式传感器接入桥式电路(顺接法)时的空载输出电压U0 ;已知初级线圈激磁电流为I 1 ,电源角频率为w,初、次级线圈间的互感为Ma 、Mb ,两个次级线圈完全相同。又若同一差动变压器式传感器接成图(b)所示反串电路(对接法),问两种方法中哪一种灵敏度高?高几倍?

传感器与测试技术作业题第五章

第五章电感式传感器 思考题: 1、说明变气隙型电感传感器、差动变压器式传感器和涡流传感器的主要组成、工作原理和基本特性。 答: a)变气隙型电感传感器主要由线圈、铁心、衔铁三部分组成的。线圈是套在铁心上的,在铁心与衔铁之间有一个空气隙,空气隙厚度为δ。传感器的运动部分与衔铁相连。当外部作用力作用在传感器的运动部分时,衔铁将产生位移,使空气隙δ发生变化,磁路磁阻R m发生变化,从而引起线圈电感的变化。线圈电感L的变化与空气隙δ的变化相对应,这样只要测出线圈的电感就能判定空气隙的大小,也就是衔铁的位移。 b)差动变压器式传感器主要由铁心、衔铁和线圈组成。线圈又分为初级线圈(也称激励线圈)和次级线圈(也称输出线圈)。上下两个铁心及初级、次级线圈是对称的。衔铁位于两个铁心中间。上下两个初级线圈串联后接交流激磁电压1,两个次级线圈按电势反相串联。它的优点是灵敏度高,一般用于测量几微米至几百微米的机械位移。缺点是示值范围小,非线性严重。 c)涡流传感器的结构很简单,有一个扁平线圈固定在框架上构成。线圈用高强度漆包线或银线绕制而成,用粘合剂站在框架端部,也可以在框架上开一条槽,将导线绕在槽内形成一个线圈。涡流传感器的工作原理是涡流效应,当一块金属导体放置在一变化的磁场中,导体内就会产生感应电流,这种电流像水中漩涡那样在导体内转圈,所以称之为电涡流或涡流。这种现象就称为涡流效应。涡流传感器最大的特点是可以实现非接触式测量,可以测量振动、位移、厚度、转速、温度和硬度等参数,还可以进行无损探伤,并且具有结构简单、频率响应宽、灵敏度高、测量线性范围大、体积小等优点。 2、为什么螺管型电感传感器比变气隙型电感传感器有更大的测位移范围? 答:变气隙型灵敏度高,因为原始气隙δ0一般取得很小(0.1~0.5mm),当气隙变化为△δ=1μm时,电感的相对变化量△L/L0可达0.01~0.002,因而它对处理电路的放大倍数要求低。它的主要缺点是非线性严重,为了减小非线性,量程就必须限制在较小范围内,通常为气隙δ0的1/5以下,同时,这种传感器制造装

最新实验第5章电感式传感器

实验第5章电感式传 感器

实验名称:电感式传感器测试实验 一、实验目地: 1. 了解差动变压器的基本结构及原理,通过实验验证差动变压器的基本特性。 2. 利用差动螺管式电感传感器进行位移测量。 3. 了解不同的激励频率对差动螺管式电感传感器的影响。 实验一. 差动变压器的基本结构及原理 二、实验原理: 差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。初级线圈做为差动变压器激励用,相当于变压器的原边,次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器的副边。差动变压器是开磁路,工作是建立在互感基础上的。其原理及输出特性见图(9) 三、实验环境 差动变压器、音频振荡器、测微头、示波器。 四、实验步骤: 1.按图接线,差动变压器初级线圈必须从音频振荡器LV 端功率输出,双线示波器第一通道灵敏度500mv/格,第二通道10mv /格。 2.音频振荡器输出频率5KHZ ,输出值V P -P 2V 。 3.用手提压变压器磁芯,观察示波器第二通道波形是否能过零翻转,如不能则改变两个次级线圈的串接端。 示波器

