当前位置:文档之家› 机器人路径规划概述

机器人路径规划概述

机器人路径规划概述
机器人路径规划概述

移动机器人是装备了机械腿、轮子、关节、抓握器等执行器以及控制器来完成特定任务的一种实体智能体。近年来,随着科学技术的飞快发展,移动机器人在工业、农业、医疗、服务、航空和军事等领域得到了广泛的应用,已成为学术研究的重点。在移动机器人的研究中,导航研究是核心,而路径规划是机器人导航研究的重要环节之一。在机器人执行任务时,要求机器人在工作环境中(有障碍物或无障碍物)能根据一定的评价标准搜索一条从起始地点到目标地点的最优或次优路径[1]。移动机器人的路径规划根据环境是否已知可分为基于地图的全局路径规划和基于传感器的局部路径规划。

1全局路径规划

1.1栅格分解法

栅格分解法是目前广泛研究的路径规划方法之一。该方法把移动机器人的运动环境分解为多个简单的栅格并根据它们是否被障碍物占据来进行状态描述,障碍物栅格和非障碍物栅格具有不同的标识值,它能快速直观地融合传感器信息。但是为了得到比较精确的规划结果,必须将环境划分为较小的栅格,这就导致存储空间增大,在大规模环境下路径规划的计算复杂程度将加大。为了克服栅格表示的存储空间问题,邰宜斌提了一种四叉树分割方法[2],该算法递归地把环境分解为大小不一的矩形区域,这些矩形区域或者完全被障碍物占据,或者是完全自由可行的。每次递归都将一个较大的栅格划分为4个较小的栅格,取得了较好的计算效果。另外栅格分解法随着机器人自由度的增加会出现“维数灾难”问题,不适用于解决多自由度机器人在复杂环境中的路径规划。Frank在2004年提出了概率栅格分解算法,在该算法中引入随机采样,可使多自由度机器人在复杂环境中快速找到一条可行路径。2006年吕太之等在概率栅格分解算法的基础上引入了Anytime算法,将随机采样应用到栅格分解算法中,使算法效率得到了提高,但是受环境信息和随机采样的影响比较大[3]。

1.2拓扑法

拓扑法主要包括三部分:划分状态空间、构建特征网、在特征网上搜索路径。拓扑法的基本要素是节点和边,用节点表示某个特定的位置,用边表示这些位置之间的联系,可以用G=(V,E)描述空间的特征,其中V表示顶点集合,E表示连接顶点的边集合[4]。利用该方法可缩小搜索空间,使得存储需求小,适合于大规模环境的路径规划,但是构建特征网的过程比较复杂,而且当障碍物增加时如何将增加的节点与已有节点进行节点匹配是一个难点。2005年,王力虎等提出了一种适用于清扫机器人的区域充满拓扑算法,用传感器感知环境信息以建立环境的拓扑地图,机器人可以利用搜索图的方法搜索环境,可达到环境的有效覆盖,但在搜索时没有

移动机器人路径规划研究现状及展望

张海英,范进桢

(宁波职业技术学院,浙江宁波315800)

摘要:移动机器人路径规划技术是机器人研究领域中的核心技术之一。通过对全局路径规划和局部路径规划中各种方法的分析,指出了各种方法的优点和不足以及改进的办法,并对移动机器人路径规划技术的发展趋势进行了展望。

关键词:移动机器人;路径规划;遗传算法

中图分类号:TP242文献标识码:A文章编号:1674-7720(2011)02-0005-04

Research progress and future development of mobile robot path planning

Zhang Haiying,Fan Jinzhen

(Ningbo Polytechnic Institute,Ningbo315800,China)

Abstract:Mobile robot path planning technology is one of core-technology in robot research domain.By analyzing algorithms of global path planning and local path planning,this paper points out the advantages and disadvantages of the present algorithms, and improved methods.In addition,describes the trend of mobile robot path planning.

Key words:mobile robot;path planning;genetic algorithm

综述与评论Review and Comment

5

《微型机与应用》2011年第30卷第2期欢迎网上投稿https://www.doczj.com/doc/da6853736.html,

具体体现节点间的距离、清扫覆盖率等信息,使得搜索效率不是很高[5]。2006年,种琤等提出了一种基于扫描法的构造环境拓扑图方法,利用启发式函数法实现对所构建拓扑图的扩展,采用了逐步构建环境拓扑图的方式,实现了在线构建,可应用于任意工作环境,且计算复杂度低,但此算法不能保证搜索到最优路径[6]。

1.3惩罚函数法

在机器人运行环境中因为有障碍物,使得机器人的路径规划成为一个有约束的问题,惩罚函数法将这个有约束的问题转化为一系列无约束极小化问题,再通过解决这些无约束问题获得原约束问题的最优解[7]。柳在鑫、王进戈等在2009年将机器人的路径规划问题转化为一类带有不等式约束条件的非线性极小化问题,并采用惩罚函数法来求解此类问题,该方法原理简单,算法易行,使用范围广[8]。

2局部路径规划

2.1人工势场法

人工势场法是机器人局部路径规划中最经典的方法,该方法是由Khatib在1986年提出的,它的基本原理是:把机器人在工作环境中的运动看作是在一个人造受力场中的运动,其中目标对机器人产生引力,障碍物对机器人产生斥力,机器人在这两类力的合力作用下向目标前进[9],该合力就是机器人的加速度力,可用来控制机器人的运动方向,利用人工势场法进行机器人的路径规划,计算简单,所规划的路径光滑,有较好的实时性,但会因为局部最小值而导致目标点不能到达。近几年来国内陆续有学者提出了一些改进方法。2006年,刘义等提出了修改斥力函数法,用来解决局部最小值问题[10]。哈尔滨工业大学的张建英等提出了添加附加控制力的方法,即当机器人在障碍物附近振荡,无法离开障碍物时,给机器人施加一个控制力,使机器人绕过障碍物向目标位置前进,但通过此方法规划的路径在障碍物边缘有抖动现象产生[11]。

2.2遗传算法

遗传算法(GA)的概念最初是由Bagley和Rosengerg 于1967年在其博士论文中首先提出了的。在1975年美国Michigan大学的J.Holland教授把它写到了专著《Adaptation in Natural and Artificial Systems》中,此后GA 才逐渐为人所知,并且广泛应用到控制、规划、优化设计等方面。利用GA算法对移动机器人进行路径规划的基本步骤为:

(1)选择编码方式,并将路径用编码表示;

(2)产生初始群体;

(3)确定适应度函数并根据适应度函数计算初始群体的适应度值;

(4)如果不满足条件,{选择、交换、变异、计算新一代群体的适应性值};

(5)输出结果。

遗传算法直接对移动机器人的路径进行操作,采用概率化的寻优方法,自适应地调整搜索方向,不采用确定性搜索规则,易于并行化,但对于未知复杂环境,利用遗传算法进行路径规划时运算速度慢,而且需要占据大量的存储空间。近几年许多研究学者提出了一些改进后的遗传算法,例如王洲等提出了移动机器人在静态障碍物环境中路径规划的新方法,该方法设计了5个遗传算子(选择、交叉、变异、删除、插入),并且提出了新的变异算子、插入算子和删除算子,加快了较好个体在群体中的传播,提高了路径搜索速度和解的精度[12]。对于遗传算法的改进,王新杰等将其与图搜索法相结合,用Di-jkstra算法王求得初始路径,再利用遗传算法的一系列选择、交叉、变异操作来优化路径,这种方法减少了搜索的盲目性,不会产生无效路径[13]。当机器人处于静动态障碍物同时存在的环境中时,卢瑾等在机器人路径规划时引入了双重遗传算法机制,第一重算法针对静态障碍物环境,第二重算法针对动态障碍物环境,两重算法采用不同的适应度函数作为评价标准,通过改进操作算子、引入优化算子,可快速有效地找到同时能避开静动态障碍物的最优路径,仿真结果验证了该方法的有效性。但对于动态的、未知复杂环境下的路径规划没有进行验证[14]。

2.3模拟退火算法

模拟退火算法(SA)依据固体退火原理,固体在加温时,内部粒子运动随温升增强,变为无序状,再进行退火,粒子运动减弱并渐趋有序,最后达到稳定。把机器人在未知环境中的运动看作是粒子的布朗运动,可以对其随机性的扰动应用模拟退火算法来引导机器人向势能最小的方向运动,从而实现机器人在线的路径规划[4,15]。利用SA进行移动机器人路径规划的一般步骤如下:

(1)初始化运行参数,给定起始点、终止点及初始搜索方向;

(2)确定势能函数和方向函数,对k=1,…,L(迭代次数)做第(3)至(6)步;

(3)产生新解;

(4)建立局部寻优评估函数,计算增量;

(5)若增量小于零则接受新解作为新的当前解,否则根据Metropolis以概率e-ΔE/(kT)接受新解作为新的当前解;

(6)输出最优解。

模拟退火算法与初始值无关,具有描述简单、使用灵活、鲁棒性强等优点,当退火速度慢时执行时间长、收敛速度慢,得到的解性能比较好,当退火速度快时可能得不到最优解。对于模拟退火算法的改进可以从采用并行搜索结构、改进对温度的控制方式、设计合适的评估函数等方面进行。王仲民等在用模拟退火算法对移动机器人进行路径规划时减少了路径搜索过程中所出现冗

综述与评论Review and Comment

6

《微型机与应用》2011年第30卷第2期

余路径点的数量,重新生成路径,生成后的路径减少了迂回,有效提高了算法的收敛速度[16]。

2.4蚁群算法

蚁群算法是由Dorigo M在1991年提出的,主要应用于旅行商问题(TSP)、调度问题(JSP)、车辆路线问题(GCP)[17],近年来一些学者例如Liu G利用蚁群算法进行机器人路径规划的研究[18],利用蚁群算法进行移动机器人路径规划的一般步骤如下:

(1)建立环境模型;

(2)建立巢穴邻近区和食物气味区;

(3)在邻近区放足够多的蚂蚁;

(4)每只蚂蚁方向函数选择行走栅格;

(5)若产生无效路径则删除,否则直到蚂蚁到达食物终点;

(6)调整有效路径并保存最优路径;

(7)更改有效路径的信息。

重复(3)~(7)直到达到某个迭代次数,结束整个算法[4]。

蚁群算法由于采用启发式搜索,容易陷入早熟,而很难发现其他更优路径,可以结合启发式搜索和随机搜索的方法进行改进。例如杨志晓等提出了一种改进的蚁群算法,该算法在对机器人进行路径规划时引入了优先级和起始目标导引函数,采用状态转移概率和优先级的组合优化方法来平衡各路径的信息量,算法在初始阶段的搜索范围大,有效避免了早熟现象,算法在后期根据起始目标导引函数来寻求最优路径[19]。

3混合路径规划方法

混合路径规划方法是结合一种或两种算法的优点,相互之间取长补短,以提高规划效率。郑秀敏等在2007年提出了一种栅格法-模拟退火法,即用栅格法表示环境信息,利用模拟退火算法进行局部路径规划,使路径跳出局部极小值,到达目标位置[20]。

黄席樾等在对移动机器人进行静态路径规划时提出了一种基于神经网络模型的遗传算法和模拟退火算法相结合的方法,对环境采用神经网络模型表示,利用中间路径点不在障碍物内的约束条件建立与神经网络的输出关系,编码时把无碰撞作为约束条件,把最短路径作为适应度函数选择的条件,仿真结果表明,该方法在路径规划时收敛性好,有效地提高了路径规划的质量[21]。杜宗宗等在移动机器人的路径规划中运用模拟退火算法对遗传算法进行优化,并将避开障碍物的初始种群生成方法和基于启发式知识的遗传算子的设计方法应用其中,避免了遗传算法收敛较慢、局部寻优能力差、易陷入局部极值点等缺点,使得遗传算法和模拟退火算法在路径规划中达到优势互补的目的;仿真结果表明,在种群规模较大且进化代数充足的情况下,该算法的成功率更高、平均代价值更小、路径长度更短[22]。

续欣莹等提出了一种基于人工免疫势场法的移动机器人路径规划算法,该算法在生成初始路径群后将路径长度作为适应度函数,通过免疫操作进行路径优胜劣汰的选择,有效防止了“早熟收敛”现象的产生,仿真结果表明了该算法的有效性[23]。

国海涛等提出了一种结合蚂蚁算法与遗传算法的机器人路径规划方法,先用栅格法对机器人的运动空间建模,然后用蚂蚁算法进行全局搜索,搜索出一条导航路径,再对该路径上的点用遗传算法进行调节,最后得到近似最优路径,仿真结果表明该方法能使机器人快速规划出路径,具有操作简单、不会陷入局部最优等优点[24]。肖本贤等提出了一种在复杂环境中机器人路径规划的新方法,该方法为了缩小最优解的范围采用随机搜索和重点搜索相结合的搜索方式,同时采用最大-最小蚂蚁系统MMAS算法[25,26]的思想动态调整路径上的信息激素,缩短了搜索时间,大大减小了陷入局部解的概率[27]。

4展望

(1)对环境的感知技术。机器人必须通过传感器感知环境的信息,处理器通过处理这些传感器信息后,进一步决策机器人的具体行为。如何正确地感知环境信息,关键在传感器,只有先进的传感器才能有效地采集环境信息,从而提高机器人动作的准确性。目前超声波、激光雷达、视觉等传感器在移动机器人中得到了实际应用,但是这些传感器都有一定的局限性,例如超声波传感器的检测范围取决于其使用的波长和频率,视觉传感器所获得图像的清晰和细腻程度取决于分辨率,分辨率越高图像越清晰,但所需的存储空间就越大,图像分析和处理速度就越慢。所以对移动机器人的环境感知技术将是未来移动机器人研究的一个突出方面。

(2)多传感器信息融合技术。多传感器信息融合的目的是提高系统的可靠性和鲁棒性,在移动机器人路径规划中,传感器起了很重要的作用,多传感器所获得的信息具有冗余性、互补性、协同性,可对现场环境进行快速并行分析,有利于机器人快速找到有效路径。但是多传感器信息融合技术还存在很多难题,例如如何减小信息融合的错误率、如何提高信息融合的实时性、如何建立有效的信息融合质量评价机制等。

(3)群体机器人的路径规划技术。群体机器人在协作工作时都希望能找到一条无碰撞、最快到达目标的路径,群体机器人路径规划既要考虑避障又要考虑机器人之间的相互协作,在路径规划上难度将增加,另外当目标点移动时还要考虑目标的位置信息和速度信息,整个路径规划将更加复杂,这方面研究是今后研究的重点。

目前,对移动机器人的路径规划研究提出了很多方法,但尚未形成统一和完善的体系,还有许多关键问题例如机器人运动环境建模、机器人导航控制器的学习和优化、实时故障诊断、实时运动规划与控制等技术问题亟待解决和完善。

综述与评论Review and Comment

7

《微型机与应用》2011年第30卷第2期欢迎网上投稿https://www.doczj.com/doc/da6853736.html,

(上接第4页)

仅成为军事上必不可少的电子装备,并且在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地址调查等方面也显示了很好的应用潜力。用一部雷达代替多部雷达的功能,使一种雷达具有多种对抗能力,即多功能复合体制雷达[6]应是发展重点之一。

参考文献

[1]丁鹭飞,耿富录,陈建春.雷达原理[M].北京:电子工业出

版社,2009.