4.旋动测微头,带动差动变压器衔铁在线圈中移动,从示波器中读出次 位移 mm 电压 V 5. 根据表格所列结果,画出Vop-p-X曲线,指出线性工作范围。(可附在后面) 实验二. 差动螺管式电感传感器位移测量 二、实验原理: 利用差动变压器的两个次级线圈和衔铁组成。衔铁和线圈的相对位置变化引起螺管线圈电感值的变化。次级二个线圈必须呈差动状态连接,当衔铁移动时将使一个线圈电感增加,而另一线圈的电感减小。 三、实验环境 差动变压器、音频振荡器、电桥、差动放大器、移相器、相敏检波器、低通滤波器、电压表、示波器、测微头。 四、实验步骤: 1.差动变压器二个次级线圈组成差动状态,按图接线,音频振荡器LV 端做为恒流源供电,差动放大器增益适度。差动变压器的两个线圈和电桥上的两个固定电阻R组成电桥的四臂,电桥的作用是将电感变化转换成电桥电压输出。 2.旋动测微头使衔铁在线圈中位置居中,此时Lo′=Lo″,系统输出为零。

第六章 压电式传感器

课题:第四章电容式传感器 课型:新知课 教学目标:1、掌握变极距型电容式传感器的工作原理; 2、掌握变面积型电容式传感器的工作原理; 3、掌握变介电常数型电容式传感器的工作原理; 4、掌握电容式传感器的灵敏度和非线性; 9、掌握压磁式传感器的工作原理。 重点:1、变极距型电容式传感器的工作原理; 2、变面积型电容式传感器的工作原理; 3、变介电常数型电容式传感器的工作原理; 4、电容式传感器的灵敏度和非线性; 5、变压器式传感器的等效电路; 6、涡流式传感器的工作原理; 7、涡流式传感器的特点及应用; 难点:1、电容式传感器的灵敏度和非线性; 2、; 3、变压器式传感器的工作原理; 4、变压器式传感器的等效电路; 5、涡流式传感器的工作原理。 教学手段、方法:多媒体、课件、讲授 教具:ppt、板书 教学过程: 压电式传感器是一种有源的双向机电传感器。它的工作原理是基于压电材料的压电效应。石英晶体的压电效应早在1680年就已发现,1984年制作出第一个石英传感器。 4.1 压电效应 某些晶体或陶瓷,当沿着一定方向受到外力作用时,内部就会出现极化现象,同时在某两个表面上产生符号相反的电荷;当外力去掉后,又恢复到不带电的状态;当作用力方向改变时,电荷的极性也随着改变;晶体受力所产生的电荷量与外力的大小成正比。上述现象称为正压电。反之,如对晶体施加一定变电场,晶体本身将产生机械变形,外电场撤离,变形也随着消失,称为逆压电效应。 压电转换元件受力变形的状态可分为图6-1所示的几种基本形式:

图6-1 压电转换元件受力变形的几种基本形式 由于压电晶体的各向异性,并不是所有的压电晶体都能在这几种变形状态下产生压电效应。例如石英晶体就没有体积变形压电效应。但它具有良好的厚度变形和长度变形压电效应。 6.1.1 石英晶体的压电效应 图6-2(a)所示为天然石英晶体的结构外形,在晶体学中用三根互相垂直的轴Z、X、Y表示他们的坐标,如图6-2(b)所示。Z轴为光轴(中性轴),它是晶体的对称轴,光线沿Z轴通过晶体不产生双折射现象,因而以它作为基准轴;X轴为电轴,该轴压电效应最为显著,它通过六棱柱相对的两个棱线且垂直于光轴Z,显然X轴共有三个;Y轴为机械轴(力轴),显然也有三个,它垂直于两个相对的表面,在此轴上加力产生的变形最大。 图6-2 石英晶体的外形和晶轴 对于压电晶体,当沿X轴施加正应力的时,将在垂直于X轴的表面上产生电荷,这种现象称为纵向压电效应;当Y轴施加正应力时,电荷将出现在与X轴垂直的表面上,这种现象称为横向压电效应;当沿X轴方向施加切应力时,将在垂直于Y轴的表面上产生电荷,这种现象称为切向压电效应。通常在石英晶体上可以观察到上述三种压电效应,其受力方向与产生电荷极性的关系如图6-4所示。