[2]吴顺君,梅晓春.雷达信号处理和数据处理技术[M].北

京:电子工业出版社,2008.

[3]陆莉.近20年来我国对东盟经济研究论文的统计分析

[J].现代情报,2008(2):209-212.[4]罗式胜.文献计量学引论[M].北京:书目文献出版社,

1987.

[5]GB7713-87.论文写作规范国家标准[S].

[6]邱荣钦.雷达技术的发展[J].电子科学技术评论,2005

(3):1-6.

(收稿日期:2010-10-19)

作者简介:

罗星华,女,1983年生,硕士,主要研究方向:信号与信息处理、信息服务、参考咨询、情报研究。

张碧锋,男,1983年生,硕士研究生,助理工程师,主要研究方向:信号与信息处理。

参考文献

[1]李磊,叶涛,谭民,等.移动机器人技术研究现状与未来

[J].机器人,2002,24(5):475-480.

[2]邰宜斌,席裕庚.一种机器人路径规划的新方法[J].上海

交通大学学报,1996,30(4):94-100.

[3]吕太之,赵春霞.基于改进概率栅格分解的路径规划[J].

计算机工程,2007,33(21):160-165.

[4]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制

理论与方法[M].北京:科学出版社,2009.

[5]王力虎,张海洪.室内清扫机器人区域充满拓扑算法[J].

机械工程师,2005(1):17-19.

[6]种琤,陈阳舟,崔平远,等.基于扫描法在线构造拓扑图

的路经规划算法[J].计算机仿真,2006,23(4):147-150.

[7]靖民,梁迎春.机械优化设计[M].北京:机械工业出版

社,2007:145-150.

[8]柳在鑫,王进戈,王强,等.利用渐开线的足球机器人射

门算法研究[J].西安交通大学学报,2009,43(1):95-98.[9]KHATIB.Real-time obstacle for manipulators and mobile

robot[J].The International Journal of Robotic Research,

1986,5(1):90-98.

[10]刘义,张宇.基于改进人工势场法的移动机器人局部路

径规划的研究[J].现代机械,2006(6):48-49.

[11]张建英,赵志萍,刘暾.基于人工势场法的机器人路径

规划(J).哈尔滨工业大学学报,2006,38(8):1306-1309.

[12]王洲,张毅,杨锐敏,等.基于遗传算法的移动机器人路

径规划[J].微计算机信息,2008,24(26):187-189. [13]王新杰,武秋俊.基于改进遗传算法的移动机器人路径

规划[J].煤矿机械,2008,29(4):28-30.

[14]卢瑾,柳东勇.基于双重遗传算法机制的路径规划[J].

系统仿真学报,2008,20(8):2048-2051.

[15]KIRKPATRICK S,GELATT C D,VECCHI M P.Opti-

mization by Simulated Annealing[J].Science,1983,220

(4598):671-680.

[16]王仲民,岳宏,刘继岩.基于改进模拟退火算法的移动

机器人路径规划[J].计算机工程与应用,2005,41(19):59-60,82.[17]DORIGO M,BONABEAU E.Ant algorithms and stigmergy

[J].Future Generation Computer Systems,2000(16):851-871.

[18]LIU G.The ant algorithm for solving robot path planning

problem[C].Third International Conf.on Information Tech-

nology any Applications,2005(ICITA2005),2005,2(4-7):

25-27.

[19]杨志晓,郭胜国.基于改进蚁群算法的机器人路径规划

算法[J].微计算机信息,2008,24(20):252-253.

[20]郑秀敏,顾大鹏,刘相术.基于栅格法-模拟退火法的机

器人路径规划[J].机器人技术,2007,23(2):247-248.

[21]黄席樾,蒋卓强.基于遗传模拟退火算法的静态路径规

划研究[J].重庆工学院学报(自然科学版),2007,21(6):53-57.

[22]杜宗宗,刘国栋.基于遗传模拟退火算法的移动机器人

路径规划[J].计算机仿真,2009,26(12):118-121. [23]续欣莹,谢裙,谢克明.基于人工免疫势场法的移动机

器人路径规划[J].北京工业大学学报,2008,34(10):

1116-1119.

[24]国海涛,朱庆保,司应涛.一种蚂蚁遗传融合的机器人

路径规划新算法[J].小型微型计算机系统,2008,29

(10):1838-1840.

[25]DORIGO M,GAMBARDELLA L M,MIDDENORF,et al.

Guest editorial:special section on ant colony optimization

[J].IEEE Transactions on Evolutionary Computation,2002,6

(4):317-319.

[26]STUTZLE T,HOOS H.MAX-MIN ant system[J].Future

Generation Computer Systems,2000,16(9):889-914. [27]肖本贤,刘刚,余雷.基于MMAS的机器人路径规划[J].

合肥工业大学学报,2008,31(1):63-67.

(收稿日期:2010-09-29)

作者简介:

张海英,女,1978年生,硕士,讲师,主要研究方向:机器人、智能控制。

范进桢,男,1964年生,博士后,教授,主要研究方向:机电一体化产品设计、研发。

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!综述与评论Review and Comment

8

《微型机与应用》2011年第30卷第2期

遗传算法与机器人路径规划

遗传算法与机器人路径规划 摘要:机器人的路径规划是机器人学的一个重要研究领域,是人工智能和机器人学的一个结合点。对于移动机器人而言,在其工作时要求按一定的规则,例如时间最优,在工作空间中寻找到一条最优的路径运动。机器人路径规划可以建模成在一定的约束条件下,机器人在工作过程中能够避开障碍物从初始位置行走到目标位置的路径优化过程。遗传算法是一种应用较多的路径规划方法,利用地图中的信息进行路径规划,实际应用中效率比较高。 关键词:路径规划;移动机器人;避障;遗传算法 Genetic Algorithm and Robot Path Planning Abstract: Robot path planning research is a very important area of robotics, it is also a combine point of artificial intelligence and robotics. For the mobile robot, it need to be worked by certain rulers(e.g time optimal),and find a best movement path in work space. Robot path planning can be modeled that in the course of robots able to avoid the obstacles from the initial position to the target location,and it ruquire to work under ertain constraints. Genetic algorithm used in path planning is very common, when planning the path ,it use the information of map ,and have high eficient in actual. Key words: Path planning,mobile robot, avoid the obstacles, genetic algorithm 1路径规划 1.1机器人路径规划分类 (1)根据机器人对环境信息掌握的程度和障碍物的不同,移动机器人的路径规划基本上可分为以下几类: 1,已知环境下的对静态障碍物的路径规划; 2,未知环境下的对静态障碍物的路径规划; 3,已知环境下对动态障碍物的路径规划; 4,未知环境下的对动态障碍物的路径规划。 (2)也可根据对环境信息掌握的程度不同将移动机器人路径规划分为两种类型: 1,基于环境先验完全信息的全局路径规划; 2,基于传感器信息的局部路径规划。 (第二种中的环境是未知或部分未知的,即障碍物的尺寸、形状和位置等信息必须通过传感器获取。) 1.2路径规划步骤 无论机器人路径规划属于哪种类别,采用何种规划算法,基本上都要遵循以下步骤: 1, 建立环境模型,即将现实世界的问题进行抽象后建立相关的模型; 2, 路径搜索方法,即寻找合乎条件的路径的算法。 1.3路径规划方法