传感器作业答案

第二章 测量误差与数据处理 1、测量数据中包含哪三种误差?它们各自的含义是什么? 系统误差:对同一被测量进行多次重复测量时(等精度测量),绝对值和符号保持不变,或 在条件改变时,按一定规律变化的误差称为系统误差。 随机误差:对同一被测量进行多次重复测量时(等精度测量),绝对值和符号不可预知的随 机变化,但就误差的总体而言,具有一定的统计规律性的误差称为随机误差。 粗大误差:明显偏离测量结果的误差称为粗大误差,又称疏忽误差。这类误差是由于测量者 疏忽大意或环境条件的突然变化产生的。对于粗大误差,首先应设法判断是否存在,然后将其剔除。 2、对某轴直径d 的尺寸进行了15次测量,测得数据如下(单位mm ):120.42, 120.43, 120.40, 120.42, 120.43, 120.39, 120.30, 120.40,120.43, 120.41, 120.43, 120.42, 120.39,120.39,120.40。试用格罗布斯准则判断上述数据是否含有粗大误差,并写出测量结果。 解:1)求算术平均值 2)求单次测量值的标准差估计值 3)按格罗布斯准则判别是否存在粗大误差(查书P61 表3-2) 经检查,存在 , 故剔除120.30mm 。 4)重新求解上述各值,得: ; mm x x i i 404.12015 15 1 == ∑=- ∧ σmm 033.01 )(12 =--= ∑=∧ n x x n i i σmm g n g K G 080.0033.041.2)05.0,15(),(00≈?===∧ ∧ σσα)15,...,2,1(=>i K v G i mm x 41.120=- mm 016.0=∧ σ∧ ∧

第五章压电式传感器习题解答

5-1答:(1)某些电介质,当沿着一定方向对其施加力而使它形迹时,内部产生极低化现象,同时在它的两个表面上产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状态,这种现象称为压电效应。 (2)不能,因为构成压电材料的电介质,尽管电阻很大,但总有一定的电阻,外界测量电路的输入电阻也不可能无穷大,它们都将将压电材料产生的电荷泄漏掉,所以正压电式不能测量静止电荷。 5-2:(1)当沿电轴、机械轴的力的作用下,石英晶体在垂直于电轴的平面都会产生压电电荷,沿光轴方向则不会产生压电效应。 (2)b 图在上表面为负电荷,(c )图上表面为负电荷;(d )图上表面为正电荷。 (3)通常将沿电轴X -X 方向的作用力作用下产生的电荷的压电效应称为“纵向电效应’; 将沿机械轴Y -Y 方向的力作用下产生电荷的效应 称为“横向压电效应” 5-3:答:(1)压电式传感器前置放大器的作用:一是把压电式传感器的高输出阻抗变换为低输出阻抗输出,二是放大压电式传感器的输出弱信号。 (2)压电式电压放大器特点是把压电器件的高输出阻抗变换为传感器的低输出阻抗,并保持输出电压与输入电压成正比。 而电荷放大器的特点是能把压电器件的高内阻的电荷源变换为传感器低内阻的电压源,以实现阻抗匹配,并使其输出电压与输入电压成正比,且其灵敏度不受电缆变化的影响。 因为电压放大器的灵敏度Ce 的大小有关,见(5-20式)。 而由5-24式知当A 0足够大时,C E 的影响可以不计。 5-4答:(1)并联:C ′=2C ,q ′=2q,U ′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。 (2)串联:q ′=q,U ′=U,C ′=C/2, 特点:输出电压大,本身电容小,适合于以电压作为输出信号,且测量电路输出阻抗很高的场合。 5-5答:(1)电压灵敏度是指单位作用力产生的电压K U =U 0/F (2)电荷灵敏度是指单位作用力产生的电荷K q =q 0/F (3)由q 0/U 0=C 知,Kq =CK U 5-11解:(1)U x =d 11F x /c x =d 11F x t/(ε0εr S) =2.31*10-12*9.8*0.005/(8.85*10-12*4.5*5*10-4) =5.68(V ) 由5-20式知U im =F m d 11/(C C +C a ) = 2.31*10-12*9.8/(4*10-12+8.85*10-12*4.5*5*10-4/0.005) =2.835(V ) 5-12 q ()()0 0f f 11C 1R A C A R +'=+ =