机器人路径规划

1绪论 1.1机器人简介 1.1.1什么是机器人 机器人一词不仅会在科幻小说、动画片等上看到和听到,有时也会在电视上看到在工厂进行作业的机器人,在实际中也有机会看到机器人的展示。今天,说不定机器人就在我们的身过,但这里我们要讨论的是什么是机器人学研究的机器人。 机器人(robot)一词来源下1920年捷克作家卡雷尔. 查培克(Kapel Capek)所编写的戏剧中的人造劳动者,在那里机器人被描写成像奴隶那样进行劳动的机器。 后来作为一种虚构的机械出现在许多作品中,代替人们去完成某些工作。20世纪60年代出现了作为可实用机械的机器人。为了反这种机器人同虚构的机器人及玩具机器人加以区别,称其为工业机器人。 工业机器人的兴起促进了大学及研究所开展机器人的研究。随着计算机的普及,又积极地开展了带有智能的机器人的研究。到70年代,机器人作为工程对象已经被确认,机器人一词也受到公认。目前,机器人学的研究对象已不仅仅是工业机器人了。 即便是实际存在的机器人,也很难把它定义为机器人,而且其定义也随着时代在变化。这里简单地反具有下述性质的机械看作是机器人: 1.代替人进行工作:机器人能像人那样使用工具和机械,因此,数控机床和 汽车不是机器人。 2.有通有性:既可简单地变换所进行的作为,又能按照工作状况的变化相应 地进行工作。一般的玩具机器人不能说有通用性。 3.直接对个界作工作:不仅是像计算机那样进行计算,而且能依据计算结果 对外界结果对外界产生作用。 机器人学把这样定义的机器人作为研究对象。

1.1.2机器人的分类 机器人的分类方法很多,这里我们依据三个有代表性的分类方法列举机器人的种类。 首先,由天机器人要代替人进行作业,因此可根据代替人的哪一个器官来分类: 操作机器人(手):利用相当于手臂的机械手、相当于手指的手爪来使物体协作。 移动机器人(腿):虽然已开发出了2足步行和4足步行机器人,但实用的却是用车轮进行移动的机器人。(本文以轮式移动机器人作为研究对象)视觉机器人(眼):通过外观检查来除掉残次品,观看人的面孔认出是谁。虽然还有使用触觉的机器人,但由于它不是为了操作,所以不能说是触觉机器人。 也还有不仅代替单一器官的机器人,例如进行移动操作,或进行视觉和操作的机器人。 其次,按机器人的应用来分类: 工业机器人:可分为搬送、焊接、装配、喷漆、检查等机器人,主要用于工厂内。 极限作业器人:主要用在人们难以进入的核电站、海底、宇宙空间等进行作为的机器人。也包括建筑、农业机器人等。 娱乐机器人:有弹奏乐器的机器人、舞蹈机器人、宠物机器人等,具有某种程度的通用性。也有适应环境面改变行动的宠物机器人。 最后则是按照基于什么样的信息进行动作来分类: 表1基于动作信息的机器人分类

path planning 移动机器人路径规划方法综述

移动机器人路径规划方法 1.1路径规划方法 路径规划技术是机器人研究领域中的一个重要课题,是机器人导航中最重要的任务之一,国外文献常将其称为Path Planning,Find-PathProblem,Collision-Free,ObstacleAvoidance, MotionPlanning,etc.所谓机器人的最优路径规划问题,就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。 路径规划主要涉及的问题包括:利用获得的移动机器人环境信息建立较为合理的模型,再用某种算法寻找一条从起始状态到目标状态的最优或近似最优的无碰撞路径;能够处理环境模型中的不确定因素和路径跟踪中出现的误差,使外界物体对机器人的影响降到最小;如何利用已知的所有信息来引导机器人的动作,从而得到相对更优的行为决策。这其中的根本问题是世界模型的表达和搜寻策略。障碍物在环境中的不同分布情况当然直接影响到规划的路径,而目标位置的确定则是由更高一级的任务分解模块提供的[8]。 根据机器人对环境信息掌握的程度和障碍物运动状态的不同,移动机器人的路径规划基本上可分为以下四类:①已知环境下的对静态障碍物的路径规划;②未知环境下的对静态障碍物的路径规划;③已

知环境下对动态障碍物的路径规划;④未知环境下对动态障碍物的路径规划。因此根据机器人对环境信息掌握的程度不同,可将机器人的路径规划问题可分为二大类即:基于环境先验信息的全局路径规划问题和基于不确定环境的局部路径规划问题。目前,路径规划研究方法大概可分为两大类即:传统方法和智能方法。 1.2传统路径规划方法 传统的路径规划方法主要包括:可视图法(V-Graph)、自由空间法(Free Space Approach)、人工势场法(Artificial Potential Field)和栅格法(Grids)等。 ⑴可视图法(V-Graph) 可视图法是Nilsson1968年在文献[9]中首次提出。可视图法将移动机器人视为一点,将机器人起始点、目标点和多边形障碍物的各定点组合连接,保证这些直线不与障碍物相交,这就构成了一张无向图称为可视图。由于任意两条直线的定点都是可见的,从起点沿着这些直线到达目标点的路线都是无碰撞的。于是,搜索最优路径的问题就转化为从起始点到目标点经过这些可视直线的最短距离问题。 这种方法的优点是可以得到最优路径,但缺陷是环境特征的提取比较困难,缺乏灵活性,一般需要机器人停止在障碍物前搜集传感器数据,并且传感器的精度对其影响也较大,尤其在复杂的非规整环境下更加难以实现安全无碰撞的路径规划。 ⑵自由空间法(Free Space Approach)