传感器第六章习题答案

第六章习题答案 6-1.为什么说磁电感应式传感器是一种有源传感器? 解: 6-2.变磁阻式传感器有哪几种结构形式?可以检测哪些非电量? 解: 6-3.磁电式传感器是速度传感器,它如何通过测量电路来获取相应的位移和加速度信号?解: 6-4.磁电式传感器与电感式传感器有哪些不同?磁电式传感器主要用于测量哪些物理参数。 解:磁敏式传感器是通过磁电作用将被测量(如振动、位移、转速等)转换成电信号的一种传感器。磁电感应式传感器也称为电动式传感器或感应式传感器。磁电感应式传感器是利用导体和磁场发生相对运动产生电动式的,它不需要辅助电源就能把被测对象的机械量转换成易于测量的电信号,是有源传感器。 电感式传感器是利用电磁感应原理将被测非电量如位移、压力、流量、、重量、振动等转换成线圈自感量L或互感量M的变化,再由测量电路转换为电压或电流的变化量输出的装置。 6-5试证明霍尔式位移传感器的输出与位移成正比。 解: 6-6.霍尔元件能够测量哪些物理参数?霍尔元件的不等位电动势的概念是什么?温度补偿的方法有哪几种? 解:答:霍尔元件温度补偿方法主要有利用输入回路的串联电阻进行补偿和利用输出回路的负载进行补偿两种。 1)利用输入回路的串联电阻进行补偿。下图是输入补偿的基本线路,图中的四端元件是霍尔元件的符号。两个输入端串联补偿电阻R并接恒电源,输出端开路。根据温度特性,元件霍尔系数和输入内阻与温度之间的关系式为 RHt=RH0(1+αt) Rit=Ri0(1+βt) 式中,RHt为温度为t时霍尔系数;RH0为0℃时的霍尔系数;Rit为温度为t时的输入电阻;Ri0为0℃时的输入电阻;α为霍尔电压的温度系数, β为输入电阻的温度系数。当温度变化Δt时,其增量为: ΔRH=RH0αΔt ΔRi=Ri0βΔt

传感器与测试技术作业题第五章

传感器与测试技术作业题第 五章 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第五章电感式传感器 思考题: 1、说明变气隙型电感传感器、差动变压器式传感器和涡流传感器的主要组成、工作原理和基本特性。 答: a)变气隙型电感传感器主要由线圈、铁心、衔铁三部分组成的。线圈是套在铁心上的,在铁心与衔铁之间有一个空气隙,空气隙厚度为δ。传感器的运动部分与衔铁相连。当外部作用力作用在传感器的运动部分时,衔铁将产生位移,使空气隙δ发生变化,磁路磁阻R m发生变化,从而引起线圈电感的变化。线圈电感L的变化与空气隙δ的变化相对应,这样只要测出线圈的电感就能判定空气隙的大小,也就是衔铁的位移。 b)差动变压器式传感器主要由铁心、衔铁和线圈组成。线圈又分为初级线圈(也称激励线圈)和次级线圈(也称输出线圈)。上下两个铁心及初级、次级线圈是对称的。衔铁位于两个铁心中间。上下两个初级线圈串联后接交流激磁电压1,两个次级线圈按电势反相串联。它的优点是灵敏度高,一般用于测量几微米至几百微米的机械位移。缺点是示值范围小,非线性严重。 c)涡流传感器的结构很简单,有一个扁平线圈固定在框架上构成。线圈用高强度漆包线或银线绕制而成,用粘合剂站在框架端部,也可以在框架上开一条槽,将导线绕在槽内形成一个线圈。涡流传感器的工作原理是涡流效应,当一块金属导体放置在一变化的磁场中,导体内就会产生感应电流,这种电流像水中漩涡那样在导体内转圈,所以称之为电涡流或涡流。这种现象就称为涡流效应。涡流传感器最大的特点是可以实现非接触式测量,可以测量振动、位移、厚度、转速、温度和硬度等参数,还可以进行无损探伤,并且具有结构简单、频率响应宽、灵敏度高、测量线性范围大、体积小等优点。 2、为什么螺管型电感传感器比变气隙型电感传感器有更大的测位移范围?答:变气隙型灵敏度高,因为原始气隙δ0一般取得很小(0.1~0.5mm),当气隙变化为△δ=1μm时,电感的相对变化量△L/L0可达0.01~0.002,因而它对处理电路的放大倍数要求低。它的主要缺点是非线性严重,为了减小非线性,量