机器人路径规划方法的研究

第5期(总第156期) 2009年10月机械工程与自动化 M ECHAN I CAL EN G I N EER I N G & AU TOM A T I ON N o 15 O ct 1 文章编号:167226413(2009)0520194203 机器人路径规划方法的研究 李爱萍,李元宗 (太原理工大学机械工程学院,山西 太原 030024) 摘要:路径规划技术是机器人学研究领域中的一个重要部分。目前的研究主要分为全局规划方法和局部规划方法两大类。通过对机器人路径规划方法研究现状的分析,指出了各种方法的优点及不足,并对其发展方向进行了展望。 关键词:机器人;全局规划;局部规划中图分类号:T P 242 文献标识码:A 收稿日期:2009201207;修回日期:2009204218 作者简介:李爱萍(19792),女,山西晋中人,在读硕士研究生。 0 引言 路径规划技术是机器人学研究领域中的一个重要 部分。机器人的最优路径规划就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在其工作空间中找到一条从起始状态到目标状态的最优路径。根据对环境信息的掌握程度不同,路径规划可分为:①全局路径规划:环境信息完全已知,根据环境地图按照一定的算法搜寻一条最优或者近似最优的无碰撞路径,规划路径的精确程度取决于获取环境信息的准确程度;②局部路径规划:环境信息完全未知或部分未知,根据传感器的信息来不断地更新其内部的环境信息,从而确定出机器人在地图中的当前位置及周围局部范围内的障碍物分布情况,并在此基础上,规划出一条从当前点到某一子目标点的最优路径。 1 全局规划方法111 栅格法 栅格法是目前研究最广泛的路径规划方法之一。该方法将机器人的工作空间分解为多个简单的区域(栅格),由这些栅格构成一个显式的连通图,或在搜索过程中形成隐式的连通图,然后在图上搜索一条从起始栅格到目标栅格的路径。一般路径只需用栅格的序号表示。但栅格的划分直接影响其规划结果,如果栅格划分过大,环境信息储藏量小,分辨率下降,规划能力就差;栅格划分过小,规划时间长,而且对信息存储能力的要求会急剧增加。112 可视图法 可视图法中的路径图由捕捉到的存在于机器人一 维网络曲线(称为路径图)自由空间中的节点组成。路径的初始状态和目标状态同路径图中的点相对应,这样路径规划问题就演变为在这些点间搜索路径的问题。要求机器人和障碍物各顶点之间、目标点和障碍物各顶点之间以及各障碍物顶点与顶点之间的连线均不能穿越障碍物,即直线是“可视的”。然后采用某种方法搜索从起始点到目标点的最优路径,搜索最优路径的问题就转化为从起始点到目标点经过这些可视直线的最短距离问题。该法能够求得最短路径,但需假设忽略机器人的尺寸大小,使得机器人通过障碍物顶点时离障碍物太近甚至接触,并且搜索时间长。113 拓扑法 拓扑法将规划空间分割成具有拓扑特征的子空间,根据彼此的连通性建立拓扑网络,在网络上寻找起始点到目标点的拓扑路径,最终由拓扑路径求出几何路径。拓扑法的基本思想是降维法,即将在高维几何空间中求路径的问题转化为低维拓扑空间中判别连通性的问题。其优点在于利用拓扑特征大大缩小了搜索空间,其算法的复杂性仅依赖于障碍物数目,在理论上是完备的;而且拓扑法通常不需要机器人的准确位置,对于位置误差也就有了更好的鲁棒性。缺点是建立拓扑网络的过程相当复杂,特别是在增加障碍物时如何有效地修正已经存在的拓扑网是有待解决的问题。 114 自由空间法 自由空间法采用预先定义的广义锥形或凸多边形等基本形状构造自由空间,并将自由空间表示为连通图,通过搜索连通图来进行路径规划。自由空间的构

移动机器人路径规划技术综述

第25卷第7期V ol.25No.7 控制与决策 Control and Decision 2010年7月 Jul.2010移动机器人路径规划技术综述 文章编号:1001-0920(2010)07-0961-07 朱大奇,颜明重 (上海海事大学水下机器人与智能系统实验室,上海201306) 摘要:智能移动机器人路径规划问题一直是机器人研究的核心内容之一.将移动机器人路径规划方法概括为:基于模版匹配路径规划技术、基于人工势场路径规划技术、基于地图构建路径规划技术和基于人工智能的路径规划技术.分别对这几种方法进行总结与评价,最后展望了移动机器人路径规划的未来研究方向. 关键词:移动机器人;路径规划;人工势场;模板匹配;地图构建;神经网络;智能计算 中图分类号:TP18;TP273文献标识码:A Survey on technology of mobile robot path planning ZHU Da-qi,YAN Ming-zhong (Laboratory of Underwater Vehicles and Intelligent Systems,Shanghai Maritime University,Shanghai201306, China.Correspondent:ZHU Da-qi,E-mail:zdq367@https://www.doczj.com/doc/da6853736.html,) Abstract:The technology of intelligent mobile robot path planning is one of the most important robot research areas.In this paper the methods of path planning are classi?ed into four classes:Template based,arti?cial potential?eld based,map building based and arti?cial intelligent based approaches.First,the basic theories of the path planning methods are introduced brie?y.Then,the advantages and limitations of the methods are pointed out.Finally,the technology development trends of intelligent mobile robot path planning are given. Key words:Mobile robot;Path planning;Arti?cial potential?eld;Template approach;Map building;Neural network; Intelligent computation 1引言 所谓移动机器人路径规划技术,就是机器人根据自身传感器对环境的感知,自行规划出一条安全的运行路线,同时高效完成作业任务.移动机器人路径规划主要解决3个问题:1)使机器人能从初始点运动到目标点;2)用一定的算法使机器人能绕开障碍物,并且经过某些必须经过的点完成相应的作业任务;3)在完成以上任务的前提下,尽量优化机器人运行轨迹.机器人路径规划技术是智能移动机器人研究的核心内容之一,它起始于20世纪70年代,迄今为止,己有大量的研究成果报道.部分学者从机器人对环境感知的角度,将移动机器人路径规划方法分为3种类型[1]:基于环境模型的规划方法、基于事例学习的规划方法和基于行为的路径规划方法;从机器人路径规划的目标范围看,又可分为全局路径规划和局部路径规划;从规划环境是否随时间变化方面看,还可分为静态路径规划和动态路径规划. 本文从移动机器人路径规划的具体算法与策略上,将移动机器人路径规划技术概括为以下4类:模版匹配路径规划技术、人工势场路径规划技术、地图构建路径规划技术和人工智能路径规划技术.分别对这几种方法进行总结与评价,展望了移动机器人路径规划的未来发展方向. 2模版匹配路径规划技术 模版匹配方法是将机器人当前状态与过去经历相比较,找到最接近的状态,修改这一状态下的路径,便可得到一条新的路径[2,3].即首先利用路径规划所用到的或已产生的信息建立一个模版库,库中的任一模版包含每一次规划的环境信息和路径信息,这些模版可通过特定的索引取得;随后将当前规划任务和环境信息与模版库中的模版进行匹配,以寻找出一 收稿日期:2009-08-30;修回日期:2009-11-18. 基金项目:国家自然科学基金项目(50775136);高校博士点基金项目(20093121110001);上海市教委科研创新项目(10ZZ97). 作者简介:朱大奇(1964?),男,安徽安庆人,教授,博士生导师,从事水下机器人可靠性与路径规划等研究;颜明重(1977?),男,福建泉州人,博士生,从事水下机器人路径规划的研究.

机器人路径规划

机器人路径规划 摘要:机器人路径规划是机器人技术的重要分支之一,路径规划技术的研究是研究机器人技术不可或缺的技术之一。本文首先介绍了当前研究人员热衷的ROS 系统是如何进行路径规划的,接着论述了作为群智能算法的蚁群算法应用于机器人的路径规划中。研究表明,可以将蚁群算法和ROS系统结合,进一步的进行机器人的路径规划。 关键词:路径规划,ROS系统,蚁群算法,机器人 1.引言 智能移动机器人技术是机器人技术的重要组成部分,应用前景十分广阔:工业,农业,国防,医疗,以及服务业等[1]。文献提出,未来数年内,中国服务机器人发展将超过传统的工业机器人[2],机器人路径规划技术是服务机器人研究的核心内容之一[3]。可见,研究机器人的路径规划问题十分必要。 随着机器人领域的快速发展和复杂化,代码的复用性和模块化的需求原来越强烈,而已有的开源机器人系统又不能很好的适应需求。2010年Willow Garage 公司发布了开源机器人操作系统ROS(robot operating system),很快在机器人研究领域展开了学习和使用ROS的热潮。ROS系统是起源于2007年斯坦福大学人工智能实验室的项目与机器人技术公司Willow Garage的个人机器人项目(Personal Robots Program)之间的合作,2008年之后就由Willow Garage来进行推动。ROS的运行架构是一种使用ROS通信模块实现模块间P2P的松耦合的网络连接的处理架构,它执行若干种类型的通讯,包括基于服务的同步RPC(远程过程调用)通讯、基于Topic的异步数据流通讯,还有参数服务器上的数据存储。ROS系统以其独特优点引起了研究人员的兴趣。 近年来,各国学者致力于机器人路径规划的研究且取得了相当丰硕的研究成果。目前已有多种算法用于规划机器人的路径,文献【4】将其主要分为经典方