部分习题参考答案(传感器原理与应用,第5章)

部分习题参考答案 第5章电感式传感器 5.1何谓电感式传感器?电感式传感器分为哪几类? 答: 电感式传感器是一种机-电转换装置,电感式传感器是利用线圈自感和互感 的变化实现非电量电测的一种装置,传感器利用电磁感应定律将被测非电量转换 为电感或互感的变化。它可以用来测量位移、振动、压力、应变、流量、密度等 参数。 电感式传感器种类:自感式、涡流式、差动式、变压式、压磁式、感应同步 器。 5.2提高电感式传感器线性度有哪些有效的方法。 答:电感传感器采用差动形式,转换电路采用相敏检波电路可有效改善线性度。5.3说明单线圈和差动变间隙式电感传感器的结构、工作原理和基本特性。 答:参看教材和授课用PPT 5.4说明产生差动电感式传感器零位残余电压的原因及减小此电压的有效措施。答:差动变压器式传感器的铁芯处于中间位置时,在零点附近总有一个最小的输 出电压U,将铁芯处于中间位置时,最小不为零的电压称为零点残余电压。产0 生零点残余电压的主要原因是由于两个次级线圈绕组电气系数(互感M、电感 L、内阻R)不完全相同,几何尺寸也不完全相同,工艺上很难保证完全一致。 为减小零点残余电压的影响,除工业上采取措施外,一般要用电路进行补偿: ①串联电阻;②并联电阻、电容,消除基波分量的相位差异,减小谐波分量;③ 加反馈支路,初、次级间加入反馈,减小谐波分量;④相敏检波电路对零点残余 误差有很好的抑制作用。 5.5为什么螺线管式电传感器比变间隙式电传感器有更大的测位移范围? 答:螺线管式差动变压器传感器利用互感原理,结构是:塑料骨架中间绕一个初

级线圈,两次级线圈分别在初级线圈两边,铁心在骨架中间可上下移动,根据传感器尺寸大小它可测量1~100mm范围内的机械位移。变间隙式电感传感器是利 用自感原理,衔铁的与铁芯之间位移(气隙)与磁阻的关系为非线性关系,可动线性范围很小,因此测量范围受到限制。 5.6电感式传感器测量电路的主要任务是什么? 答:主要是将电感值的变化转变为容易测量的电参数,例如电压、电流、电信号的频率等。 5.7概述变间隙式差动变压器的结构、工作原理和输出特性,试比较单线圈和差 动螺线管式电传感器的基本特性,说明它们的性能指标有何异同? 答:参照教材和授课PPT。 5.8差动变压器式传感器的测量电路有几种类型?试述差动整流电路的组成和 基本原理。 答:全波电流输出、半波电流输出、全波电压输出、半波电压输出、相敏整流电压输出。 5.10什么叫电涡流效应?说明电涡流式传感器的基本结构与工作原理。电涡流 式传感器的基本特性有哪些?它是基于何种模型得到的? 答:(1)块状金属导体置于变化的磁场中或在磁场中作用切割磁力线运动时,导 体内部会产生一圈圈闭和的电流,这种电流叫电涡流,这种现象叫做电涡流效应。 (2)形成涡流必须具备两个条件:第一存在交变磁场;第二导电体处于交变磁场中。电涡流式传感器通电后线圈周围产生交变磁场,金属导体置于线圈附近。当金属导体靠近交变磁场中时,导体内部就会产生涡流,这个涡流同样产生交变磁场。由于磁场的反作用使线圈的等效电感和等效阻抗发生变化,使流过线圈的电流大小、相位都发生变化。通过检测与阻抗有关的参数进行非电量检测。 (3)因为金属存在趋肤效应,电涡流只存在于金属导体的表面薄层内,实际上涡流的分布是不均匀的。涡流区内各处的涡流密度不同,存在径向分布和轴向分布。所以电涡流传感器的检测范围与传感器的尺寸(线圈直径)有关。