基于路径规划的智能机器人控制实验

I SSN C N 1 0 - 0 2 - 3 4 9 / 5 6 实验技术与管理 第27卷第12期201年1 2月 1 1 2 0 4 T E x p e r i m e n t a l T e c h n o l o g ya n d Ma n a g e m e n t Vo l .27N o .12D e c .201 基于路径规划的智能机器人控制实验 张佳,陈杰,窦丽华 ( 北京理工大学自动化学院,北京1081) 摘 验教学平台。在此平台上设计并开发了分别适用于本科生及硕士研究生的系列实验 规划、全区域覆盖路径规划以及多机器人队形控制等项实验内容。该实验能够让学生接触到先进的智能机 器人增强学生对自动化专业的学习兴趣提高了学生的动手能力和创新能力。 关键词智能机器人路径规划全区域覆盖队形控制 文献标志码文章编号 要 : 针对自动化专业学生 , 以 P i o n e e r 3 A T 系列的机器人为对象 , 搭建了基于路径规划的智能机器人实 , , 包括基于模型的路径 3 , , : ; ; ; 中图分类号 : T P 2 4 2 3 3 : A : 1 0 0 2 4 9 5 6 ( 2 0 1 0 ) 1 2 0 0 4 4 0 4 I n t e l l i g e n t r o b o t c o n t r o l e x p e r i m e n t s b as e d o n p a t h p l a n n i n g Zha n g J i a , Ch e n J i e , D o uL i hua ( S c h o o l o f A u t o m r a t i za t i o n , B e i e j i n g I n s t i t u t e o f T e c h n o l o g y , B e i j i r n g 1 0 0 0 8 1 r , Ch i n a ) A b s t r a c t : A i e m t i n g a t s t r ud e n n n i T t m o t t t s o f au t o e m a t i za m t e i o n m a j o r i , t h p i s p a p e m r t ak e s r o b n o o t s o r o f P i o n e e n 3 A T S e r i n e e sas o b p j e c t t a n d m c o n s t r u c sa n i x n t e l l i m g e o b o t x p o e r o e i n n t t o e a c h n e g l a t f o r , b as e d o p a t h p l a n t n i g .Bas ud e d e o n t h i s l a f o r b , as e r n i s e o x f p e p t e i e swh i c ha p p i n t d t u n d r p g r adua t i e t s c t ud e n t sa n d g adua e s t e n t s r g s p c t i v e l l ya r o n e d e s t i g n e da d l o e i r e m d. I t t n c l ud e s m d e l b as e d r p a t h p l p a o n n i n g o m p l t e t e c n v e a g e p a t h p t l a n n i n a e d m u l t c i r e b o f t o r m a t i e o n e x n p i e n . h e e x p e r i m t o f f e sa n o r t u n y f o r s ud e t s t w o r kw i hadva n c d i n t t e l i g t r b K o o s . I t n ha c e ss t t ud e n i s i n t e r e s t s t o l e a r n au t o m a t i za t i o n m a j o r . A l s o , s t ud e n t s i n n o va t i o n a b i l i y o u l d e i m p r o v e d b y e t h e e x p e o r e n t p . e y w o r d s : i n t l l i g e n r b t ; a t h p l a n n i n g ; c o m p l e t e c o v e r a g e ; f o r m a t i o n 自动化技术是一门涉及学科较多、应用广泛的综 1 实验平台的搭(智械科技) 合性科学技术。实验教学是自动化专业教学过程中 [1] 非常重要的一环。随着目前机器人技术的不断发展, 本课程选用的机器人是美国先锋(P i o n e r 3A T ) 系列机器人[。该系列机器人是目前世界上最成熟的 4] 机器人控制实验已逐步进入各个高校。机器人教学对 于培养和提高学生的创新精神和动手能力具有极其重 轮式移动机器人研究平台之一。通常科研人员对此系 要的作用[。在自动化专业开设机器人控制实验课 2 ] 列机器人的开发与研究都在控制台程序上运行,但需 要对v M a 机器人技术应用接口a 有较 深的了解因此需要花费大量时间阅读繁多的程序代 熟悉研究环境。由于实验学时有限为了能让学生 在最短的时间内最大程度地掌握机器人的有关知识 首先搭建了一个简单实用的实验平台。该平台的建立 能使学生在最短时间内熟悉各种底层动作在实验课 程中掌握基础理论和系统深入的专门知识。 整个平台系统包括个功能模块用户操作管理 模块、通信模块、控制模块、数据分析处理模块和显示 程, 不仅可以让学生接触到国际先进的机器人们的眼界还可以让学生学习先进的控制方法 些方法运用于机器人的实际控制上 提高学生的创新能力和动手能力 域的继续发展奠定坚实的基础。为此 重点实验室项目中购买了数台机器人 , , 开阔他 并将这 A c t i e d i A r i , , ,扩展他们的思维 , 码, , [ 3 ] , 为将来在控制领 , , 本校在北京市 , 针对自动化专 , 业的教学内容及要求,开设了机器人控制实验,取得了 良好的教学效果。 5 : 收稿日期 : 2 0 0 9 1 2 2 1 修改日期 : 2 0 1 0 0 3 1 5 管理模块。各模块所组成的功能结构如图 们之间通过数据信号和控制信号联系在一起 个统一的整体。在控制模块中为学生的实验操作 1 所示,它 基金项目 : 北京市教育委员会共建重点实验室资助项目 (CSYS ,构成一 1 0 0 0 (7 0417) 作者简介 : 张佳 1 9 8 0 ) , 女 ,北京市人 , 硕士 ,实验师 , 研究方向为机器 [ 5 ] , 人控制、智能控制和图像处理.

移动机器人路径规划技术综述

龙源期刊网 https://www.doczj.com/doc/da6853736.html, 移动机器人路径规划技术综述 作者:孙梅 来源:《山东工业技术》2016年第21期 摘要:移动机器人的设计与实现能够促进智能化应用的良好发展。路径规划技术是机器 人实现移动功能的主要技术之一。路径规划技术主要包含局部规划技术以及全局规划技术等。本文从路径规划技术的作用入手,对移动机器人路径规划技术进行研究和分析。 关键词:移动机器人;路径规划技术;综述 DOI:10.16640/https://www.doczj.com/doc/da6853736.html,ki.37-1222/t.2016.21.135 0 前言 移动机器人的实现涉及自动控制、智能、机械等多种学科。它通常被应用在医疗领域、工业领域等方面。从整体角度来讲,移动机器人的应用促进了生产效率的显著提升。路径规划技术是移动机器人的关键技术之一,研究该技术具有一定的现实意义。 1 路径规划技术的作用 将路径规划技术应用在移动机器人中,能够产生的作用主要包含以下几种: (1)运动方面。路径规划技术的主要作用是其能够保证移动机器人完成从起点到终点的运动。(2)障碍物方面。设计移动机器人的最终目的是将其应用在实际环境中,在实际环境下,移动机器人的运行路线中可能存在一定数量的障碍物,为了保证最终目的地的顺利达到,需要利用路径规划技术实现对障碍物的有效避开[1]。(3)运行轨迹方面。对于移动机器人而言,除了实现障碍物躲避、达到最终目的地这两种作用之外,应用路径规划技术还可以产生一定的优化运行轨迹作用。在移动机器人的使用过程中,在路径规划技术的作用下,机器人可以完成对最佳运行路线的判断,进而更好地完成相应任务。 2 移动机器人路径规划技术综述 移动机器人的路径规划技术主要包含以下几种: 2.1 局部路径规划方面 在局部路径规划方面,能够被应用在移动机器人中的技术主要包含以下几种: (1)神经网络路径规划技术。从本质上讲,可以将移动机器人的路径规划看成是空间到行为空间感知过程的一种映射,因此,可以利用神经网络的方式将其表现出来。就神经网络路

多机器人路径规划研究方法

多机器人路径规划研究方法 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝 摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 Abstract:This paper analyzed and concluded the main method and current research of the path planning research for multi robot.Then discussed the criterion of path planning research for multi robot based large of literature.Meanwhile,it expounded the bottleneck of the path planning research for multi robot,forecasted the future development of multi robot path planning. Key words:multi robot;path planning;reinforcement learning;evaluating criteria 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI研究大致可以分为DPS(distributed problem solving)和MAS(multi agent system)两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术界研究的热点,而路径规划研究又是其核心部分。 机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果[1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi图法、自由空间法、栅格法、拓扑法、链接图法、Dempster Shafer 证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划

机器人路径规划算法总结

1.自主机器人近距离操作运动规划体系 在研究自主运动规划问题之前,首先需建立相对较为完整的自主运动规划体系,再由该体系作为指导,对自主运动规划的各项具体问题进行深入研究。本节将根据自主机器人的思维方式、运动形式、任务行为等特点,建立与之相适应的自主运动规划体系。并按照机器人的数量与规模,将自主运动规划分为单个机器人的运动规划与多机器人协同运动规划两类规划体系。 1.1单个自主机器人的规划体系 运动规划系统是自主控制系统中主控单元的核心部分,因此有必要先研究自主控制系统和其主控单元的体系结构问题。 自主控制技术研究至今,先后出现了多种体系结构形式,目前被广泛应用于实践的是分布式体系结构,其各个功能模块作为相对独立的单元参与整个体系。随着人工智能技术的不断发展,基于多Agent的分布式体系结构逐渐成为了主流,各功能模块作为独立的智能体参与整个自主控制过程,该体系结构应用的基本形式如图1所示。一方面,主控单元与测控介入处理、姿态控制系统、轨道控制系统、热控系统、能源系统、数传、有效载荷控制等功能子系统相互独立为智能体,由总线相连;另一方面,主控单元为整个系统提供整体规划,以及协调、管理各子系统Agent的行为。测控介入处理Agent保证地面系统对整个系统任意层面的控制介入能力,可接受上行的使命级任务、具体的飞行规划和底层的控制指令;各子系统Agent存储本分系统的各种知识和控制算法,自主完成主控单元发送的任务规划,并将执行和本身的健康等信息传回主控单元,作为主控单元Agent运行管理和调整计划的依据。 图1 基于多Agent的分布式自主控制系统体系结构基本形式示意图 主控单元Agent采用主流的分层递阶式结构,这种结构层次鲜明,并且十分利于实现,其基本结构如图2所示。主控单元由任务生成与调度、运动行为规划和控制指令生成三层基本结构组成,由任务生成与调度层获得基本的飞行任务,经过运动行为规划层获得具体的行为规划,再由控制指令生成层得到最终的模块控制指令,发送给其它功能Agent。各功能Agent发送状态信息给主控单元的状态检测系统,状态检测系统将任务执行情况和子系统状态反馈回任务生成与调度层,以便根据具体情况对任务进行规划调整。当遇到突发情况时,还可启用重规划模块,它可根据当时情况迅速做出反应快速生成行为规划,用以指导控制指令生成层得到紧急情况的控制指令。此外,地面控制系统在三个层次上都分别具有介入能

路径规划概述

1.3.2路径规划方法的概述 路径规划是智能机器人领域中的一个重要分支,根据不同实验要求 规划出各自的最 优路径是路径规划研究的意义所在。在本实验系统中,路经规划主 要考虑一下两个方面 的问题:对于主臂,运动目标是在起始位置和目标位置间做直线运动,直线已是两点间 的最短距离,因此它的路经规划相对简单:对于从臂,在运动过程 中始终视主臂为其要 避碰的障碍物,它路径规划的目的则是要规划出一条与主臂无碰撞 的最短路径。 机器人的路径规划基本方法大体可分为3种类型112l: (1)基于环境模型的路径规划,它能够处理完全已知环境下机器人的 路径规划,但 当环境发生变化时,该方法无能为力。具体方法为:栅格法、可视 图法和自由空间法等。 (2)基于传感器信息的路径规划法,其实现了机器人在动态未知环境 中运动的重要 技术。具体方法为:人工势场法、栅格法、模糊逻辑法等。(3)基于 行为的路径规划法,它把导航问题分解为许多相对对立的导航单元,且这 些单元都有传感器和执行器,它们协调工作,共同完成运动任务。 栅格法将移动机器人工作环境分解成一系列具有二值信息的网格单元,用尺寸相同 的栅格对机器人运行环境进行划分,若某个栅格范围内不含任何障 碍物,则称此栅格为 自由栅格,反之称为障碍栅格。 人工势场法借鉴了物理势场的原理,把机器人所在的环境表示为一 种抽象的力场。

势场中包含斥力级和引力级,不希望机器人进入的区域和障碍物区域属于斥力级,目标 区和希望机器人进入的区域为引力级。引力级和斥力级的周围由一定的算法产生相应的 势场。机器人在势场中具有一定的抽象能力,它的负梯度方向表示机器人系统所受的抽 象力的方向,正是这个抽象力的作用,促使机器人绕过障碍物,朝目标前进。 模糊逻辑控制是以模糊集合论、模糊逻辑、模糊语言变量以及模糊推理为基础的一 种非线性的计算机数字控制技术。其特点为:可以将获得的不确定的数据经过处理得到 精确的数据结果。基于实时传感信息的模糊逻辑算法参考人的驾驶经验,通过查规则表 得到规划信息,实现局部路径的规划【B15l。该方法克服了势场法易产生局部极小问题, 适用于时变未知环境下的路径规划,实时性较好。 随着智能控制方法理论的逐渐成熟,当机器人面对比较复杂的工作环境时,将智能 控制方法应用到机器人的路径规划中可以大大提高机器人对环境的适应性。主要应用的 智能控制方法有人工神经网络法、遗传算法和蚁群算法等等。 人工神经网络是由大量简单的神经元相互连接而形成的自适应非线性动态系统,其 不依赖于被控模型,比较适合不确定和高度非线性的控制对象,并具有较强的学习和适应能力。采用神经网络的路径规划算法需要先将环境地图映射称神经元网络,并设置神 经元的值来表征不同的地图状况,在通过对神经网络的训练来获取最优的神经元集合以 组成最优路径。