部分习题参考答案(传感器原理及应用,第5章)

部分习题参考答案 第5章 电感式传感器 5.1 何谓电感式传感器?电感式传感器分为哪几类? 答: 电感式传感器是一种机-电转换装置,电感式传感器是利用线圈自感和互感的变化实现非电量电测的一种装置,传感器利用电磁感应定律将被测非电量转换为电感或互感的变化。它可以用来测量位移、振动、压力、应变、流量、密度等参数。 电感式传感器种类:自感式、涡流式、差动式、变压式、压磁式、感应同步器。 5.2 提高电感式传感器线性度有哪些有效的方法。 答:电感传感器采用差动形式,转换电路采用相敏检波电路可有效改善线性度。 5.3 说明单线圈和差动变间隙式电感传感器的结构、工作原理和基本特性。 答:参看教材和授课用PPT 5.4 说明产生差动电感式传感器零位残余电压的原因及减小此电压的有效措施。 答:差动变压器式传感器的铁芯处于中间位置时,在零点附近总有一个最小的输出电压0U ,将铁芯处于中间位置时,最小不为零的电压称为零点残余电压。产生零点残余电压的主要原因是由于两个次级线圈绕组电气系数(互感 M 、电感L 、内阻R )不完全相同,几何尺寸也不完全相同,工艺上很难保证完全一致。 为减小零点残余电压的影响,除工业上采取措施外,一般要用电路进行补偿:①串联电阻;②并联电阻、电容,消除基波分量的相位差异,减小谐波分量;③加反馈支路,初、次级间加入反馈,减小谐波分量;④相敏检波电路对零点残余误差有很好的抑制作用。 5.5 为什么螺线管式电传感器比变间隙式电传感器有更大的测位移范围? 答:螺线管式差动变压器传感器利用互感原理,结构是:塑料骨架中间绕一个初

级线圈,两次级线圈分别在初级线圈两边,铁心在骨架中间可上下移动,根据传感器尺寸大小它可测量1~100mm范围内的机械位移。变间隙式电感传感器是利用自感原理,衔铁的与铁芯之间位移(气隙)与磁阻的关系为非线性关系,可动线性范围很小,因此测量范围受到限制。 5.6 电感式传感器测量电路的主要任务是什么? 答:主要是将电感值的变化转变为容易测量的电参数,例如电压、电流、电信号的频率等。 5.7 概述变间隙式差动变压器的结构、工作原理和输出特性,试比较单线圈和差 动螺线管式电传感器的基本特性,说明它们的性能指标有何异同? 答:参照教材和授课PPT。 5.8 差动变压器式传感器的测量电路有几种类型?试述差动整流电路的组成和 基本原理。 答:全波电流输出、半波电流输出、全波电压输出、半波电压输出、相敏整流电压输出。 5.10 什么叫电涡流效应?说明电涡流式传感器的基本结构与工作原理。电涡流 式传感器的基本特性有哪些?它是基于何种模型得到的? 答:(1)块状金属导体置于变化的磁场中或在磁场中作用切割磁力线运动时,导体内部会产生一圈圈闭和的电流,这种电流叫电涡流,这种现象叫做电涡流效应。 (2)形成涡流必须具备两个条件:第一存在交变磁场;第二导电体处于交变磁场中。电涡流式传感器通电后线圈周围产生交变磁场,金属导体置于线圈附近。当金属导体靠近交变磁场中时,导体内部就会产生涡流,这个涡流同样产生交变磁场。由于磁场的反作用使线圈的等效电感和等效阻抗发生变化,使流过线圈的电流大小、相位都发生变化。通过检测与阻抗有关的参数进行非电量检测。 (3)因为金属存在趋肤效应,电涡流只存在于金属导体的表面薄层内,实际上涡流的分布是不均匀的。涡流区内各处的涡流密度不同,存在径向分布和轴向分布。所以电涡流传感器的检测范围与传感器的尺寸(线圈直径)有关。

相关主题
文本预览
相关文档 最新文档