机器人路径规划

机器人路径规划 冯赟:机器人路径规划方法研究 1绪论 1.1机器人简介 1.1.1什么是机器人 机器人一词不仅会在科幻小说、动画片等上看到和听到,有时也会在电视上看到在工厂进行作业的机器人,在实际中也有机会看到机器人的展示。今天,说不定机器人就在我们的身过,但这里我们要讨论的是什么是机器人学研究的机器人。 robot)一词来源下1920年捷克作家卡雷尔 . 查培克(Kapel Capek)机器人( 所编写的戏剧中的人造劳动者,在那里机器人被描写成像奴隶那样进行劳动的机器。 后来作为一种虚构的机械出现在许多作品中,代替人们去完成某些工作。20世纪60年代出现了作为可实用机械的机器人。为了反这种机器人同虚构的机器人及玩具机器人加以区别,称其为工业机器人。 工业机器人的兴起促进了大学及研究所开展机器人的研究。随着计算机的普及,又积极地开展了带有智能的机器人的研究。到70年代,机器人作为工程对象已经被确认,机器人一词也受到公认。目前,机器人学的研究对象已不仅仅是工业机器人了。 即便是实际存在的机器人,也很难把它定义为机器人,而且其定义也随着时代在变化。这里简单地反具有下述性质的机械看作是机器人: 1. 代替人进行工作:机器人能像人那样使用工具和机械,因此,数控机床和 汽车不是机器人。 2. 有通有性:既可简单地变换所进行的作为,又能按照工作状况的变化相应

地进行工作。一般的玩具机器人不能说有通用性。 3. 直接对个界作工作:不仅是像计算机那样进行计算,而且能依据计算结果 对外界结果对外界产生作用。 机器人学把这样定义的机器人作为研究对象。 - 1 - 郑州大学电气工程学院毕业设计(论文) 1.1.2机器人的分类 机器人的分类方法很多,这里我们依据三个有代表性的分类方法列举机器人的 种类。 首先,由天机器人要代替人进行作业,因此可根据代替人的哪一个器官来分类: 操作机器人(手):利用相当于手臂的机械手、相当于手指的手爪来使物体协 作。 移动机器人(腿):虽然已开发出了2足步行和4足步行机器人,但实用的却是 用车轮进行移动的机器人。(本文以轮式移动机器人作为研究对象) 视觉机器人(眼):通过外观检查来除掉残次品,观看人的面孔认出是谁。虽然 还有使用触觉的机器人,但由于它不是为了操作,所以不能说是触觉机器人。 也还有不仅代替单一器官的机器人,例如进行移动操作,或进行视觉和操作的 机器人。 其次,按机器人的应用来分类: 工业机器人:可分为搬送、焊接、装配、喷漆、检查等机器人,主要用于工厂 内。 极限作业器人:主要用在人们难以进入的核电站、海底、宇宙空间等进行作为 的机器人。也包括建筑、农业机器人等。

机器人路径规划方法的研究进展与趋势

机器人路径规划方法的研究进展与趋势 朱明华,王霄,蔡兰 (江苏大学机械工程学院,江苏镇江212013) 摘要:对机器人路径规划的研究进行了概括和总结,阐述了机器人全局路径规划方法、局部路径规划方法及混合方法的研究现状、特点和主要成果,指出了其今后的发展方向及研究重点。 关键词:机器人;遗传算法;路径规划;粗糙集 中图分类号:T P242 文献标识码:A 文章编号:1001-3881(2006)3-005-4 R esearch P rogress and Future Develop m ent on Path P lanni n g for Robot Z HU M inghua,WANG X iao,CA I Lan (M echanical Eng i n eering Institute,Jiangsu Un i v ersity,Zhenjiang Jiangsu212013,China) Abstrac t:T he research of robo t pa t h plann i ng w as s umm arized,the research sta t us quo,character i stic and ma i n producti on of robo t g l obal path p l ann i ng m ethod,l oca l path p l ann i ng m ethod and hybr i d m ethod were expatiated,its deve l op m ent d irec tions and study f o cus w ere po i nted out. K eyword s:R obot;G enetic a l gor it hm s;P ath p lann i ng;R ough set 路径规划技术是机器人研究领域中的一个重要分支,是机器人导航中最重要的任务之一。蒋新松在文献[1]中为路径规划作出了这样的定义:路径规划是自治式移动机器人的一个重要组成部分,它的任务就是在具有障碍物的环境内按照一定的评价标准,寻找一条从起始状态(包括位置和姿态)到达目标状态(包括位置和姿态)的无碰路径。障碍物在环境中的不同分布情况当然直接影响到规划的路径,而目标位置的确定则是由更高一级的任务分解模块提供的。目前,根据对环境的掌握情况,机器人的路径规划问题可以大致分为二大类:基于环境先验信息的全局路径规划;基于不确定环境的传感器信息的局部路径规划。 1 全局路径规划方法(G lobal Pat h Plann i n g) 依据已获取的全局环境信息,给机器人规划出一条从起点至终点的运动路径。规划路径的精确程度取决于获取环境信息的准确程度。全局路径规划规划方法通常可以寻找最优解,但需要预先知道准确的全局环境信息。通常该方法计算量大,实时性差,不能较好地适应动态非确定环境。基于环境建模的全局路径规划的方法主要有:自由空间法、构型空间法和栅格法等。 1 1 自由空间法(Free Space Approach) 自由空间法采用预先定义的如广义锥形[2]和凸多边形[3]等基本形状构造自由空间,并将自由空间表示为连通图,然后通过搜索连通图来进行路径规划,此方法比较灵活,即使起始点和目标点改变,也不必重构连通图,但是算法的复杂程度与障碍物的多少成正比,且不能保证任何情况下都能获得最短路径。因而该方法仅适用于路径精度要求不高,机器人速度不快的场合。按照划分自由空间方法的不同又可分为:凸区法、三角形法、广义锥法。 1 2 构型空间法 为了简化问题,通常将机器人缩小为一点,将其周围的障碍物按比例相应地进行拓展,使机器人在障碍物空间中能够任意移动而不与障碍物及其边界发生碰撞。目前研究比较成熟的有可视图法[4]和优化算法(如D ijkstra法[5]、A*搜索算法[6]等)。 1 2 1 可视图法(V-G r aph) 通过起始点和目标点及障碍物的顶点在内的一系列点来构造可视图。连接这些点使某点与其周围的某可视点相连,即要求机器人和障碍物各顶点之间、目标点和障碍物各顶点以及各障碍物顶点与顶点之间的连线均不能穿越障碍物,也即直线是可视的。从而搜索最优路径的问题就转化为经过这些可视直线从起始点到目标点的最短距离问题。 1 2 2 优化算法(Optm i ization A l gorit hm) 优化算法可以删除一些不必要的连线以简化可视图,从而缩短搜索时间,求得最短路径。但是,优化算法缺乏灵活性,一旦起点和目标点改变,就必须重构可视图,并且搜索效率也较低。 1 3 栅格法(Grids) 栅格法[7]将机器人的工作环境分解成一系列具有二值信息的网格单元,并假设工作空间中障碍物的位置和大小已知且在机器人运动过程中不会发生变化。用尺寸相同的栅格对机器人的二维工作空间进行规划,栅格大小以机器人自身的尺寸为准。若某一栅格范围内不含任何障碍物,则称此栅格为自由栅格;反之,称为障碍栅格。这样,自由空间和障碍物均可表示为栅格块的集成。栅格的表识方法有两种:直角坐标法和序号法。直角坐标法如图1所示,以栅格阵左上角为坐标原点,水平向右为X轴正方向,竖直向

相关主题
文本预览
相关文档 最新文档